
Modeling the Logical Behavior
of Discrete–state Systems

Gianfranco Ciardo

Department of Computer Science

College of William and Mary

Williamsburg, VA 23187, USA

ciardo@cs.wm.edu

Copyright c 2002 Gianfranco Ciardo

All rights reserved

Question 2

What is a BDD (Boolean Decision Diagram)?

What is the most cited computer science document in citeseer?

(http://citeseer.nj.nec.com/)

Answer 3

Most cited source documents in the ResearchIndex database as of November 2001

This list only includes documents in the ResearchIndex database. Citations where one or more

authors of the citing and cited articles match are not included. The data is automatically gener-

ated and may contain errors. The list is generated in batch mode and citation counts may differ

from those currently in the ResearchIndex database, because the database is continuously up-

dated.

1. Graph-Based Algorithms for Boolean Function Manipulation - Bryant (1986) (Correct)

In this paper we present a new data structure for representing Boolean functions and an associ-

ated set of...

2. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems - Rivest, Shamir,

Adleman (1978) (Correct)

An encryption method is presented with the novel property that publicly revealing an encryption

key does not...

Discrete-state vs. continuous-state systems 4

At any instant of time, a system is in a given state �

The set � of possible states is called state-space

Example of continuous state-spaces:

� Weight of an organism: � � ��� �	�
 �

� Level of liquid in a tank: � � ��� �� ��� �� �� �

Example of discrete state-spaces:

� Number of passengers in an airplane: � � � � ��� ��� � � �� ��� � ��� �

� Number and type of available airplanes: � � ���� � � � � � �� � �! " #$ �� � � � � � �� � #$ �

� Value of the program counter and of each variable in a running computer program

we consider only discrete-state systems

The structure of the state 5

global state (of the entire system) vs. local state (of a subsystem)

The (global) state is a collection of the local state of each subsystem

For example, consider a program with

� Program counter variable �

� Boolean variables � � ��� � � � � �

� Integer variables � � ��� � � � � �

� Real variables � � ��� � � � � �

Each variable corresponds to a local state

Their union corresponds to the (global) state of the program:

� � � � ��� � � �� �� �
	 � � � � �� � � � � � � � � ��� � � �� �� � � � � � � � � � � �� � � � � �� �� � � �� � �

think of a state as a (boolean or integer) vector

Discrete-state models 6

A discrete state model is fully specified by:

� potential state space

�� (the “type” of the state)

� initial state ��� � � � # �� sometimes we have a set of initial states, � � � � �

� next-state function � �� �	� naturally extended to sets: � ��
 � � � �� � � � �

The state space � of the model, assumed finite, is the smallest set satisfying:

� the recursive definition � � � � � # � and � # �� � # � � � ��� � # �

� or the fixed-point equation
 � � � � � � � ���
 � � �
 �

State � is a trap or absorbing if � � � � � �

We often define a set � of model events and decompose � � � � � � � �� � �� � �

Event � is disabled in state � if � �� � � � �

Event � is enabled in state � if � �� � �� � � , we write � �� or � # � � � �

If � # � �� � � , we write � �� �

Examples of next-state function and state space 7
� �� � � is the set of states that can nondeterministically

be reached from � when � occurs (or fires)

If � �� � � � � , � is disabled in � , otherwise it is enabled

� ��� �
�

�

�

�
	

An example of state space with one absorbing state and one recurrent class

a

b

c

e

f

g

i

d

j

h

Petri nets 8

A Petri net is a tuple� � � � ��� � ��� � � � � where:

� � set of places, drawn as circles

� � set of events, or transitions, drawn as rectangles

� � � � � �� $ input arc cardinalities

� � � � � �� $ output arc cardinalities

� �� � � � #$ ��� � initial state, or marking

with � � � � �

Condition for event � to be enabled in state � #$ ��� � : � # � � � � 	
 � # � � � �
�� � � �

An event � enabled in state � can fire: � �� � 	
 � # � � � � � � ��� � �
�� � � � ��� �

Thus, � # � � � � 	 � � # � � � �� �

The state space, or reachability set , � is defined as usual

Graphical representation of a Petri net 9

t1
p1

p2

3

p3

place

transition

output arc
input arc

input arc with cardinality three

one token

5

five tokens

Dynamic evolution of a Petri net 10

Enabling rule

� # � � � � iff each input arc contains at least as many tokens as the cardinality of the input arc:

