CS 420-02: Undergraduate Simulation, Modeling and Analysis

RAHUL SIMHA

Department of Computer Science College of William & Mary Williamsburg, VA

Chapter 1

Microeconomic Algorithms

CS 420-02: Undergraduate Simulation, Modeling and Analysis

1.1 Introduction

- In earlier lectures, we have seen how natural phenomena serve as metaphors for algorithm design:
 - Genetic Algorithms: metaphor from biology.
 - Simulated Annealing: metaphor from metallurgy.

This lecture: metaphor from economics.

Application: fair division of (divisible) resources in a distributed system using a pricing mechanism.

• Key ideas: use a market-based approach

Consider this example:

- A database file is shared by 3 branches of a bank.
- Each branch would like to keep the entire file
 - \Rightarrow better for local access.
- Resource allocation problem: assuming file is divisible, how to decide a fair allocation?

Using a market mechanism:

- Provide each branch with some play-money.
- Each branch bids for as large a piece of the file as its "budget" allows.
- Prices are adjusted iteratively, until each branch buys all it can, and whole file is spread across branches.

Why use a market approach?

- Decision-making is decentralized (good fault-tolerance).
- Market approach can accomodate multiple "commodities."
- Algorithm is very simple (as we'll see).

• Outline of lecture:

- Optimization 101: the Lagrange Multiplier Method.
- Econ 101: basics of microeconomics:
 - * Producers.
 - * Consumers.
 - * A simple exchange economy.
 - * Tatonnement.
- Tatonnement as an algorithm.
- An example.

1.2 Optimization 101: The Lagrange Multiplier Method

• **Focus**: optimization of a multivariable function subject to an equality constraint:

maximize
$$U(x_1, x_2, \dots, x_n)$$

 $s.t.$ $g(x_1, x_2, \dots, x_n) = 0.$

In the optimization field, U is usually called the *objective function*. In microeconomics: U is often called the *utility function*.

- Single-variable, unconstrained:
 - Method: set derivative to zero.
- Multiple variables, unconstrained:
 - Method: set partial derivatives to zero.
- Multiple variables, equality constraints:
 - Consider a 2-variable problem:

maximize
$$U(x_1, x_2)$$

s.t. $g(x_1, x_2) = 0$

- Example of a problem:

maximize
$$U(x_1, x_2) = 3x_1 + 4x_2 + x_1x_2$$

s.t. $6x_1 + 2x_2 - 30 = 0$

- Consider now a small change in $\boldsymbol{x}=(x_1,x_2)$:

$$\boldsymbol{x}' = (x_1 + \Delta x_1, x_2 + \Delta x_2)$$

such that the constrained is maintained:

$$g(x_1 + \Delta x_1, x_2 + \Delta x_2) = 0.$$

Then (first-order approximation):

$$\frac{\partial g}{\partial x_1} \Delta x_1 + \frac{\partial g}{\partial x_2} \Delta x_2 = 0$$

This change causes a change in U:

$$\Delta U = \frac{\partial U}{\partial x_1} \Delta x_1 + \frac{\partial U}{\partial x_2} \Delta x_2$$

Combining, we get

$$\Delta U = \Delta x_2 \left(\frac{\partial U}{\partial x_2} - \frac{\partial U}{\partial x_1} \frac{\partial g/\partial x_2}{\partial g/\partial x_1} \right)$$

$$\stackrel{\triangle}{=} \Delta x_2 D$$

Now, if D > 0, pick $\Delta x_2 > 0$ or if D < 0, pick $\Delta x_2 < 0$. \Rightarrow at maximum D = 0. Thus,

$$\frac{\partial U/\partial x_1}{\partial U/\partial x_2} = \frac{\partial g/\partial x_1}{\partial g/\partial x_2}$$

or, equivalently,

$$\frac{\partial U/\partial x_1}{\partial g/\partial x_2} = \frac{\partial U/\partial x_1}{\partial g/\partial x_2} = \text{some constant } \lambda$$

- Example:

maximize
$$U(x_1, x_2)$$

s.t. $p_1x_1 + p_2x_2 = b$

Then, at the maximum

$$\frac{\partial U/\partial x_1}{\partial U/\partial x_2} = \frac{p_1}{p_2}$$

Interpretation: ratio of marginal utilities equals the price ratio at the optimum.

