Modeling the Logical Behavior of Discrete-state Systems

Gianfranco Ciardo

Department of Computer Science
College of William and Mary
Williamsburg, VA 23187, USA ciardo@cs.wm.edu

Copyright (c) 2002 Gianfranco Ciardo
All rights reserved

What is a BDD (Boolean Decision Diagram)?

What is the most cited computer science document in citeseer?
(http://citeseer.nj.nec.com/)

Answer

Most cited source documents in the ResearchIndex database as of November 2001
This list only includes documents in the ResearchIndex database. Citations where one or more authors of the citing and cited articles match are not included. The data is automatically generated and may contain errors. The list is generated in batch mode and citation counts may differ from those currently in the ResearchIndex database, because the database is continuously updated.

1. Graph-Based Algorithms for Boolean Function Manipulation - Bryant (1986) (Correct)

In this paper we present a new data structure for representing Boolean functions and an associated set of...
2. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems - Rivest, Shamir, Adleman (1978) (Correct)
An encryption method is presented with the novel property that publicly revealing an encryption key does not...

Discrete-state vs. continuous-state systems

At any instant of time, a system is in a given state \mathbf{i}
The set \mathcal{S} of possible states is called state-space
Example of continuous state-spaces:

- Weight of an organism: $\mathcal{S}=[0,+\infty)$
- Level of liquid in a tank: $\mathcal{S}=[0$, maxlevel $]$

Example of discrete state-spaces:

- Number of passengers in an airplane: $\mathcal{S}=\{0,1, \ldots$, maxseats $\}$
- Number and type of available airplanes: $\mathcal{S}=\left\{\left(n_{1}, \ldots, n_{t}\right): t \in \mathbb{N}, n_{1}, \ldots, n_{t} \in \mathbb{N}\right\}$
- Value of the program counter and of each variable in a running computer program

The structure of the state

global state (of the entire system) vs. local state (of a subsystem)

The (global) state is a collection of the local state of each subsystem

For example, consider a program with

- Program counter variable p
- Boolean variables b_{1}, \ldots, b_{B}
- Integer variables i_{1}, \ldots, i_{I}
- Real variables r_{1}, \ldots, r_{R}

Each variable corresponds to a local state

Their union corresponds to the (global) state of the program:
$\mathcal{S} \subseteq\{0, \ldots$, maxp $\} \times\{0,1\}^{B} \times\{\text { minint }, \ldots, \text { maxint }\}^{I} \times\{\text { minreal }, \ldots, \text { maxreal }\}^{R}$

Discrete-state models

A discrete state model is fully specified by:

- potential state space $\widehat{\mathcal{S}}$
- initial state $\mathbf{s}^{\text {init }} \in \widehat{\mathcal{S}}$
- next-state function $\mathcal{N}: \mathcal{S} \rightarrow 2^{\mathcal{S}}$
(the "type" of the state)
sometimes we have a set of initial states, $\mathcal{S}^{\text {init }}$ naturally extended to sets: $\mathcal{N}(\mathcal{X})=\bigcup_{\mathbf{i} \in \mathcal{X}} \mathcal{N}(\mathbf{i})$

The state space \mathcal{S} of the model, assumed finite, is the smallest set satisfying:

- the recursive definition
- or the fixed-point equation

$$
\mathbf{s}^{\text {init }} \in \mathcal{S} \text { and } \mathbf{i} \in \mathcal{S} \wedge \mathbf{j} \in \mathcal{N}(\mathbf{i}) \Rightarrow \mathbf{j} \in \mathcal{S}
$$

$$
\mathcal{X}=\left\{\mathbf{s}^{\text {init }}\right\} \cup \mathcal{X} \cup \mathcal{N}(\mathcal{X})
$$

State \mathbf{i} is a trap or absorbing if $\mathcal{N}(\mathbf{i})=\emptyset$

We often define a set \mathcal{E} of model events and decompose Event e is disabled in state \mathbf{i} if $\mathcal{N}_{e}(\mathbf{i})=\emptyset$
Event e is enabled in state \mathbf{i} if $\mathcal{N}_{e}(\mathbf{i}) \neq \emptyset$, we write If $\mathbf{j} \in \mathcal{N}_{e}(\mathbf{i})$, we write

$$
\mathcal{N}(\mathbf{i})=\bigcup_{e \in \mathcal{E}} \mathcal{N}_{e}(\mathbf{i})
$$

$$
\mathbf{i} \stackrel{e}{\leftrightharpoons} \text { or } e \in \mathcal{E}(\mathbf{i})
$$

