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Introduction

Stochastic simulations try to mimic stochastic

phenomena observed in nature.

The natural phenomenon is modeled by a prob-

ability distribution Q. We observe what Nature

draws from Q. Independently replicated obser-

vations constitute a sample ~y = {y1, . . . , ym}.

Analogously, a stochastic simulation is a pseu-

dorandom mechanism for drawing observations

from a specified probability distribution. Sim-

ulation usually requires specifying the values of

various parameters, so we write Pθ to denote

simulation with parameter values θ. Running

the simulation with these values means draw-

ing observations from Pθ. Independently repli-

cated observations constitute a sample ~x =

{x1, . . . , xn}.
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Parameter Estimation

Suppose that we’ve observed an actual sample

~y, drawn by Nature from Q.

Problem: Guess what parameter value causes

Pθ to behave most like Q.

Strategy: Draw simulated samples from dif-

ferent Pθ. Choose the value(s) for which the

simulated samples most closely resemble the

actual sample.

Key questions:

1. How do we measure how closely two sam-

ples resemble each other?

(For simplicity, assume that we’re observ-

ing real numbers, e.g. time from first tumor

detected to second tumor detected.)

2. How do we systematically choose different

Pθ from which to sample?
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Comparing Q and P (θ)

1. Partition (−∞,∞) into b bins: B1, . . . , Bb.

2. Let

qk = Q(Bk)

and

pk(θ) = Pθ(Bk).

3. Let

∆(Q,Pθ) = m
b
∑

k=1

[qk − pk(θ)]
2

pk(θ)
.

4. Choose θ to minimize ∆(Q,Pθ).

Unfortunately, Q is unknown—we only know ~y,

the sample drawn from Q.
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Comparing ~y ∼ Q and P (θ)

1. Partition (−∞,∞) into b bins: B1, . . . , Bb.

2. Let

q̂k =#
{

yj ∈ Bk

}

/m

and

pk(θ) = Pθ(Bk).

3. Let

f(θ) = ∆
(

Q̂, Pθ
)

= m
b
∑

k=1

[q̂k − pk(θ)]
2

pk(θ)
.

4. Choose θ̂ to minimize f(θ).

Unfortunately, most stochastic simulations are

too complicated for us to determine pk(θ). In-

stead, we must sample Pθ in order to estimate

pk(θ).
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Comparing ~y ∼ Q and ~x ∼ P (θ)

1. Partition (−∞,∞) into b bins: B1, . . . , Bb.

2. Let

q̂k =#
{

yj ∈ Bk

}

/m

and

p̂k(θ) = # {xi ∈ Bk} /n.

3. Let

f̂n(θ) = ∆
(

Q̂, P̂θ
)

= m
b
∑

k=1

[q̂k − p̂k(θ)]
2

p̂k(θ)
.

4. Choose θ̂ to minimize f(θ), using f̂n(θ) to
estimate f(θ).

Notice that function evaluation is uncertain—

drawing different samples from Pθ will produce
different f̂n(θ).

However, f̂n(θ)
P
→ f(θ) as n→∞.
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Example

Bin Q θ1 θ2 θ3 θ4 θ5 θ6
(−∞,2) 5 67 64 27 36 12 13
(2,3) 6 19 16 26 20 22 23
(3,4) 4 6 11 23 21 18 20
(4,5) 2 4 5 10 12 21 19
(5,∞) 3 4 4 14 11 27 25

θ f̂n(θ)
θ1 20.92
θ2 15.73
θ3 0.25
θ4 2.04
θ5 5.66
θ6 4.29
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Answer

θ1 = θ2 = 2
θ3 = θ4 = 3
θ5 = θ6 = 4

Q = Pπ
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Next: Stochastic Optimization

We want to minimize f .

Function evaluation is uncertain: because we

can’t compute f(θ), we must estimate f(θ) by

sampling Pθ and computing f̂n(θ).

Question: How do we minimize when function

evaluation is uncertain?
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Papers to be Presented

1. What is Pθ, the stochastic simulation?

2. How are samples compared?

3. How is the comparison criterion optimized?
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