• The Lagrange Multiplier Method:

- Used to solve a problem with equality constraints, e.g.

maximize
$$U(x_1, x_2)$$

 $s.t.$ $g(x_1, x_2) = 0$

- Method: define a new function

$$L = U(x_1, x_2) - \lambda g(x_1, x_2)$$

and find the unconstrained optimum of this function:

Set
$$\frac{\partial L}{\partial x_1} = 0$$
, $\frac{\partial L}{\partial x_2} = 0$, $\frac{\partial L}{\partial \lambda} = 0$

- Why does this work? Set the derivatives to zero as indicated above and see for yourself.

- Example:

maximize
$$U(x_1, x_2) = 3x_1 + 4x_2 + x_1x_2$$

s.t. $6x_1 + 2x_2 - 30 = 0$

The Lagrangean function for this problem is:

$$L = 3x_1 + 4x_2 + x_1x_2 - \lambda(6x_1 + 2x_2 - 30)$$

To solve, set each derivative to zero:

$$\frac{\partial L}{\partial x_1} = 0 \quad \Rightarrow \quad 3 + x_2 - 6\lambda = 0$$

$$\frac{\partial L}{\partial x_2} = 0 \quad \Rightarrow \quad 4 + x_1 - 2\lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 0 \quad \Rightarrow \quad 6x_1 + 2x_2 - 30 = 0$$

Solution (3 equations, 3 unknowns): $x_1 = 1, x_2 = 12$.

Note: it is common to write the optimal solution as $\mathbf{x}^* = (x_1^*, x_2^*) = (1, 12)$.

1.3 ECON 101: Introduction

• What is Economics?

Formal study of resource allocation, individual vs. social objectives, mechanisms and institutions, models and policy.

• Areas of economics:

- Microeconomics: (detailed picture of individuals)
 - * Theory of economics at the level of individual agents, e.g. individual consumers, firms, investors.
 - * General theory assumes rational behavior (selfish optimization) and perfect information.
- Macroeconomics: (broad picture)
 - * Theory (and practice) of aggregates, e.g., inflation, unemployment, GDP.
- Other specialized areas:
 - * Institutions: central bank, stock exchange.
 - * Government policy: taxation, social and infrastructure spending, monetary policy.
 - * International economics: trade, protection, tariffs.
 - * Development economics: economic paradigms for developing nations.

• Key elements of microeconomics:

- Divisible commodities:
 - * Assume a commodity is divisible (real-valued).
 - * Let $\boldsymbol{x} = (x_1, \dots, x_k)$ represent an allocation of k commodities:

 $x_i = \text{ amount of commodity } i$

 \boldsymbol{x} is called a *commodity bundle*.

- Analysis of Producers:
 - * Cost of production of a commodity.
 - * Profit motive and profit maximization.
- Analysis of Consumers:
 - * Preferences amongst commodities.
 - * Utility functions and utility maximization.
- Market economy:
 - * Exchange economies and prices.
 - * **Def**: **Market**. A collection of consumers and/or producers and a mechanism for trade.
 - * **Def**: **Perfect market**. Agents (consumers, producers) are rational, have perfect information and engage in unrestricted trade. Also, no agent is powerful enough to influence prices in isolation.

1.4 ECON 101: The Producer

- Think of a producer as a firm manufacturing one or more commodities.

 Goal: a simple mathematical characterization of a producer.
- Modeling a producer using a production function::
 - The producer is a function from input commodities to output commodities:

z_i = amount of input commodity i

 y_i = amount of output commodity j

- Typical assumption (for simplicity): only one output

- Another assumption: analysis is static (for a fixed period of time).