 � # � � � �
�� � � � or, in vector form � �

�� � �

Firing rule

If � �� � , we obtain � by removing tokens from input places and adding tokens to output places:

 � # � � � � � � �� � �
�� � � � ��� � or, in vector form � � �� � �

�� � � � �
�� � � � � � �� �

where� � � � � � �

is the incidence matrix

For example, if " � fires:

1
t1

p1

p2

3

p3

5

t1
p1

p2

3

p3

1

2

Petri nets and their state space 11

If the initial state is ��� � � � � � � � � � � � � � � � :

� contains� � � � �� � � � �� � � � � �

�

reachable states

a

b c d

e

Np

q s

r t

For any initial state � � � � � � � � � :

� contains
 reachable states
a p bN

State-by-state generation of 12
� � �� � � � � � �� �	 �� � ��� � � � � � � is

1. � � � �� � � � � ; � � contains the states known so far

2. � � � �� � � � � ; � � contains the unexplored states known so far

3. while � � � � do

4. choose a state � in � and remove it from � ;

5. for each � # � � � � do

6. if � � # � then � search to determine whether � is a new state

7. � � � � � � � ;

8. � � � � � � � ; � remember to explore � later

9. end if;

10. end for;

11. end while;

12. return � ;

the expensive operation is searching for a state (line 6)

How can we store and efficiently? 13

If we store � and � together, we can distinguish them using a linked list for �

� Additional ��� � � �� � ��� � � � �� bits

h ><

c >< k ><

i >< l >< f ><

e >< g ><

d ><

a >< j >< m ><

••

S ∪ U

•• •• •• •• •U

How can we store and efficiently? (cont.) 14

Or a pointer the next unexplored state, in each tree node

� Additional � � �� � ��� � � � �� bits

h ><

c >< k ><

i >< l >< f ><

e >< g ><

d ><

a >< j >< m ><

S ∪ U

•

•

• •

•U

How can we store and efficiently? (cont.) 15

Or store the states in a dynamic array structure

� Additional � � �� � � �� �� bits

= ><

= >< = ><

= >< = ><= >< = ><

= >< = ><

= ><

= >< = >< = ><

S∪U

a

b

c

d

e

f

g

i

j

k

l

m

h
U

How can we store and efficiently? (cont.) 16

If we store � and � separately:

c >< l ><

d ><

f ><

a >< i ><

h ><

k ><

b >< e ><

g ><

j >< m ><

S U

A multilevel data structure to store 17

� �
�

�

� �

� �

� 	

 �

Level 4

Level 3

Level 2

Level 1

memory requirements: little over 3, 6, or 12 bytes per state

Compressing after generation 18

Once � has been built, we can compress it using arrays:

Level 1 i1

i2

iK

: local state

: pointer

Level 2

Level K

Ψ(i)

the distance

�

�

�

is the lexicographic index of � in

memory requirements: little over 1, 2, or 4 bytes per state

Example for results: a flexible manufacturing system 19

tP3

P3sP3M2

T

3

2

T

1

T

P1

M1

tP1

P1wM1 P1M1 P1d P1s

P1wP2

P2wP1

P2s

P2dP2M2P2wM2

P2

M2

M3

P12P12wM3P12M3P12s

tM1 tP1M1
tP1e

tP1j

tP1s

tx

tP12tM3tP12M3

tP12s

tP2 tM2
tP2M2 tP2e

tP2j

tP2s

tP3stP3M2

P3

Results for state space generation 20

0
1e+07
2e+07
3e+07
4e+07
5e+07
6e+07

1 2 3 4 5 6 7

Bytes for tree storage (FMS)

Number of states
Single

Multi

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7

Time (FMS)

Single Splay
Single AVL
Multi Splay

Multi AVL

Results for compression and state search 21

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

2e+06

1 2 3 4 5 6 7

Bytes for compressed storage (FMS)

Number of states
Multi

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7

Seconds to search 100,000 states (FMS)

Single (reachable)
Multi (reachable)

Single (not reachable)
Multi (not reachable)

22

CAN WE DO BETTER THAN THIS?

State-by-state vs. decision-diagram-based generation 23

Explicit generation of � adds one state at a time memory increases monotonically

� ��� �

��� � 	

�� �

��� � �
��� � �

��� � �

��� � �
��� !