Examples of next-state function and state space

$\mathcal{N}_{e}(\mathbf{i})$ is the set of states that can nondeterministically be reached from \mathbf{i} when e occurs (or fires)

If $\mathcal{N}_{e}(\mathbf{i})=\emptyset, e$ is disabled in \mathbf{i}, otherwise it is enabled

An example of state space with one absorbing state and one recurrent class

Petri nets

A Petri net is a tuple $\left(\mathcal{P}, \mathcal{E}, \mathbf{D}^{-}, \mathbf{D}^{+}, \mathbf{s}\right)$ where:

- \mathcal{P}
- \mathcal{E}
- $\mathbf{D}^{-}: \mathcal{P} \times \mathcal{E} \rightarrow \mathbb{N}$
- $\mathbf{D}^{+}: \mathcal{P} \times \mathcal{E} \rightarrow \mathbb{N}$
- $\mathbf{s}^{\text {init }} \in \mathbb{N}^{\mid \mathcal{P}} \mid$
with $\mathcal{P} \cap \mathcal{E}=\emptyset$

Condition for event e to be enabled in state $\mathbf{i} \in \mathbb{N}^{|\mathcal{P}|}: \quad e \in \mathcal{E}(\mathbf{i}) \Leftrightarrow \forall p \in \mathcal{P}, \mathbf{D}_{p, e}^{-} \leq \mathbf{i}_{p}$

An event e enabled in state \mathbf{i} can fire:

Thus,

$$
\mathbf{i} \stackrel{e}{\mathbf{}} \mathbf{j} \Leftrightarrow \forall p \in \mathcal{P}, \mathbf{j}_{p}=\mathbf{i}_{p}-\mathbf{D}_{p, e}^{-}+\mathbf{D}_{p, e}^{+}
$$

$$
\mathbf{j} \in \mathcal{N}(\mathbf{i}) \Leftrightarrow \exists e \in \mathcal{E}, \mathbf{i} \stackrel{e}{ } \mathbf{j}
$$

The state space, or reachability set, \mathcal{S} is defined as usual

Graphical representation of a Petri net

Enabling rule

$e \in \mathcal{E}(\mathbf{i})$ iff each input arc contains at least as many tokens as the cardinality of the input arc:

$$
\forall p \in \mathcal{P}, \mathbf{D}_{p, e}^{-} \leq \mathbf{i}_{p} \quad \text { or, in vector form } \quad \mathbf{D}_{\bullet, e}^{-} \leq \mathbf{i}
$$

Firing rule
If $\mathbf{i}{ }^{e} \mathbf{j}$, we obtain \mathbf{j} by removing tokens from input places and adding tokens to output places:
$\forall p \in \mathcal{P}, \mathbf{j}_{p}=\mathbf{i}_{p}-\mathbf{D}_{p, e}^{-}+\mathbf{D}_{p, e}^{+} \quad$ or, in vector form $\quad \mathbf{j}=\mathbf{i}-\mathbf{D}_{\bullet, e}^{-}+\mathbf{D}_{\bullet, e}^{+}=\mathbf{i}+\mathbf{D}_{\bullet, e}$
where $\mathbf{D}=\mathbf{D}^{+}-\mathbf{D}^{-}$is the incidence matrix

For example, if t_{1} fires:

If the initial state is $\mathbf{s}^{\text {init }}=(N, 0,0,0,0)$:
\mathcal{S} contains $\frac{(N+1)(N+2)(2 N+3)}{6}$ reachable states

For any initial state $\mathbf{s}^{\text {init }}=(N)$:
\mathcal{S} contains ∞ reachable states

State-by-state generation of \mathcal{S}

ExploreExplicit $\left(\mathbf{s}^{\text {init }}, \mathcal{N}\right)$ is

1. $\mathcal{S} \leftarrow\left\{\mathrm{s}^{i n i t}\right\}$;
2. $\mathcal{U} \leftarrow\left\{s^{i n i t}\right\}$;

- \mathcal{S} contains the states known so far
- \mathcal{U} contains the unexplored states known so far

3. while $\mathcal{U} \neq \emptyset$ do
4. choose a state \mathbf{i} in \mathcal{U} and remove it from \mathcal{U};
5. for each $\mathbf{j} \in \mathcal{N}(\mathbf{i})$ do
6. if $\mathbf{j} \notin \mathcal{S}$ then
7. $\mathcal{S} \leftarrow \mathcal{S} \cup\{\mathbf{j}\}$;
8. $\mathcal{U} \leftarrow \mathcal{U} \cup\{\mathbf{j}\}$;
9. end if;
10. end for;
11. end while;
12. return \mathcal{S};

How can we store \mathcal{S} and \mathcal{U} efficiently?