- Example:

$$y = f_p(z_1, z_2) = \gamma \sqrt{z_1} \sqrt{z_2}$$

where

y = wheat produced

 $z_1 = labor$

 z_2 = fertilizer/pesticide

• The cost function of a producer:

- Suppose a producer uses inputs $\boldsymbol{z}=(z_1,\ldots,z_m).$
- If the unit price for commodity z_i is p_i . \Rightarrow producer's cost is $p_1z_1 + \ldots + p_mz_m = \boldsymbol{p} \cdot \boldsymbol{z}$.
- Suppose the desired level of output is y.
 Then, to minimize costs, the producer solves the following optimization problem:

minimize
$$p_1z_1 + \ldots + p_mz_m$$

s.t. $f_p(z_1, \ldots, z_m) = y$

- Example: $f_P(z_1, z_2) = \sqrt{z_1}\sqrt{z_2}$, and the desired output level is k units
 - \Rightarrow the following problem is solved

minimize
$$p_1 z_1 + p_2 z_2$$

 $s.t.$ $\sqrt{z_1} \sqrt{z_2} = k$

Solve this to get $z^* = (z_1^*, z_2^*) = (k\sqrt{\frac{p_2}{p_1}}, k\sqrt{\frac{p_1}{p_2}}).$

- The *cost function* of the producer is the cost of the optimal solution to the above problem:

$$C(\boldsymbol{p}, y) = \min_{\boldsymbol{z}} \boldsymbol{p} \cdot \boldsymbol{z}$$
 s.t. $f_p(\boldsymbol{z}) = y$

In the above example,

$$C(p_1, p_2, k) = p_1 k \sqrt{\frac{p_2}{p_1}} + p_2 k \sqrt{\frac{p_1}{p_2}}$$

- Properties of the cost function:
 - * Linearity in prices: $C(\alpha \mathbf{p}, y) = \alpha C(\mathbf{p}, y)$.
 - * $C(\mathbf{p}, y)$ is non-decreasing in \mathbf{p} .
 - * $C(\mathbf{p}, y)$ is concave in \mathbf{p} .

• Producers in the presence of consumers:

- So far, producers have been studied in isolation.
 Now we consider demand and profit maximization.
- The demand function:
 - * Generally, if a product's price goes up, the demand for that product goes down.
 - * Let D(p) = demand seen by a producer at price p.
 - * D is called the demand function.
- The inverse demand function:
 - * Assume D is invertible: $p = D^{-1}(d)$ is called the inverse-demand function, written as p = P(d), for a particular demand value d. It answers the question: what do I set the price to be to create the demand d?
- Maximizing profit:
 - * Assume y units are made and all units are sold \Rightarrow revenue $R(y) = y \times$ price per unit.

But, at production level y, the price should be set at

$$P(y) = D^{-1}(y)$$

At this price, revenue is

$$R(y) = yP(y)$$

* If C(y) is the cost of producing y units (from cost function)

profit
$$\pi(y) = R(y) - C(y) = yP(y) - C(y)$$

- The basic law of production:
 - * To maximize profit, set derivative of $\pi(y)$ to zero and obtain

$$\frac{dR(y)}{dy} = \frac{dC(y)}{dy}.$$

- * Basic law of production: at maximum profit, marginal revenue equals marginal cost.
- * Interpretation: if additional revenue obtained from a slight increase in production exceeds cost increase
 - \Rightarrow you would produce more.

• Producers in competition:

- Currently, we think of a producer maximizing profit by determining output level y to maximize profit $\pi(y)$.
 - \Rightarrow assumes a firm can determine prices via P(y) function
- In perfect competition, a firm cannot determine prices
 - \Rightarrow firms are price-takers

(Any firm that increases prices will not be able to sell anything).

- If prices are given,

$$\pi(y) = yp - C(y).$$

- Let Y(p) the output level that maximizes $\pi(y)$ for given price p.
- -Y(p) is called the *supply function*.
- Usually, in competition, each firm i has a supply function $Y_i(p)$. Then, $Y(p) = \sum_i Y_i(p)$ is called the aggregate supply function.

- Generally, Y(p) increases with p.
- Generally, D(p) decreases with p (Demand decreases with increasing price).
- Equilibrium is obtained when D(p) = Y(p) (Supply = demand).