"�# $ %

&�' ()
*�+ , -

.�/ 0 1 2�3 4 5
6�7 8 9

:�; < =
>�? @ A

B�C D E

F�G H I
J�K L M

N�O P Q

With decision diagrams, we add sets of states at each step memory expands and shrinks

RTS U V

WYX Z [\
]Y^�_ `acb d

eYf�g hi
jYk�l mn

oYp�q rs
tYu�v wxcy z

{Y|�} ~�
�Y��� ��

�Y��� ��
�Y��� ��c� �

�Y��� ��
�Y��� ��

�Y��� ��
 Y¡�¢ £¤c¥ ¦

§Y¨�© ª«
¬Y�® ¯°

Decision-diagram-based generation of 24
� � �� � � � � � � � �� �	 � ��� � � � � � � is

1. � � � �� � � � � ;

2. repeat

3. � � � ; � old set of known states

4. � � � � � � � � ; � current set of known states

5. until � � � ;

6. return � ;

with decision diagrams, these set operations can be efficient

(Reduced ordered) binary decision diagrams 25

Definition of (RO)BDD, a canonical representation of boolean functions:

� There is a single root node �

� Each non-terminal node is labeled with a boolean variable� � # �� � ��� � � �� � �

� Terminal nodes are labeled � or�

� A non-terminal node has two outgoing arcs, labeled � and�

� An arc from a node labeled� � points to a node labeled� � , � � �

� Two nodes labeled� � cannot have the same pattern of children (no duplicates)

� The two children of a node are different (no redundant nodes)

0 1

� �

	
� 	 � � �

� � � � � �� � � � � � � � � �

� � � � � � � �� � � � � � ! � � � � � � !

x1

x2

x3

x4

x2

Structural decomposition of a discrete-state model 26

A partition of a discrete-state model is consistent if:

� the next-state function is partitioned into � � � � �� � �

� the global state � is partitioned into � local states � � � � � ��� � � � � � �

� so that � �
�� � � � � � � � � � �

� and, more importantly, � �� � � � � �� � � � � � � � � � � � �� �� � � �

a very mild requirement in practice:

for Petri nets, any partition of the places into subsets will do!

(Quasi-reduced ordered) multi-valued decision diagrams 27
� Nodes are organized into � � � levels

� Level � contains only one root node

� Levels � � � through� contain one or more nodes

� Level � contains the only two terminal nodes, � and � (false and true).

� For � � � , a node at level � has � � � � arcs pointing to nodes at level �� �

� No duplicate nodes � �

� � � ��� � � � � �

� �

� � � ��� � � �

� �

� � � ��� �

� � � � � ��� � � �

10

0 1 2 3

0 1 2 0 1 2

0 1 0 1 0 1

0 1 20 1 2 0 1 2

0 1 2

0 1

� �
�

�
�

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �
	

�

The �� � � operator for MDDs 28

If the MDDs � and � encode the sets � and � , � � � � � � � � returns the MDD encoding � � �

� � � � � � �� �� � �� � � � � � � � � � is

1. if � � � then return � � � ; � � and � are � or�

2. if � � � then return � ;

3. if 	 �	
 � contains entry �� � � � � � � � � then return � ;

4. for � � � to� �� � do

5. �� � � � � � �� � � � � � � � � � � � � ;

6. end for

7. � � � � ��� �� � �� �� � � �� � � � �� ��� � � � � � � � � � ;
8. enter �� � � � � � � � � in 	 �	
 � ;

9. return � ;

Unique Table:

determines whether a

node we just created is a

duplicate

Operation Cache:

achieves efficiency. If we

did not look it up we

would potentially travel
every path instead of

visit every node in the

MDD

The function� � � �� �	 � � � � � � � � differs from � � � � � � � � only in the terminal case:

� � � : � � � �� �	 � � � :

if � � � then return � � � ; if � � � then return �� � ;

worst case complexity: �� �� �
��� �

� �� �� �
��� �

Details of event firing 29

1

0

0

0

0 1 2 3 0

0 1

0 32

1

0

0

0

0 1 2 3 0

0 1

0 32

0

1

1

1

0

0

0

0 1 2 3 0

0 1

0 32

1

1

�
� � � � ��� � � � � ��� �

� � � � ��� � � � � ��� �

� � �� � � � � � � ��� �

�� �� � � � � � � �� ���

�� �� � � ��� �� �� �

�
� � � � ��� � � � � ��� �

� � � � � � �� �� ��� �

� � � � ��� � � � � ��� �

� � � � � � �� �� ��� �

� � �� � � � � � � ��� �

Using structural information to encode

�

� �
�

30

� � � � � �

� � � �

� � � �

� � � � � �

� �� � � �
�� � � �� � � �
�� �

� �� � � �
�� � � �� � � �
�� � � �� � � �
�� �

� �� � � �
�� � � �� � � �
�� � � �� � � �
�� �

� �� � � �
�� � � � � � � �
�� �

� � � � � �
�� � � �� � � �
�� � �

� � � � � � 	 � � � � � �
 � � � ��� �
 � � � �� � � � � � � � � 	

� �� � � � � � �� � � � � � �� ��� � � � �� �� � � � �� � � � �

a

b c d

e

p

q s

r t

The resulting Kronecker encoding of

�

� �
�

31

� � � � � �� � � �

� � � �� � � �

� � � ��� � � �

� � � �� � � � � � � ��� �

� �� � �
� �� � � � �� � �
� �� � �

� �� � �
� �� � � � �� � �
� �� � � � �� � �
� �� � �

� �� � �
� �� � � � �� � �
� �� � � � �� � �
� �� � �

� �� � �
� �� � � � � � � �
� �� � �

� � � � �
� �� � � � �� � �
� �� � �

� � � � � � 	 � � � � � �
 � � � ��� �
 � � � �� � � � � � � � � 	

� �� � � � � � �� � � � � � �� ��� � � � �� �� � � � �� � � � �

a

b c d

e

p

q s

r t

Using structural information to encode

�

� �
�

32

� � � � � � � � �� � � � � � � � ��� � � � �� ��� � � � : merge � and� into a single local event �

� �

� � � �

� � � �

� � � � � �

� �� � � �
�� � � �� � � �
�� �

� �� � �
�

���
�

� �� � �
�

���
�

� �� � �
�

���
�

� �� � � �
�� � � � � � � �
�� �

� � � � � �
�� � � �� � � �
�� �

� � � � � �!
 � � � � � � � � � � �� � � � � � � � �!

� �� � � �! � � �� � � � � � �� �� � � � �� � � �! �

a

p

q s

r t

b c d

e

The resulting Kronecker encoding of

�

� �
�

33

� �
� � � �� � � �
� �� � � � � � � �� � � � � � � �� � � �� � � � � � � �� � � � � �
� � � �� � � � � � � �� �

� �� � �
� �� � � � �� � �
� �� � �

� �� �
�

� � �� � �� � �
�

� �� �
�

� � �� � �� � �
�

� �� �
�

� � �� � �� � �
�

� �� � �
� �� � � � � � � �
� �� � �

� � � � �
� �� � � � �� � �
� �� � �

� � �
 � � � � � � � � � � �

� �� � � �� � � �� � � �� �

a

b c d

e

p

q s

r t

Definition of Kronecker product 34

Given � matrices � � #� � �� � � , their Kronecker product is

� �
�

�� �
� � #� � ��� � � ���

where we define� �� � � � �� � � � �� � � � � and

� � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �

� using the mixed-base numbering scheme (indices start at 0)

� � � � � � � � � � �� � � � � � �� � �
� � � �� � � � � � �

�
�� �

� �� � � � � � �

nonzeros: �
�

�� �
� � �

�
� � �

� � � � �

Kronecker product by example 35

Given � �
�

� � � � � � ���

� � � � � � ��� � , 	 �

�

� � � � � � ��� � � ��

� � � � � � ��� � � ��

� � � � ��� � ��
�

�

,

� � 	 �
�

� � � � 	 � � ��� 	

� � � � 	 � � ��� 	 �
�

�����
�

� � � �� � � � � � � �� � �� � � � �� � � � � ���� � � � � � ���� � ��� � � ��� � �

� � � �� � � � � � � �� � �� � � � �� � � � � ���� � � � � � ���� � ��� � � ��� � �

� � � �� � � � � � �� �� � � � �� � � � ���� � � � � ���� ��� � � ��� �

� � � �� � � � � � � �� � �� � � � �� � � � � ���� � � � � � ���� � ��� � � ��� � �

� � � �� � � � � � � �� � �� � � � �� � � � � ���� � � � � � ���� � ��� � � ��� � �

� � � �� � � � � � �� �� � � � �� � � � ���� � � � � ���� ��� � � ��� �
� ����

�

Kronecker product expresses contemporaneity or synchronization

If � and � are the transition probability matrices of two independent discrete-time Markov

chains, � � � is the transition probability matrix of their composition

Kronecker description of the next-state function 36
� �� � � �� �� � can be identified with a boolean matrix� �� � # � � �� � �� � �� �� � �

(a missing � �� � corresponds to the identity matrix� of size � � � � � � � � �)

analogously, � �� �� can be identified with a boolean matrix

�
� # � � �� � ��� �� ��� �

Then,
�

� �
� �� � � � � �

� �� �

encode a huge with a few “small” matrices

“Complexity of memory-efficient Kronecker operations
with applications to the solution of Markov models”

Buchholz, Ciardo, Donatelli, Kemper (INFORMS J. Comp., 2000)

Locality, symmetry, and monotonicity in transition firing 37

If � # � , � �� � , � � � � � � � �� � �� � � � � � : � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � ��� � � � � � �

If also ��� # � and� � � � � � � � � � � � � �� � � � � � � �� � � : �� �� � �� � � � � �� � � � � � � �� � � � � � � ��� � � � � � � � � � � ��� � � � � � �

Local event � � �� � � Synchronizing event� � � ��� � � � � � � �� � � � � � � � � � � �

� � � �
�

� � 	

�� � � ��� � �

�

� � � �� �� � ��� �� � !" # ! � #

$ % &'
(

) *

+ , -.
/

0

locality and in-place-updates save huge amounts of computation

Saturation: an efficient iteration strategy 38

Traditional application of a partitioned � : ����� � � � �� ��
	 �� � ���� �� � � �� �� � 	 �

	 � 	 � ���� � � �� � � � ���� �� �

We can improve by pipelining: 	 � 	 � �� �� 	 �� � �	 � 	 � �� �� �
	 �

And even more by exhaustive pipelining: 	 � 	 � ���� �� 	 �� � �	 � 	 � ��� �� �
	 �

But the best strategy is to saturate MDD nodes recursively bottom-up:

� a node at level � is saturated if it is a fixed point w.r.t. all events � s.t.� � � � � �� �

� traditional idea of a global fixed-point iteration for the overall MDD disappears

enormous savings in both time and (peak) memory

Merging explicit local with symbolic global s.s. generation 39

Problem: local state spaces	 � are not known a priori

Solution: build	 � “on the fly” (explicitly) alongside the overall state space	 (symbolically)

1. start from the only known state, the initial state��� � �� � � �� � � , and commit its components

2. while MDD encoding	 has not reached its fixed point w.r.t. � do

3. (explicitly) explore all � � reachable from each newly committed � � in isolation in one step

� create corresponding row � � of �� � � for each � �	 dependent on level �

4. (symbolically) explore global states reachable from the currently-known	

� use current �� � � matrices

� may cause uncommitted local states to be committed

5. end while

no need to know a priori the range of each state variable

Example: the dining philosophers (Petri net) 40

WaitLeft
3

WaitRight
3

GetLeft
3

GetRight
3

HasLeft
3

HasRight
3

Idle
3Fork

3

GoEat
3

Release
3

WaitLeft
2

WaitRight
2

GetLeft
2

GetRight
2

HasLeft
2

HasRight
2

Idle
2Fork

2

GoEat
2

Release
2

WaitLeft
1

WaitRight
1

GetLeft
1

GetRight
1

HasLeft
1

HasRight
1

Idle
1Fork

1

GoEat
1

Release
1

� subnets connected in a circular fashion

Example: the dining philosophers (SMART code) 41

spn phils(int N) := {
for (int i in {0..N-1}) {

place Idle[i], WaitL[i], WaitR[i], HasL[i], HasR[i], Fork[i];
partition(i+1:Idle[i]:WaitL[i]:WaitR[i]:HasL[i]:HasR[i]:Fork[i]);
trans GoEat[i], GetL[i], GetR[i], Release[i];
firing(GoEat[i]:expo(1),GetL[i]:expo(1),GetR[i]:expo(1),Release[i]:expo(1));
init(Idle[i]:1, Fork[i]:1);

