Modeling beyond randomness

Andreas Stathopoulos

College of William and Mary
UMSA 2002

A stochastic problem

Let's go back to the 1-d drunkard's walk that we saw earlier this semester Assume:

- the drunkard tends to go left with probability 45% and right with 55%
- there are 60 different discrete points on the 1-D road
- at the two ends of the road the drunkard still chooses a direction
- if the direction is within the road the drunkard goes for it
- if it is outside the road the drunkard stays at the same point

Question: After infinitely many steps what is the probability of the drunkard being at a specific point (state)?

A classical Markov chain problem

A stochastic simulation solution

Here is a simple (simplistic?) way of simulating the walk in matlab:

```
function drunk1d_rand(sample,states,time)
middle = ceil(states/2);
drunkards = middle*ones(sample,1);
State_plot = zeros(states,1);
State_plot(middle) = sample;
for t = 1:time
    for i = 1:sample
        coin = floor( rand(1,1) + 0.55 );
        State_plot(drunkards(i)) = State_plot(drunkards(i)) - 1;
        if (coin == 0)
            if (drunkards(i) > 1)
            drunkards(i) = drunkards(i) - 1;
            end
        else
            if (drunkards(i) < states)
                drunkards(i) = drunkards(i) + 1;
                end
            end
        State_plot(drunkards(i)) = State_plot(drunkards(i)) + 1;
    end
end;
plot( State_plot );
```


Evaluating stochastic simulation

- Easy to implement
- Relatively easy to enhance with additional complications of the model
- BUT Converges slowly !!

Question: How can we model this problem so we obtain analytic solutions?

A matrix formulation

Assume a set of N states s_{1}, \ldots, s_{N}.
Let the drunkard be at state s_{j}
Then the drunkard can choose to go to s_{i} with probability $p_{i, j}$, with $\sum_{i=1, N} p_{i, j}=1$
Let's accumulate these column probabilities for each state in a matrix A. A is called Probability matrix and note that:

$$
[11 \cdots 1] * A=[11 \cdots 1]
$$

For our drunkard example our matrix looks like this:

.45	.45	0
.55	0	.45
0	.55	0

.55	0	.45
	.55	.55

Turning it into an eigenvalue problem

Notice now that we look for the steady state probability, i.e., the probability that does not change from step to step (at infinity):

$$
\operatorname{Prob}\left(s_{i}\right)=\operatorname{Prob}\left(s_{i-1}\right)^{*} .55+\operatorname{Prob}\left(s_{i+1}\right)^{*} .45
$$

or equivalently, we want the eigenvector p with eigenvalue 1 :

$$
A p=p
$$

This is a 60×60 problem and can be solved in a jiffy numerically
However, note this is only for the steady state

Partial differential equations -more of the same

Consider the classical 1-D decceleration problem:
At time zero a rocket is fired from the ground upwards and after T seconds the rocket hits back the ground. What is the height of the rocket at any time in the interval $[0, T]$?
(For simplicity assume constant gravity acceleration $=-10 \mathrm{~m} / \mathrm{sec}^{2}$ and $T=1$)
This physical process can be described with a PDE involving the height $s(t)$:

$$
\frac{d^{2} s(t)}{d t^{2}}=-10
$$

with the boundary conditions $s(0)=s(T)=0$.
Analytic solution is trivial, but not for even slightly more complicated PDEs

The numerical approach -Discretization

Assume we want the solution only at a set of time points $t_{i}, i=0, \ldots, N+1$
Assume equally spaced $t_{i}=i * h$ with $h=1 /(N+1)$ and $t_{0}=0, t_{N}=1$
More accuracy can be obtained by increasing N
Since $s(t)$ continuous and doubly differentiable use Taylor series approximation

$$
\frac{d s}{d t}(t)=\frac{s(t+h)-s(t)}{h}+\frac{h d^{2} s(t)}{2}+O\left(h^{2}\right)
$$

Write the same based on the previous point approximation $t-h$ and substra

$$
\frac{d s}{d t}(t)=-\frac{s(t-h)-s(t)}{h}-\frac{h d^{2} s(t)}{2}+O\left(h^{2}\right)
$$

Substract the two equations:

$$
\frac{d^{2} s(t)}{d t^{2}}=\frac{s(t+h)-2 s(t)+s(t-h)}{h^{2}}+O\left(h^{2}\right)
$$

We look for $s\left(t_{i}\right) \equiv s_{i}, i=1, \ldots, N$. Then the formula becomes

$$
\frac{d^{2} s(t)}{d t^{2}} \approx \frac{1}{h^{2}}\left(s_{i-1}-2 s_{i}+s_{i+1}\right)
$$

and our equations become:

$$
s_{i-1}-2 s_{i}+s_{i+1}=-h^{2} 10, \quad i=1, \ldots, N
$$

This is just a set of linear equations that can be represented in matrix form