If we store \mathcal{S} and \mathcal{U} together, we can distinguish them using a linked list for \mathcal{U} $\Rightarrow \quad$ Additional $2 \cdot|\mathcal{U}| \cdot B_{\text {pointer }}$ bits

Or a pointer the next unexplored state, in each tree node
$\Rightarrow \quad$ Additional $|\mathcal{S}| \cdot B_{\text {pointer }}$ bits

Or store the states in a dynamic array structure $\Rightarrow \quad$ Additional $|\mathcal{S}| \cdot B_{\text {index }}$ bits

If we store \mathcal{S} and \mathcal{U} separately:

memory requirements: little over 3, 6, or 12 bytes per state

Once \mathcal{S} has been built, we can compress it using arrays:

the distance $\psi(\mathbf{i})$ is the lexicographic index of \mathbf{i} in \mathcal{S}
memory requirements: little over 1, 2, or 4 bytes per state

Example for results: a flexible manufacturing system

Bytes for tree storage (FMS)

Results for compression and state search
Bytes for compressed storage (FMS)

Seconds to search 100,000 states (FMS)

CAN WE DO BETTER THAN THIS?

State-by-state vs. decision-diagram-based generation

Explicit generation of \mathcal{S} adds one state at a time
memory increases monotonically

With decision diagrams, we add sets of states at each step
memory expands and shrinks

Decision-diagram-based generation of \mathcal{S}

ExploreSymbolic $\left(\mathbf{s}^{\text {init }}, \mathcal{N}\right)$ is

1. $\mathcal{S} \leftarrow\left\{\mathrm{s}^{i n i t}\right\} ;$
2. repeat
3. $\mathcal{O} \leftarrow \mathcal{S}$;
4. $\mathcal{S} \leftarrow \mathcal{O} \cup \mathcal{N}(\mathcal{O})$;

- old set of known states

5. until $\mathcal{O}=\mathcal{S}$;
6. return \mathcal{S};

(Reduced ordered) binary decision diagrams

Definition of (RO)BDD, a canonical representation of boolean functions:

- There is a single root node r
- Each non-terminal node is labeled with a boolean variable $\mathbf{x}_{k} \in\left\{\mathbf{x}_{K}, \ldots, \mathbf{x}_{1}\right\}$
- Terminal nodes are labeled 0 or 1
- A non-terminal node has two outgoing arcs, labeled 0 and 1
- An arc from a node labeled \mathbf{x}_{k} points to a node labeled $\mathbf{x}_{l}, k>l$
- Two nodes labeled \mathbf{x}_{k} cannot have the same pattern of children (no duplicates)
- The two children of a node are different (no redundant nodes)

Structural decomposition of a discrete-state model

A partition of a discrete-state model is consistent if:

- the next-state function is partitioned into
- the global state \mathbf{i} is partitioned into K local states
- so that

$$
\begin{array}{r}
\mathcal{N}=\bigcup_{e \in \mathcal{E}} \mathcal{N}_{e} \\
\mathbf{i}=\left(\mathbf{i}_{K}, \ldots, \mathbf{i}_{1}\right) \\
\mathcal{S} \subseteq \widehat{\mathcal{S}}=\mathcal{S}_{K} \times \cdots \times \mathcal{S}_{1}
\end{array}
$$

$$
\mathcal{N}_{e}(\mathbf{i})=\mathcal{N}_{e, K}\left(\mathbf{i}_{K}\right) \times \cdots \times \mathcal{N}_{e, 1}\left(\mathbf{i}_{1}\right)
$$

a very mild requirement in practice:
for Petri nets, any partition of the places into K subsets will do!