1.5 ECON 101: The Consumer

• The consumer in isolation: modeling via preferences

- How do we model consumer behavior?
 One approach: define a preference relation.
- Notation: suppose $\boldsymbol{x}=(x_1,\ldots,x_k)$ and $\boldsymbol{y}=(y_1,\ldots,y_k)$ are commodity bundles.

Example:

$$(100,20)$$
 \Rightarrow 100 units of beer, 20 units of chips $(40,30)$ \Rightarrow 40 units of beer, 30 units of chips

Which is a better combination?

 Each consumer has a preference relation that allows commodity bundles to be compared:

$$x \leq y \Rightarrow y$$
 is at least as good as x .

- Define the *indifference* relation $x \approx y$ if both $x \leq y$ and $y \leq x$.

Define
$$C_{\boldsymbol{x}} \stackrel{\triangle}{=} \{ \boldsymbol{y} : \boldsymbol{x} \approx \boldsymbol{y} \}.$$

 $C_{\mathbf{x}}$ is called an *indifference curve* – the locus of points with equivalent preference.

- Desirable properties of preference relations:
 - * Continuity: continuous indifference curves.
 - * Monotonicity: if $x \geq y$, then $x \succeq y$. (More is better).

* Convexity: if $\boldsymbol{x} \succeq \boldsymbol{z}$ and $\boldsymbol{y} \succeq \boldsymbol{z}$ then $\alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y} \succeq \boldsymbol{z}$. $(0 \le \alpha \le 1)$.

(Indifference curves are convex)

Interpretation: a balanced allocation is better than an extreme one.

• The consumer in isolation: modeling via utility functions

- Motivation: it's easier to work with functions than relations.
- \mathbf{Def} : A utility function is a function U s.t.

$$U(\boldsymbol{x}) \geq U(\boldsymbol{y}) \Leftrightarrow \boldsymbol{x} \succeq \boldsymbol{y}.$$

- Desirable properties of utility functions:
 - * U should be continuous.
 - $\ast~U$ should be monotonic:

$$x \ge y \Leftrightarrow U(x) \ge U(y).$$

(More is better).

* U should be quasi-concave:

$$U(\boldsymbol{x}) \ge c \text{ and } U(\boldsymbol{y}) \ge c \Leftrightarrow U(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \ge c.$$

- Fact: if the preference relation is continuous and monotonic, then a continuous utility function exists.
- Fact: U quasi-concave \Leftrightarrow convex indifference curves.

• The consumer and prices:

- Suppose commodity i has unit price p_i .

- Assume consumer has budget b.
- The consumer's behavior is modeled as:

maximize
$$U(\boldsymbol{x})$$

s.t. $\sum_{i} p_{i} x_{i} \leq b$.

- Example:

$$U(x_1, x_2) = 8x_1 + 4x_2 + 2x_1x_2$$

$$p_1 = 5$$

$$p_2 = 10$$

$$b = 100$$

Hence the consumer solves

maximize
$$8x_1 + 4x_2 + 2x_1x_2$$

s.t. $5x_1 + 10x_2 = 100$

Solution turns out to be: $x_1^* = 13.25, x_2^* = 4.375.$

• The consumer's demand function:

- Consider a consumer with utility function U and budget b.
- We assume the consumer solves

maximize
$$U(\mathbf{x})$$

 $s.t. \sum_{i} p_i x_i \leq b$

The solution depends on both \boldsymbol{p} and b.

- Let $X_U(\mathbf{p}, b)$ be the solution you get for prices \mathbf{p} and budget b.
- $-X_U(\boldsymbol{p},b)$ is called the demand function.
- Generally, $X_U(\boldsymbol{p}, b)$ decreases with increasing \boldsymbol{p} .

1.6 ECON 101: An Exchange Economy

• What is an exchange economy?

