CS 420-02: Undergraduate Simulation,
Modeling and Analysis

RAHUL SIMHA

Department of Computer Science
College of William & Mary
Williamsburg, VA

Chapter 1

Introduction

CS 420-02: Undergraduate Simulation, Modeling and Analysis

1.1 Introduction

e Introduction in three parts:

1. A problem in computational biology:

— Background: DNA and sequencing.
— The alignment problem: formulation.

— The alignment problem: solution using graph theory.
2. Cellular automata:

— Von Neumann’s question.

— Cellular automata: the Game of Life.
3. Genetic algorithms:

— Evolution as a metaphor for algorithm design.
— The basic genetic algorithm.

— Example: function optimization.

e Overview of course.

1.2 Background: Molecular Biology

e Two key chemicals in living things:

1. Proteins:

— Proteins occur in many forms/functions:
* Enzymes (catalysts).
* Structural proteins (cell walls, skin, hair).
* Transporters of substances (e.g., hemoglobin, carrier of oxy-

gen).

* Transporters of information (receptors, hormones).

— Fact: human body has about 100,000 distinct proteins.

— A protein is a chain of amino acids.

— There are 20 different amino acids.

— 3 < #amino acids < thousands.
= amino acids can repeat along the chain.

— If we use the symbols Q = {A;, Ay, ..., Ay} for the 20 amino
acids, a protein is a “word” over the alphabet).
2. DNA:

— DNA is a molecular structure that resides inside a cell’s nucleus.

— DNA is the “information carrier” of a cell.

— DNA is a (really long) “word” over a 4-letter alphabet: {A, T, C, G}.
(Bases: A=Adenine, T=Thymine, C=Cytosine, G=Guanine).

— DNA occurs as two complementary strands: e.g.,

STRAND 1 STRAND 2

S— A T — S« phosphate
7 p £«
P /
N\ — —_
/S T A S:\sugar
P s P
Ns—C G— S
P/ \P
7/
Ns—C G— S
7 AN
P s P

NS —G C—S

— The 3D structure is a double helix:

Insert Fig 1.5, p 9

— The phosphates and sugars carry no information. Only the the
bases do.

— The strands are complementary: given one you can construct
the other.
= the information in DNA is really one long string over the
letters {A, T, C,G}.
— Substrings of DNA encode useful things (proteins)
= substrings & genes.
— The entire string is called a cell’s genome.
— Human genome: 3 billion letters long.

e DNA’s dual purpose:

1. To encode proteins.

2. To replicate itself.
e Encoding proteins:

— Recall:

* A protein is a string of amino acids.

* There are 20 amino acids (20 letters in the Amino Alphabet).
— Groups of bases (from the DNA Alphabet) encode amino acids.
— How many bases are required to encode 20 amino acids?

* How many amino acids can one base position encode?

Answer: 4.

* How many amino acids can two bases encode?
Answer:

* How many bases are needed for 20 amino acids?
Answer:

x Thus, 3 bases are enough.

* 3 bases can encode 4> = 64 things. What about the excess
combinations?
= Many duplicates; some combinations for punctuation (start,

stop).

— Thus, bases are read three-at-a-time to encode amino acids (or punc-
tuation)
= a long sequence of DNA can encode a long sequence of amino
acids
= a protein!

— Example:

'A' T G!''c A TG G A'lCc A CllI'T G Al

Start 1st 2nd 3rd Stop
amino amino amino
acid acid acid

protein with
3 amino acids A1l

A2 — A1

— The genetic code (the fixed translation scheme):

Page 11

e DNA replication:
— DNA replicates by a simple ‘photocopying’ process:
(negative of a negative)

x A strand separates out:

AT G CAT GGA CAC TGA

* The strand creates its complement, drawing on available bases:

AT G CAT GGA CAC TGA

T AC GT A CCT GTG ACT

complementary strand

* Then, the complement creates its complement:

replica of original

AT G CAT GGA CAC TGA

T AC GTA CCT GTG ACT

complementary strand

e Related facts:

— Human Genome Project: to obtain the entire sequence for a (any

one) human.

* Human genome: about 3 billion bases.

x Takes days to get a 1000-letter sequence by tedious experimen-
tion.

x Expected completion date: 2005.
— 98% of human DNA is thought to be useless (only 2% carries infor-

mation).

— Most traits are determined by multiple genes.

— A gene has 50-500 bases
= 100,000 genes in human DNA.

— Mutations: “Mistakes” during replication often result in small
changes to DNA.

— Some key players:

*

Gregor Mendel (1860’s): principles of heredity, experiments with
peas.