(Quasi-reduced ordered) multi-valued decision diagrams

- Nodes are organized into $K+1$ levels
- Level K contains only one root node
- Levels $K-1$ through 1 contain one or more nodes
- Level 0 contains the only two terminal nodes, $\mathbf{0}$ and $\mathbf{1}$ (false and true).
- For $k>0$, a node at level k has $\left|\mathcal{S}_{k}\right|$ arcs pointing to nodes at level $k-1$
- No duplicate nodes

$$
\begin{aligned}
& \mathcal{S}_{4}=\{0,1,2,3\} \\
& \mathcal{S}_{3}=\{0,1,2\} \\
& \mathcal{S}_{2}=\{0,1\} \\
& \mathcal{S}_{1}=\{0,1,2\}
\end{aligned}
$$

$\mathcal{S}=\left\{\begin{array}{lllllllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 2 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 2\end{array}\right\}$

The Union operator for MDDs

If the MDDs a and b encode the sets \mathcal{A} and $\mathcal{B}, \operatorname{Union}(a, b)$ returns the MDD encoding $\mathcal{A} \cup \mathcal{B}$
$m d d \operatorname{Union}(l v l k, m d d a, m d d b)$ is

1. if $k=0$ then return $a \vee b$;

- a and b are 0 or 1

2. if $a=b$ then return a;
3. if Cache contains entry $\langle(k, a, b)=u\rangle$ then return u;
4. for $i=0$ to $n_{k}-1$ do
5. $\quad q_{i} \leftarrow \operatorname{Union}(k-1, a[i], b[i])$;
6. end for
7. $u \leftarrow$ UniqueTableInsert $\left(k, q_{0}, \ldots, q_{n_{k}-1}\right)$;
8. enter $\langle(k, a, b)=u\rangle$ in Cache;
9. return u;

Unique Table:
determines whether a node we just created is a duplicate

Operation Cache: achieves efficiency. If we did not look it up we would potentially travel every path instead of visit every node in the MDD

The function Intersection (a, b) differs from $\operatorname{Union}(a, b)$ only in the terminal case:

Union:
if $k=0$ then return $a \vee b$;

Intersection:
if $k=0$ then return $a \wedge b$;

Details of event firing

$$
\begin{aligned}
& {[0,0, *, 0,0, *]} \\
& \mathcal{S}: \quad[2,0, *, 0,0, *] \\
& {[3,1,0,0,0, *]}
\end{aligned}
$$

$$
\begin{gathered}
{[-,-, 3,0,0,-]} \\
\stackrel{e}{\longrightarrow} \\
{[-,-, 0,1,1,-]}
\end{gathered}
$$

	$[0,0, *, 0,0, *]$
$\mathcal{S}:$	$[0,0,0,1,1, *]$
	$[2,0, *, 0,0, *]$
	$[2,0,0,1,1, *]$
	$[3,1,0,0,0, *]$

Using structural information to encode $\mathcal{N} \quad(K=5)$

$$
\mathcal{S}_{5}=? \quad \mathcal{S}_{4}=? \quad \mathcal{S}_{3}=? \quad \mathcal{S}_{2}=? \quad \mathcal{S}_{1}=?
$$

$\mathcal{N}_{a, 5}: ?$				$\mathcal{N}_{e, 5}: ?$
$\mathcal{N}_{a, 4}: ?$	$\mathcal{N}_{b, 4}: ?$	$\mathcal{N}_{c, 4}: ?$		
	$\mathcal{N}_{b, 3}: ?$	$\mathcal{N}_{c, 3}: ?$		$\mathcal{N}_{e, 3}: ?$
$\mathcal{N}_{a, 2}: ?$			$\mathcal{N}_{d, 2}: ?$	
			$\mathcal{N}_{d, 1}: ?$	$\mathcal{N}_{e, 1}: ?$
$\operatorname{Top}(a): 5$	$\operatorname{Top}(b): 4$	$\operatorname{Top}(c): 4$	$\operatorname{Top}(d): 2$	$\operatorname{Top}(e): 5$
$\operatorname{Bot}(a): 2$	$\operatorname{Bot}(b): 3$	$\operatorname{Bot}(c): 3$	$\operatorname{Bot}(d): 1$	$\operatorname{Bot}(e): 1$

The resulting Kronecker encoding of $\mathcal{N} \quad(K=5)$

$$
\mathcal{S}_{5}=\{0,1\} \quad \mathcal{S}_{4}=\{0,1\} \quad \mathcal{S}_{3}=\{0,1\} \quad \mathcal{S}_{2}=\{0,1\} \quad \mathcal{S}_{1}=\{0,1\}
$$