- Consider a market with many consumers and NO producers.
- Assume k commodities.
- Consumer *i* has initial endowment $\mathbf{x}^i = (x_1^i, \dots, x_k^i)$, i.e., x_l^i amount of commodity *l*.
- What kind of economic activity is possible without producers?
 - \Rightarrow consumers can trade
 - \Rightarrow called an exchange economy

• Example: consider two consumers (A and B) and two commodities

- Suppose consumer A has utility function $U_A(x_1^A, x_2^A) = 4x_1^A + 2x_2^A$ and initial endowment (4,12).
 - \Rightarrow initial utility of A = $U_A(4, 12) = 40$.
- Suppose consumer B has utility function $U_B(x_1^B, x_2^B) = x_1^B + 2x_2^B$ and initial endowment (16,8).
 - \Rightarrow initial utility of B = $U_B(16, 8) = 32$.
- Note: $x_1^A + x_1^B = 20$ and $x_2^A + x_2^B = 20$.
- Suppose A and B consider trading so that
 - * A gets (12,4) and
 - * B gets (8,16).

What are the new utilities? Should they trade?

- Suppose A and B consider trading so that
 - * A gets (6,8) and
 - * B gets (14,12).

What are the new utilities? Should they trade?

- Assumption: a trade will occur if at least one improves without hurting the other.
- What about when
 - * A gets (8,16) and
 - * B gets (12,4)?
- Suppose the initial endowments were such that
 - * A has (20,20) and
 - * B has (0,0).

There is *no* trade that A could possibly agree to.

- **Def**: An allocation is *Pareto-optimal* if there is no trade that improves the utility of at least one guy while not hurting the others.
- NOTE:
 - Pareto-optimality is a way of evaluating the value of an allocation.
 - An alternative way is to define a society-wide utility function in terms of individual utility functions.

e.g.
$$U_S(\mathbf{x}^A, \mathbf{x}^B) = U_A(\mathbf{x}^A) + U_B(\mathbf{x}^B)$$
.

- In this case, the "best" allocation is the one that minimizes U_S .
- However, the sum-of-utilities is somewhat artificial
 - \Rightarrow product-of-utilities will give a different result.
- Pareto-optimality instead uses only individual utilities and considers allocations from a selfish-individual perspective.

• 2 consumers and 2 commodities: some analysis

- Suppose
 - * Consumer A has initial endowment $(\bar{x}_1^A, \bar{x}_2^A)$.
 - * Consumer B has initial endowment $(\bar{x}_1^B, \bar{x}_2^B)$.

with totals $S_1 = \bar{x}_1^A + \bar{x}_1^B$ and $S_2 = \bar{x}_2^A + \bar{x}_2^B$.

- To achieve Pareto-optimality, consumer A solves

maximize
$$U_A(x_1^A, x_2^A)$$
 $s.t.$ $x_1^A + x_1^B = S_1$ $x_2^A + x_2^B = S_2$ $U_B(x_1^B, x_2^B) \geq U_B(\bar{x}_1^B, \bar{x}_2^B)$

(Consumer B solves a similar problem).

The Lagrange Multiplier Method is used to obtain:

$$\frac{\partial U_A/\partial x_1^A}{\partial U_A/\partial x_2^A} = \frac{\partial U_B/\partial x_1^B}{\partial U_B/\partial x_2^B}$$

- Interpretation: at the optimum, marginal rates of substitution are the same across all individuals.

If they are not, a small trade would improve both individuals' utilities.

1.7 ECON 101: Competitive Equilibrium and the Fundamental Theorems of Economics

- Consider an exchange economy with 2 commodities and 2 consumers:
 - Suppose the individuals cannot affect prices in isolation (say, an external referee selects prices).
 - Let the prices be $\mathbf{p} = (p_1, p_2)$ for the two goods.
 - Suppose
 - * Consumer A has initial endowment $(\bar{x}_1^A, \bar{x}_2^A)$.
 - * Consumer B has initial endowment $(\bar{x}_1^B, \bar{x}_2^B)$.