}
for (int i in {0..N-1}) {

arcs(Idle[i]:GoEat[i], GoEat[i]:WaitL[i], GoEat[i]:WaitR[i],
WaitL[i]:GetL[i], Fork[i]:GetL[i], GetL[i]:HasL[i],
WaitR[i]:GetR[i], Fork[mod(i+1, N)]:GetR[i], GetR[i]:HasR[i],
HasL[i]:Release[i], HasR[i]:Release[i], Release[i]:Idle[i],
Release[i]:Fork[i], Release[i]:Fork[mod(i+1, N)]);

}
bigint num := card(reachable);
stateset g := EF(initialstate); bigint numg := card(g);
stateset b := difference(reachable,g); void out := printset(b);

};
StateStorage MDD_SATURATION
int N := read_int("number of philosophers"); print("N=",N,"\n");
print("Reachable states: ",phils(N).num,"\n");
print("Good states: ",phils(N).numg,"\n");
print("The bad states are\n"); phils(N).out;

Example: the dining philosophers (results) 42

Reading input.
N=50
Reachable states: 22,291,846,172,619,859,445,381,409,012,498
Good states: 22,291,846,172,619,859,445,381,409,012,496
The bad states are

State 0 : { WaitR[0]:1 HasL[0]:1 WaitR[1]:1 HasL[1]:1 WaitR[2]:1 HasL[2]:1 WaitR[3]:1 HasL[3]:1 WaitR[4]:1 HasL[4]:1 WaitR[5]:1 HasL[5]:1 WaitR[6]:1 HasL[6]:1 WaitR[7]:1 HasL[7]:1 WaitR[8]:1 HasL[8]:1 WaitR[9]:1 HasL[9]:1 WaitR[10]:1 HasL[10]:1 WaitR[11]:1 HasL[11]:1 WaitR[12]:1 HasL[12]:1 WaitR[13]:1 HasL[13]:1 WaitR[14]:1 HasL[14]:1 WaitR[15]:1 HasL[15]:1 WaitR[16]:1 HasL[16]:1 WaitR[17]:1 HasL[17]:1 WaitR[18]:1 HasL[18]:1 WaitR[19]:1 HasL[19]:1 WaitR[20]:1 HasL[20]:1 WaitR[21]:1 HasL[21]:1 WaitR[22]:1 HasL[22]:1 WaitR[23]:1 HasL[23]:1 WaitR[24]:1 HasL[24]:1 WaitR[25]:1 HasL[25]:1 WaitR[26]:1 HasL[26]:1 WaitR[27]:1 HasL[27]:1 WaitR[28]:1 HasL[28]:1 WaitR[29]:1 HasL[29]:1 WaitR[30]:1 HasL[30]:1 WaitR[31]:1 HasL[31]:1 WaitR[32]:1 HasL[32]:1 WaitR[33]:1 HasL[33]:1 WaitR[34]:1 HasL[34]:1 WaitR[35]:1 HasL[35]:1 WaitR[36]:1 HasL[36]:1 WaitR[37]:1 HasL[37]:1 WaitR[38]:1 HasL[38]:1 WaitR[39]:1 HasL[39]:1 WaitR[40]:1 HasL[40]:1 WaitR[41]:1 HasL[41]:1 WaitR[42]:1 HasL[42]:1 WaitR[43]:1 HasL[43]:1 WaitR[44]:1 HasL[44]:1 WaitR[45]:1 HasL[45]:1 WaitR[46]:1 HasL[46]:1 WaitR[47]:1 HasL[47]:1 WaitR[48]:1 HasL[48]:1 WaitR[49]:1 HasL[49]:1 }
State 1 : { WaitL[0]:1 HasR[0]:1 WaitL[1]:1 HasR[1]:1 WaitL[2]:1 HasR[2]:1 WaitL[3]:1 HasR[3]:1 WaitL[4]:1 HasR[4]:1 WaitL[5]:1 HasR[5]:1 WaitL[6]:1 HasR[6]:1 WaitL[7]:1 HasR[7]:1 WaitL[8]:1 HasR[8]:1 WaitL[9]:1 HasR[9]:1 WaitL[10]:1 HasR[10]:1 WaitL[11]:1 HasR[11]:1 WaitL[12]:1 HasR[12]:1 WaitL[13]:1 HasR[13]:1 WaitL[14]:1 HasR[14]:1 WaitL[15]:1 HasR[15]:1 WaitL[16]:1 HasR[16]:1 WaitL[17]:1 HasR[17]:1 WaitL[18]:1 HasR[18]:1 WaitL[19]:1 HasR[19]:1 WaitL[20]:1 HasR[20]:1 WaitL[21]:1 HasR[21]:1 WaitL[22]:1 HasR[22]:1 WaitL[23]:1 HasR[23]:1 WaitL[24]:1 HasR[24]:1 WaitL[25]:1 HasR[25]:1 WaitL[26]:1 HasR[26]:1 WaitL[27]:1 HasR[27]:1 WaitL[28]:1 HasR[28]:1 WaitL[29]:1 HasR[29]:1 WaitL[30]:1 HasR[30]:1 WaitL[31]:1 HasR[31]:1 WaitL[32]:1 HasR[32]:1 WaitL[33]:1 HasR[33]:1 WaitL[34]:1 HasR[34]:1 WaitL[35]:1 HasR[35]:1 WaitL[36]:1 HasR[36]:1 WaitL[37]:1 HasR[37]:1 WaitL[38]:1 HasR[38]:1 WaitL[39]:1 HasR[39]:1 WaitL[40]:1 HasR[40]:1 WaitL[41]:1 HasR[41]:1 WaitL[42]:1 HasR[42]:1 WaitL[43]:1 HasR[43]:1 WaitL[44]:1 HasR[44]:1 WaitL[45]:1 HasR[45]:1 WaitL[46]:1 HasR[46]:1 WaitL[47]:1 HasR[47]:1 WaitL[48]:1 HasR[48]:1 WaitL[49]:1 HasR[49]:1 }
Done.