$\mathcal{N}_{a, 5}:\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$				$\mathcal{N}_{e, 5}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
$\mathcal{N}_{a, 4}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$	$\mathcal{N}_{b, 4}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$	$\mathcal{N}_{c, 4}:\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$		
	$\mathcal{N}_{b, 3}:\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$	$\mathcal{N}_{C, 3}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$		$\mathcal{N}_{e, 3}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$\mathcal{N}_{a, 2}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$			$\mathcal{N}_{\text {d, } 2:}:\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$	
			$\mathcal{N}_{\text {d, } 1}:\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$	$\mathcal{N}_{e, 1}:\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

$\operatorname{Top}(a): 5 \operatorname{Top}(b): 4 \operatorname{Top}(c): 4 \operatorname{Top}(d): 2 \operatorname{Top}(e): 5$

$\operatorname{Bot}(a): 2 \operatorname{Bot}(b): 3 \operatorname{Bot}(c): 3 \operatorname{Bot}(d): 1 \operatorname{Bot}(e): 1$

Using structural information to encode $\mathcal{N} \quad(K=4)$

$\operatorname{Top}(b)=\operatorname{Bot}(b)=\operatorname{Top}(c)=\operatorname{Bot}(c)=3$: merge b and c into a single local event l

$\mathcal{S}_{4}=?$			
$\mathcal{N}_{3,4}: ?$ $\mathcal{N}_{a, 3}: ?$ $\mathcal{N}_{l, 3}: ?$	$\mathcal{N}_{e, 4}: ?$		
$\mathcal{N}_{a, 2}: ?$		$\mathcal{N}_{d, 2}: ?$	
		$\mathcal{N}_{e, 3}: ?$	

$$
\begin{array}{llll}
\operatorname{Top}(a): 4 & \operatorname{Top}(l): 3 & \operatorname{Top}(d): 2 & \operatorname{Top}(e): 4 \\
\operatorname{Bot}(a): 2 & \operatorname{Bot}(l): 3 & \operatorname{Bot}(d): 1 & \operatorname{Bot}(e): 1
\end{array}
$$

The resulting Kronecker encoding of $\mathcal{N} \quad(K=4)$

$$
\mathcal{S}_{4}=\{0,1\} \quad \mathcal{S}_{3}=\{(0 q, 0 r),(1 q, 0 r),(0 q, 1 r)\}=\{0,1,2\} \quad \mathcal{S}_{2}=\{0,1\} \quad \mathcal{S}_{1}=\{0,1\}
$$

Definition of Kronecker product

Given K matrices $\mathbf{A}_{k} \in \mathbb{R}^{n_{k} \times n_{k}}$, their Kronecker product is

$$
\mathbf{A}=\bigotimes_{k=1}^{K} \mathbf{A}_{k} \in \mathbb{R}^{n_{1: K} \times n_{1: K}}
$$

where we define $n_{l: k}=n_{l} \cdot n_{l+1} \cdots n_{k}$ and

- $\mathbf{A}[\mathbf{i}, \mathbf{j}]=\mathbf{A}_{1}\left[\mathbf{i}_{1}, \mathbf{j}_{1}\right] \cdot \mathbf{A}_{2}\left[\mathbf{i}_{2}, \mathbf{j}_{2}\right] \cdots \mathbf{A}_{K}\left[\mathbf{i}_{K}, \mathbf{j}_{K}\right]$
- using the mixed-base numbering scheme (indices start at 0)

$$
\mathbf{i}=\left(\ldots\left(\left(\mathbf{i}_{1}\right) \cdot n_{2}+\mathbf{i}_{2}\right) \cdot n_{3} \cdots\right) \cdot n_{K}+\mathbf{i}_{K}=\sum_{k=1}^{K} \mathbf{i}_{k} \cdot n_{k+1: K}
$$

$$
\text { nonzeros: } \quad \eta\left(\bigotimes_{k=1}^{K} \mathbf{A}_{k}\right)=\prod_{k=1}^{K} \eta\left(\mathbf{A}_{k}\right)
$$