Thomas Hunt Morgan (1910-20): confirmation of Mendel’s prin-
ciples by experimentation with the fruit fly.

Oswald Avery (1944): identified DNA as the “information car-
rier.”

James Watson and Francis Crick (1953): identified the stucture
of DNA (double helix).

Fred Sanger (Cambridge), Walter Gilbert (MIT): devised DNA
sequencing technology in the period 1955-75.
(Sanger: two Nobel prizes).

1.3 A Problem in Computational Biology

e Molecular biologists often compare DNA sequences or protein sequences
from different animals to see if they are “similar.”

Why? Suppose, in animal X the DNA sequence ATTTCGCCGTAC has
the function “sharp claws”.

By looking for a similar sequence in animal Y’s genome, you can narrow
the search for its “claw sharpness” gene.

e It would be easy if “claw sharpness” genes were identical across all ani-
mals.
= Unfortunately, that is not so.

e Often, they are similar, e.g.,

AT TTCGZ CZC CGT A C
AT TTGGT C G
-
/ shorter
different
In fact, the similarity can be more complex:

AT T T CGZ CZOCGTAZC —<— STRING 1

ATTTCGCCGTAC

N\ Z\

<— STRING 2

match

delete AAA

General idea:
by some insertions, some deletions and some mismatches, two sequences
can be aligned.

e We will define a “discrepancy score” for every alignment:

— Large values for insertions and deletions.
— Moderate values for mismatches.

— Low or zero values for exact matches.

e Problem: given two sequences (strings), compute the minimal-discrepancy
alignment.

e General problem formulation: Given

1. An alphabet Q = {A, B,...};

2. A mismatch cost function
d(z,y) = cost when z is mismatched with y;
3. An insertion cost function;

4. A deletion cost function;

5. Two sequences (strings) over the alphabet;

Compute the minimal alignment.

Note: For DNA, || = 4, for proteins, |Q2| = 20.
e Example:

— Q={A,B}, x=AB,y= BAA.
— Cost table:

10

A B deletion

B [3 |0 |5

insertion | 7 8

cost of aligning y's A with x's B

— Sample alignment:

COST: 7 0 5 5 =17
x=AB A B
y=BAA A B A A

insert delete A A
A

exact match

— Another possible alignment:

COST: 5 0 3 =8
X=AB A B
y=BAA B A A
delete mismatch
exact

e Solution method: create a cost-graph, e.g.,

11

B A A

5 5
[)
0 7 0 7 7 insert
A
5 5
[)
8 7 3 7 7 insert
B
5 5
[[)
& Example: A B
5 5 5 B B A A
delete delete delete Cost: 4+7+5+5 =21
B A A

Solution: find shortest path from top-left corner to bottom-right corner.
e Key ideas in algorithm:

— For each vertex v define:

(v) = shortest cost from top-left to v
(v) = vertex North of v
(v) = vertex West of v
(v) vertex Northwest of v
)

= cost on edge (u,v)

— Scan vertices row by row.

— For each vertex encountered in scan:

12

— Minimal cost: f(bottom-right).

— If strings are of length m and n, what is the complexity of the
algorithm?

13

1.4 Summary I

e DNA information structure: string of alphabets.
e Facts about DNA:

— Substrings encode function (protein).
— DNA replicates by photocopying.

— Mutations are occasional changes in DNA during replication.
e DNA sequencing poses many computational problems.
e Other computational biology problems:

— Statistical heredity theory (mapping approximate locations of genes).
— Search and database problems in genome databases.
— Macro-geometry of DNA and other molecules.

— The protein folding problem.

14

1.5 Von Neumann’s Theory of
Self-Reproduction

e John Von Neumann (1903-1957): a giant of 20-th century science:
— 20’s - 30’s: Pure and applied mathematics, quantum physics.
— 30’s - 40’s: Game theory and economics.
— 40’s - 50’s: Computing (stored program machine).
— 50’s: Automata, self-reproduction theory.

e Von Neumann’s goal: to prove mathematically that self-reproduction
(or any kind of reproduction) is possible.

e First attempt: the kinematic model.
e The blueprint problem: can a blueprint contain itself?
e Second attempt: the cellular model (cellular automata).

e What is a cellular automaton?

— An infinite 2D grid.

— Each cell in the grid can be in one of a finite number of states.
Set of states 2 = {4, B,...}.

— The system evolves in discrete time steps.
— At each step the next state of a cell depends on:

1. its current state;

2. the current state of each of several surrounding cells (usually,
the eight neighbors), e.g.,

15

o
B RULE:
Bl A If an ‘A’ has either E
4 B'sorone Cas
C neighbors, it becomes
an‘E’

e The Game of Life:

— A particular kind of cellular automaton.

