
Stochastic Optimization

Michael W. Trosset

Department of Mathematics

College of William & Mary

trosset@math.wm.edu

http://www.math.wm.edu/~trosset/

1



Introduction

Consider the problem of minimizing f : <p → <,
where f(x) must be estimated by observing the

value of a random variable f̂n(x).

More precisely, let f(x) = T (Px) and f̂n(x) =

T (P̂x), where P̂x is the empirical distribution of

an i.i.d. random sample ω1, . . . , ωn ∼ Px. Then

f̂n(x)
P→ f(x),

so we can obtain more accurate estimates by

drawing larger samples.

Such problems routinely arise in simulation-

based estimation.
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Methods for Numerical Optimization

0. Direct comparison of f values.

Examples: Grid Search, Pattern Search.

1. Local linear models of f , usually constructed

from first derivative information.

Example: Steepest Descent.

2. Local quadratic models of f , usually con-

structed from first and second derivative

information.

Example: Newton’s Method.
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Direct Search

Example: “Compass Search” in <2

Do until convergence:

1. From xc, look ∆ units to NSEW.

2. If find f(xt) < f(xc), then xc ← xt;

else ∆←∆/2.

Direct search methods are often recommended

for optimization in the presence of random noise,

i.e. when function evaluation is uncertain.

Why?
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Supporting evidence for this recommendation

is largely anecdotal, bolstered by a few simu-

lation studies, e.g.

R.R. Barton (1984). Minimization algorithms
for functions with random noise. American

Journal of Mathematical and Management Sci-

ences, 4:109–138.

What is invariably considered is how algorithms

designed for optimization in the absence of

random noise perform in the presence of ran-

dom noise.
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Convergence

To ensure convergence, it is necessary for n→
∞ as ∆→ 0. Recent theoretical results in

• E.J. Anderson & M.C. Ferris (2001), A direct search
algorithm for optimization with noisy function eval-
uation, SIAM Journal on Optimization, 11:837–857;
and

• M.W. Trosset (2000). On the use of direct search
methods for stochastic optimization, Technical Re-
port 00-20, Department of Computational & Ap-
plied Mathematics, Rice University, Houston, TX,

suggest that an alarming number of observa-

tions are required for direct search to progress

as ∆ becomes small.
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Anderson & Ferris (2001) proposed a class of

algorithms for the case that function evalua-

tion is corrupted by adding normal errors:

ω1, . . . , ωn ∼ Normal
(

f(x), σ2
)

These algorithms employ three operations:

• ~xk+1 = reflect(~xk), preserving the size of

the design, and nk+1 = nk;

• ~xk+1 = expand(~xk), essentially doubling the

size of the design, and nk+1 ≈ nk/4; and

• ~xk+1 = contract(~xk), essentially halving the

size of the design, and nk+1 ≈ 4nk.

The convergence analysis depends critically on

the tail behavior of the normal distribution.
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Anderson & Ferris defined the size of a design

~x to be

D (~x) = max
{∥

∥

∥xi − xj

∥

∥

∥ : xi, xj ∈ ~x
}

and decreased σ/
√
nk faster than D(~xk) to en-

sure convergence. This condition is virtually

identical to the condition derived in Trosset’s

power analysis.

Their numerical results reinforce Trosset’s con-

clusion that using direct search in the presence

of random noise is extraordinarily expensive.

With σ = 0.1, they set ξ(~x0) = 1 and stopped

when ξ(~xk) < 0.0001, where

ξ (~x) = min
{∥

∥

∥xi − xj

∥

∥

∥ : xi, xj ∈ ~x
}

.

Thus, after the penultimate contraction, each

estimated function value required a sample of

size

nk ≈ 413 = 67,108,864.

8



Stochastic Approximation

At xc, choose α∗ to minimize

g(α) = f (xc − α∇f (xc)) ;

then set

x+ = xc − α∗∇f (xc) .

This is the method of steepest descent.

If derivatives are not available, then they must

be approximated, usually by finite differencing:

∇f (xc) ≈
1

2β







f(xc + βe1)− f(xc − βe1)
...

f(xc + βep)− f(xc − βep)







Both the differences and the line search are

highly unstable in the presence of noise.
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Classical Stochastic Approximation

J. Kiefer & J. Wolfowitz (1952). Stochas-
tic estimation of the maximum of a regression
function. Annals of Mathematical Statistics,
23:462–466.

Let αk and βk satisfy

βk → 0,
∞
∑

k=1

αk =∞,

∞
∑

k=1

αkβk <∞,
∞
∑

k=1

α2
kβ

2
k <∞,

e.g. αk = k−1 and βk = k−1/3.

The algorithm is

xk+1 = xk −
αk

2βk

[

f̂n (xk + βk)− f̂n (xk − βk)
]

,

typically for n = 1.

Note: Paul Goger’s UMSA project and senior

honors thesis explored various strategies for

choosing nk.
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Response Surface Methodology

Instead of approximating ∇f(xc) by finite dif-

ferencing. . .

1. Design an experiment, i.e. specify an ex-

perimental region E in the vicinity of xc

and choose design sites w1, . . . , wd ∈ E.

2. Perform the experiment, i.e. observe values

yi = f̂n(wi) for i = 1, . . . , d.

3. Fit a local linear model h1 to the data

(w1, y1) , . . . , (wd, yd) ,

e.g. by least-squares regression.

4. Compute ∇h1(xc) and proceed as with sto-

chastic approximation.
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Quadratic Models

For numerical optimization, we often write

f(x) ≈ f (xc) + (x− xc)
T ∇f (xc) +

1

2
(x− xc)

T
[

∇2f (xc)
]

(x− xc)

= q(x)

and set x+ equal to the stationary point of the

quadratic approximation q. This is equivalent

to solving ∇f(x) = ~0 by Newton’s method.

Alternatively, we might choose x+ to solve

minimize q(x)

subj to ‖x− xc‖ ≤ rc,

where the constraint set is the region in which

we “trust” the quadratic approximation q.
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When function evaluation is uncertain. . .

1. Design an experiment, i.e. specify an ex-

perimental region E in the vicinity of xc

and choose design sites w1, . . . , wd ∈ E.

2. Perform the experiment, i.e. observe values

yi = f̂n(wi) for i = 1, . . . , d.

3. Fit a local quadratic model h2 to the data

(w1, y1) , . . . , (wd, yd) ,

e.g. by least-squares regression, and pro-

ceed as above.

Remark: In RSM, solving the trust region sub-

problem is called ridge analysis.
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