Kronecker product by example

Given $\quad \mathbf{A}=\left[\begin{array}{ll}a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1}\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \\ b_{2,0} & b_{2,1} & b_{2,2}\end{array}\right]$,

$$
\begin{gathered}
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cc|ccc}
a_{0,0} \mathbf{B} & a_{0,1} \mathbf{B} \\
\hline a_{1,0} \mathbf{B} & a_{1,1} \mathbf{B}
\end{array}\right]= \\
{\left[\begin{array}{lll|lll}
a_{0,0} b_{0,0} & a_{0,0} b_{0,1} & a_{0,0} b_{0,2} & a_{0,1} b_{0,0} & a_{0,1} b_{0,1} & a_{0,1} b_{0,2} \\
a_{0,0} b_{1,0} & a_{0,0} b_{1,1} & a_{0,0} b_{1,2} & a_{0,1} b_{1,0} & a_{0,1} b_{1,1} & a_{0,1} b_{1,2} \\
a_{0,0} b_{2,0} & a_{0,0} b_{2,1} & a_{0,0} b_{2,2} & a_{0,1} b_{2,0} & a_{0,1} b_{2,1} & a_{0,1} b_{2,2} \\
\hline a_{1,0} b_{0,0} & a_{1,0} b_{0,1} & a_{1,0} b_{0,2} & a_{1,1} b_{0,0} & a_{1,1} b_{0,1} & a_{1,1} b_{0,2} \\
a_{1,0} b_{1,0} & a_{1,0} b_{1,1} & a_{1,0} b_{1,2} & a_{1,1} b_{1,0} & a_{1,1} b_{1,1} & a_{1,1} b_{1,2} \\
a_{1,0} b_{2,0} & a_{1,0} b_{2,1} & a_{1,0} b_{2,2} & a_{1,1} b_{2,0} & a_{1,1} b_{2,1} & a_{1,1} b_{2,2}
\end{array}\right]}
\end{gathered}
$$

Kronecker product expresses contemporaneity or synchronization

If \mathbf{A} and \mathbf{B} are the transition probability matrices of two independent discrete-time Markov chains, $\mathbf{A} \otimes \mathbf{B}$ is the transition probability matrix of their composition

Kronecker description of the next-state function

$\mathcal{N}_{e, k}: \mathcal{S}_{k} \rightarrow 2^{\mathcal{S}_{k}}$ can be identified with a boolean matrix $\mathbf{T}_{e, k} \in\{0,1\}^{\left|\mathcal{S}_{k}\right| \times\left|\mathcal{S}_{k}\right|}$ (a missing $\mathcal{N}_{e, k}$ corresponds to the identity matrix \mathbf{I} of size $\left|\mathcal{S}_{k}\right| \times\left|\mathcal{S}_{k}\right|$)
analogously, $\mathcal{N}: \mathcal{S} \rightarrow 2^{\mathcal{S}}$ can be identified with a boolean matrix $\widehat{\mathbf{T}} \in\{0,1\}^{|\widehat{\mathcal{S}}| \times|\widehat{\mathcal{S}}|}$

Then,

$$
\widehat{\mathbf{T}}=\sum_{e \in \mathcal{E}}\left(\bigotimes_{K \geq k \geq 1} \mathbf{T}_{e, k}\right)
$$

encode a huge \mathbf{T} with a few "small" matrices
"Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models"
Buchholz, Ciardo, Donatelli, Kemper (INFORMS J. Comp., 2000)

Locality, symmetry, and monotonicity in transition firing

If $\mathbf{i} \in \mathcal{S}, \quad \mathbf{i} \stackrel{e}{ }{ }_{\mathbf{j}}^{\mathbf{j}}, \quad \operatorname{Top}(e)=k \wedge B o t(e)=l: \quad \mathbf{j}=\left(\mathbf{i}_{K}, \ldots, \mathbf{i}_{k+1}, \mathbf{j}_{k}, \ldots, \mathbf{j}_{l}, \mathbf{i}_{l-1}, \ldots, \mathbf{i}_{1}\right)$

If also $\mathbf{i}^{\prime} \in \mathcal{S}$ and $\left(\mathbf{i}_{k}, \ldots, \mathbf{i}_{1}\right)=\left(\mathbf{i}_{k}^{\prime}, \ldots, \mathbf{i}_{1}^{\prime}\right): \mathbf{i}^{\prime} \xlongequal{e} \mathbf{j}^{\prime} \wedge \mathbf{j}^{\prime}=\left(\mathbf{i}_{K}^{\prime}, \ldots, \mathbf{i}_{k+1}^{\prime}, \mathbf{j}_{k}, \ldots, \mathbf{j}_{l}, \mathbf{i}_{l-1}, \ldots, \mathbf{i}_{1}\right)$