Then,

- * A's initial budget (worth) is $b_A = p_1 \bar{x}_1^A + p_2 \bar{x}_2^A$.
- * B's initial budget (worth) is $b_B = p_1 \bar{x}_1^B + p_2 \bar{x}_2^B$.
- **Def**: The price-allocation combination of

$$egin{array}{lll} m{x}^A &=& (x_1^A, x_2^A) \ m{x}^B &=& (x_1^B, x_2^B) \ m{p} &=& (p_1, p_2) \end{array}$$

is called a competitive equilibrium if

1. the allocations are feasible, i.e.,

$$x_1^A + x_1^B = \bar{x}_1^A + \bar{x}_1^B$$

 $x_2^A + x_2^B = \bar{x}_2^A + \bar{x}_2^B$

2. the allocations are budget-feasible, i.e.,

$$p_1 x_1^A + p_2 x_2^A = b_A$$

 $p_1 x_1^B + p_2 x_2^B = b_B$

3. for every other budget-feasible allocation \boldsymbol{y}^A , \boldsymbol{y}^B , the following is true:

$$U_A(\boldsymbol{y}^A) \leq U_A(\boldsymbol{x}^A)$$

 $U_B(\boldsymbol{y}^B) \leq U_B(\boldsymbol{x}^B)$

• First Fundamental Theorem of (Welfare) Economics:

A price-allocation combination $(\boldsymbol{x}^A, \boldsymbol{x}^B, \boldsymbol{p})$ that satisfies competitive equilibrium is Pareto-optimal.

(Technical assumptions need to be made, e.g., quasi-concave utility functions).

• Second Fundamental Theorem of (Welfare) Economics:

If the allocation \mathbf{x}^A , \mathbf{x}^B is Pareto-optimal, then there is a price vector \mathbf{p} such that $(\mathbf{x}^A, \mathbf{x}^B, \mathbf{p})$ is a competitive equilibrium. (Similar technical assumptions).

- NOTE:
 - Pareto-optimality is not defined in terms of prices.
 The theorems ensure that linear (per-unit) pricing allows one to achieve Pareto-optimality through price-constrained selfish optimization.
 - The result holds for multiple commodities and consumers.
 - A more general result includes the presence of producers.

1.8 Tatonnement

• So far, we only only discussed the *existence* of equilibrium prices.

Key question: how to implement a mechanism to find the equilibrium prices (and hence, a Pareto-optimal allocation)?

• Omniscient dictatorship approach:

- A dictator uses the necessary conditions for Pareto-optimality and computes the equilibrium prices and allocations.
- Consumers are informed of their optimal allocations.
- Consumers then make exchanges to achieve the optimal allocation.

Drawback of this method: presumes the existence of an omniscient dictatorship.

• Tatonnement: a decentralized implementation of price-determination.

• Key ideas in Tatonnement:

- The referee selects arbitrary an initial price for each commodity.
- Each consumer maximizes his/her utility within budget constraints to obtain his/her desired allocation.
- Each consumer reports his/her desired allocation to a referee.
- The referee looks at the total amount requested for each commodity:
 - * If the total amount requested is *more* than the total available, the referee *increases the price* for that commodity.
 - * If the total amount requested is *less* than the total available, the referee *decreases the price* for that commodity.
 - * Otherwise, price is unchanged.
- If any one price changed, the referee reports the new prices to the consumers.

- The process is repeated until prices have converged.
- The limiting prices are taken as the equilibrium prices.
- Finally, the allocations are determined based on these equilibrium prices.

NOTE:

- Utility computations are decentralized (each consumer computes his/her own utility maximization).
- High demand for a commodity increases its price.
- Low demand decreases the price.

1.9 Tatonnement as an Algorithm

• Observation: Tatonnement can be used as a distributed algorithm for resource allocation in a distributed system.

• Example:

- Suppose 2 branches of a bank wish to share 2 database files.
 - \Rightarrow 2 commodities (the 2 files) and 2 consumers (the 2 branches).
- Suppose the files are accessed by queries generated locally.
 - * Some queries generated at A only access File 1, others access only File 2.
 - * Some queries generated at B access both files.
 - * The same holds for queries generated at B.
- Suppose the following probabilities are known (via estimation, say)

$$\alpha_1^A = P$$
 [An access at A is only for File 1]
 $\alpha_2^A = P$ [An access at A is only for File 2]
 $\alpha_{12}^A = P$ [An access at A is for both files]

Here,
$$\alpha_1^A + \alpha_2^A + \alpha_{12}^A = 1$$
.