— Devised in 1970 by John Horton Conway, a Cambridge mathemati-
cian.

— Two states: 2 = {0,1} (off, on).
— Rules for cell state-change (only consider 8 neighbors):

1. [Birth] If exactly 3 neighbors are on, next state is on.

2. [Status-quo] If exactly 2 neighbors are on, next state is current
state.

3. [Death] In all other cases (0,1,4,5,6,7 or 8 neighbors on), next
state is off.

e Interesting configurations in the Game of Life:

— 3-dot blinker.

— 4 dots: block, T-tetronimo.
— 5 dots: glider.

— The eater.

— The R-pentonimo.

16

1.6 Von Neumann’s Quandary

e The problem:

— Von Neumann wanted to show that self-reproduction is possible in
the cellular world, but not in a trivial way.
— Trivial self-reproduction: the 3-dot blinker in Life.
— He defined non-trivial reproduction as a cellular automaton that:
1. Embedded a Turing machine (universal Turing machine).

2. Embedded a Universal Constructor.
(UC: reads building instructions (blueprint) on “tape” and builds

cells accordingly).

3. Reproduced itself entirely, including blueprint.

e Von Neumann never constructed a complete self-reproducing automa-
ton: he died before he could.

However, most experts agree he showed that it was possible.
Von Neumann’s automaton: 29 states/cell and 200,000 cells in initial
configuration:

— He showed how a Turing machine could be constructed.

— He showed how a Universal Constructor (UC) would work.

— He showed the UC worked by reading instruction from a “tape” (the
blueprint).

— He showed that the blueprint problem was solvable: the blueprint
was “photocopied” into the new offspring.

17

1.7 Summary I1

e A simple mathematical object like a cellular automation is capable of
complex behavior.

e It is not obvious that a given rule system will produce “interesting”
behavior.

e Cellular automata have been used to demonstrate self-reproduction
mathematically.

e Cellular automata are essentially a particular type of discrete-event sim-
ulation.

18

1.8 Genetic Algorithms

e Genetic algorithms: evolutionary biology as a metaphor for algorithm
design.

e Genetic algorithms are used in optimization.
e Key ideas:

— Start with a large number of potential solutions (initial population).
— At each step, generate a new population:

* Weak (high-cost) solutions “die.”

* Strong (low-cost) solutions “survive.”

— By evolution, the hope is that the optimal solution will dominate
the population eventually.

e Example: we will look at a really simple problem.

— Let S ={0,1,2,...,31}, the set of potential solutions.
— Define, for z € S, f(z) = 22, the cost function.
— Problem: find z* € S that maximizes f.

e Steps in the genetic algorithm (example):

— Step 1: Express potential solutions as bit-strings:
S = {00000, 00001, 00010, ...,11111}.

Treat each bit-string as a collection of 1-bit genes
= each solution is a genome.

— Step 2: Start with a large random initial population, e.g.,

19

Hundred each of 01101, 11000, 01000, 10011.

Thus, initial population is 400.
— Step 3: Repeat the following for a long time:

1. Compute the “fitness” (f-value) of each unique genome:

ID Genome Decimal f(genome) fraction of CDF
total (PDF)

1 01101 13 169 0.144 0.144

2 11000 24 074 0.492 0.691

3 01000 8 64 0.055 0.691

4 10011 19 361 0.309 1.000
1170

2. Use a genome’s fraction as its survival probability for next gen-
eration.
= e.g., P[survival for 11000] = 0.492.

3. Create 400 new survivors based on random generation from the
PDF.

Note: at this point it seems we will never create any new genome.
4. Apply crossover rules:
x Pick two genomes at random, e.g., 01101 and 11000.
x Pick a random crossover point, e.g., 4-th bit.

x Crossover to get two new genomes: 01100, 11001
= also called “mating.”

5. Apply mutation rules:

x For each genome and each bit, flip the bit with some small
probability.

20

1.9 Summary II1

e A biological phenomenon (evolution) was used as a metaphor for algo-
rithm design.

e By simulating evolution, the genetic algorithm is able to solve optimiza-
tion problems.

e Genetic algorithms are applied widely to discrete optimization problems.

21

1.10 Overview of course

e Modeling of systems with interacting components:

— Reliability.

— Structure of materials.
e Simulation as a research tool.
— Artificial life systems.
e Physical and man-made systems as a metaphor for algorithm design:

— Simulated annealing (metaphor from metallurgy).

— Price-directed optimization (metaphor from economics).