Local event $\mathbf{i}_{k} \xrightarrow{e} \mathbf{j}_{k}$
Synchronizing event $\left(\mathbf{i}_{k}, \ldots, \mathbf{i}_{l}\right) \xrightarrow{e}\left(\mathbf{j}_{k}, \ldots, \mathbf{j}_{k}\right)$

locality and in-place-updates save huge amounts of computation

Saturation: an efficient iteration strategy

Traditional application of a partitioned $\mathcal{N}: \quad \mathcal{X}^{\left(e_{1}\right)} \quad \leftarrow \mathcal{N}_{e_{1}}(\mathcal{S})$

$$
\mathcal{X}^{\left(e_{|\varepsilon|}\right)} \quad \dddot{\leftarrow} \quad \mathcal{N}_{e_{|\varepsilon|}}(\mathcal{S})
$$

$$
\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{X}^{\left(e_{1}\right)} \cup \ldots \cup \mathcal{X}^{\left(e_{|\varepsilon|}\right)}
$$

We can improve by pipelining:

\mathcal{S}	\leftarrow	$\mathcal{S} \cup \mathcal{N}_{e_{1}}(\mathcal{S})$
\mathcal{S}	\leftarrow	$\mathcal{S} \cup \mathcal{N}_{e_{\|\varepsilon\|}}(\mathcal{S})$

And even more by exhaustive pipelining:

$$
\begin{array}{lll}
\mathcal{S} & \leftarrow & \mathcal{S} \cup \mathcal{N}_{e_{1}^{*}}^{*}(\mathcal{S}) \\
\mathcal{S} & \leftarrow & \mathcal{S} \cup \mathcal{N}_{e|\varepsilon|}^{*}(\mathcal{S})
\end{array}
$$

But the best strategy is to saturate MDD nodes recursively bottom-up:

- a node at level k is saturated if it is a fixed point w.r.t. all events e s.t. $\operatorname{Top}(e) \leq k$
- traditional idea of a global fixed-point iteration for the overall MDD disappears

Merging explicit local with symbolic global s.s. generation ${ }^{39}$

Problem: local state spaces \mathcal{S}_{k} are not known a priori
Solution: build \mathcal{S}_{k} "on the fly" (explicitly) alongside the overall state space \mathcal{S} (symbolically)

1. start from the only known state, the initial state ($\mathbf{s}_{K}, \ldots, \mathbf{s}_{1}$), and commit its components
2. while MDD encoding \mathcal{S} has not reached its fixed point w.r.t. \mathcal{N} do
3. (explicitly) explore all \mathbf{j}_{k} reachable from each newly committed \mathbf{i}_{k} in isolation in one step \Rightarrow create corresponding row \mathbf{i}_{k} of $\mathcal{N}_{e, k}$ for each $e \in \mathcal{E}$ dependent on level k
4. (symbolically) explore global states reachable from the currently-known \mathcal{S}
\Rightarrow use current $\mathcal{N}_{e, k}$ matrices
\Rightarrow may cause uncommitted local states to be committed
5. end while
no need to know a priori the range of each state variable

Example: the dining philosophers (Petri net)

N subnets connected in a circular fashion

Example: the dining philosophers (SMART code)

```
spn phils(int N) := {
    for (int i in {0..N-1}) {
        place Idle[i], WaitL[i], WaitR[i], HasL[i], HasR[i], Fork[i];
        partition(i+1:Idle[i]:WaitL[i]:WaitR[i]:HasL[i]:HasR[i]:Fork[i]);
        trans GoEat[i], GetL[i], GetR[i], Release[i];
        firing(GoEat[i]: expo(1),GetL[i]: expo(1),GetR[i]:expo(1),Release [i]:expo(1
        init(Idle[i]:1, Fork[i]:1);
    }
    for (int i in {0..N-1}) {
            arcs(Idle[i]:GoEat[i], GoEat[i]:WaitL[i], GoEat[i]:WaitR[i],
                    WaitL[i]:GetL[i], Fork[i]:GetL[i], GetL[i]:HasL[i],
            WaitR[i]:GetR[i], Fork[mod(i+1, N)]:GetR[i], GetR[i]:HasR[i],
            HasL[i]:Release[i], HasR[i]:Release[i], Release[i]:Idle[i],
            Release[i]:Fork[i], Release[i]:Fork[mod(i+1, N)]);
    }
    bigint num := card(reachable);
    stateset g := EF(initialstate); bigint numg := card(g);
    stateset b := difference(reachable,g); void out := printset(b);
};
# StateStorage MDD_SATURATION
int N := read_int("number of philosophers"); print("N=",N,"\n");
print("Reachable states: ",phils(N).num,"\n");
print("Good states: ",phils(N).numg,"\n");
print("The bad states are\n"); phils(N).out;
```