- Similarly, define

$$\alpha_1^B = P [\text{An access at B is only for File 1}]$$
 $\alpha_2^B = P [\text{An access at B is only for File 2}]$
 $\alpha_{12}^B = P [\text{An access at B is for both files}]$

- Next, assume the files are divisible:

- * x_1^A = fraction of File 1 stored at A.
- * x_2^A = fraction of File 2 stored at A.
- Each consumer would like to maximize the probability that an access is locally satisfied.

P [An access at A is locally satisfied] = $\alpha_1^A x_1^A + \alpha_2^A x_2^A + \alpha_{12}^A x_1^A x_2^A$ (Similar expression for B).

- Thus, the utility functions of the consumers are:

$$U_A(x_1^A, x_2^A) = \alpha_1^A x_1^A + \alpha_2^A x_2^A + \alpha_{12}^A x_1^A x_2^A$$

$$U_B(x_1^B, x_2^B) = \alpha_1^B x_1^B + \alpha_2^B x_2^B + \alpha_{12}^B x_1^B x_2^B$$

- Thus, given prices (p_1, p_2) , consumer A solves

maximize
$$\alpha_1^A x_1^A + \alpha_2^A x_2^A + \alpha_{12}^A x_1^A x_2^A$$

s.t. $p_1 x_1^A + p_2 x_2^A \le b_A$
 $0 \le x_1^A \le 1, \quad 0 \le x_2^A \le 1.$

Using the Lagrange Multiplier Method, consumer A obtains

$$x_1^A(p_1, p_2) = rac{lpha_{12}^A b_A + lpha_1^A p_2 - lpha_2^A p_1}{2lpha_{12}^A p_1}$$
 $x_2^A(p_1, p_2) = rac{lpha_{12}^A b_A + lpha_2^A p_1 - lpha_1^A p_2}{2lpha_{12}^A p_2}$

(Consumer B solves a similar problem)

• The basic algorithm:

```
Algorithm:
                TATONNEMENT()
       for i := 1 to num_commodities
  1.
  2.
         p[i] := \text{initial price of } i\text{-th commodity};
         total\_amount[i] := total amount of i-th commodity;
  3.
       endfor
  4.
       for n := 1 to num_iterations
  5.
         // Use current prices p to maximize utility
         Compute amounts x^{A}[i] that maximize A's utility;
  6.
         Compute amounts x^{B[i]} that maximize B's utility;
  7.
         for i := 1 to num_commodities
  8.
            total_demand[i] := x^A[i] + x^B[i];
  9.
            p[i] := p[i] + \eta \text{ (total\_amount}[i] - \text{total\_demand}[i]);
  11.
         endfor
  12.
  13. endfor
```

- Another example: how to finesse the handling of indivisible commodities
 - Suppose now that each of A and B above also want to share a printer.
 - How is a printer to be divided?
 - One way of "sharing" a printer:
 - * Whenever A sends a print job to the queue, a coin with $P[\text{heads}] = y^A$ is flipped.

If *heads* is obtained, all of A's jobs are moved to the head of the queue.

If tails is obtained, A's new job joins the end of the print queue.

- * A similar y^B -biased coin is associated with B.
- * We will enforce $y^A + y^B = 1$ (even though it's enough to ensure $y^A + y^B = \text{constant}$).
- Then, along with the two files, A's utility function is

$$U_A(x_1^A, x_2^A) = \alpha_1^A x_1^A + \alpha_2^A x_2^A + \alpha_{12}^A x_1^A x_2^A + \beta^A y^A$$

where β^A is a constant.

- Similarly, B's utility function is

$$U_B(x_1^B, x_2^B) = \alpha_1^B x_1^B + \alpha_2^B x_2^B + \alpha_{12}^B x_1^B x_2^B + \beta^B y^B$$