Solution requirements: SMART vs. NuSMV (800MHz P-III) 43

N Reachable Final memory (kB) Peak memory (kB) Time (sec)
states SMART NuSMV SMART NuSMV SMART NuSMV

Dining Philosophers (N levels)

50 2.23 � 10 �� 18 10,800 22 10,819 0.15 5.9

200 2.47 � 10� � � 74 27,155 93 72,199 0.68 12,905.7

10,000 4.26 � 10 � � �� 3,749 — 4,686 — 877.82 —

Slotted Ring Network (N levels)

10 8.29 � 10� 4 5,287 28 10,819 0.13 5.5

15 1.46 � 10� � 10 9,386 80 13,573 0.39 2,039.5

200 8.38 � 10 �� � 1,729 — 120,316 — 902.11 —

Round Robin Mutual Exclusion (N+1 levels)

20 4.72 � 10 � 18 7,300 20 7,306 0.07 0.8

100 2.85 � 10 � � 356 16,228 372 26,628 3.81 2,475.3

300 1.37 � 10� � 3,063 — 3,109 — 140.98 —

Flexible Manufacturing System (19 levels)

10 4.28 � 10 � 16 1,707 26 11,238 0.05 9.4

20 3.84 � 10� 55 14,077 101 31,718 0.20 1,747.8

250 3.47 � 10 � � 25,507 — 69,087 — 231.17 —

Symbolic model checking 44

We can talk about events and states occurring over relative time, or temporal logic

� Can event � ever fire before event � ?

� Is it possible to reach a state where both buffers are empty?

� Once both buffers are empty, can they ever both become full at the same time?

� Or even just at different times?

� Can we reach a stable set of states where race conditions cannot occur?

� Can we reach a set of states where, if race conditions occur, they never cause a deadlock?

We use computation tree logic (CTL) to express these queries:

� Any atomic proposition (true or false in a state) is a CTL formula

� If � and � are CTL formulas, so are � � , � � � , � � �

� If � and � are CTL formulas, so are EX� , EF� , EG� , E � � U � � , AX� , AF� , AG� , A � � U � �

given a model, a CTL formula � identifies a set of states

(those states that satisfy �)

CTL semantics 45

EXp EFp EGp E[pUq]

AXp AFp AGp A[pUq]

p holds q holdsLEGEND: don’t care

Note that EX, EG, and EU is a complete set of CTL operators, since

EF��� E ��� U� � AX��� � EX � � AF��� � EG � �

AG� � � E �� U � � � A � � U � �
� � E � � � U � � � � � � � � EG � �

Applications 46

Protocol verification

Security

Software correctness

VLSI design and verification

GUI and HCI testing