Example: the dining philosophers (results)

Reading input.
$\mathrm{N}=50$
Reachable states: 22,291,846,172,619,859,445,381,409,012,498
Good states: 22,291,846,172,619,859,445,381,409,012,496
The bad states are

State 0 : \{ WaitR[0]:1 HasL[0]:1 WaitR[1]:1 HasL[1]:1 WaitR[2]:1 HasL[2]:1 Wa State 1 : \{ WaitL[0]:1 HasR[0]:1 WaitL[1]:1 HasR[1]:1 WaitL[2]:1 HasR[2]:1 Wa Done.

Solution requirements: SMART vs. NuSMV (800MHz P-III)

N	Reachable states	Final memory (kB)		Peak memory (kB)		Time (sec)	
		SMART	NuSMV	SMART	NuSMV	SMART	NuSMV
Dining Philosophers (N levels)							
50	2.23×10^{31}	18	10,800	22	10,819	0.15	5.9
200	2.47×10^{125}	74	27,155	93	72,199	0.68	12,905.7
10,000	4.26×10^{6269}	3,749	-	4,686	-	877.82	-
Slotted Ring Network (N Ievels)							
10	8.29×10^{9}	4	5,287	28	10,819	0.13	5.5
15	1.46×10^{15}	10	9,386	80	13,573	0.39	2,039.5
200	8.38×10^{211}	1,729	-	120,316	-	902.11	-
Round Robin Mutual Exclusion ($\mathbf{N + 1}$ levels)							
20	4.72×10^{7}	18	7,300	20	7,306	0.07	0.8
100	2.85×10^{32}	356	16,228	372	26,628	3.81	2,475.3
300	1.37×10^{93}	3,063	-	3,109	-	140.98	-
Flexible Manufacturing System (19 levels)							
10	4.28×10^{6}	16	1,707	26	11,238	0.05	9.4
20	3.84×10^{9}	55	14,077	101	31,718	0.20	1,747.8
250	3.47×10^{26}	25,507	-	69,087	-	231.17	-

We can talk about events and states occurring over relative time, or temporal logic

- Can event e ever fire before event f ?
- Is it possible to reach a state where both buffers are empty?
- Once both buffers are empty, can they ever both become full at the same time?
- Or even just at different times?
- Can we reach a stable set of states where race conditions cannot occur?
- Can we reach a set of states where, if race conditions occur, they never cause a deadlock?

We use computation tree logic (CTL) to express these queries:

- Any atomic proposition (true or false in a state) is a CTL formula
- If p and q are CTL formulas, so are $\neg p, p \wedge q, p \vee q$
- If p and q are CTL formulas, so are $\mathrm{EX} p, \mathrm{EF} p, \mathrm{EG} p, \mathrm{E}[p \cup q], \mathrm{AX} p, \mathrm{AF} p, \mathrm{AG} p, \mathrm{~A}[p \cup q]$

given a model, a CTL formula p identifies a set of states (those states that satisfy p)

CTL semantics

Note that EX, EG, and EU is a complete set of CTL operators, since

$$
\begin{array}{ccc}
\mathrm{EF} p=\mathrm{E}[\mathrm{~T} \cup p] & \mathrm{AX} p=\neg \mathrm{EX} \neg p & \mathrm{AF} p=\neg \mathrm{EG} \neg p \\
\mathrm{AG} p=\neg \mathrm{E}[\mathrm{TU} \neg p] & \mathrm{A}[p \cup q]=\neg \mathrm{E}[\neg q \cup \neg p \wedge \neg q] \wedge \neg \mathrm{EG} \neg q
\end{array}
$$

Applications

Protocol verification

Security

Software correctness

VLSI design and verification

GUI and HCl testing

