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Introduction

Consider the problem of minimizing f : ®P — R,
where f(x) must be estimated by observing the
value of a random variable f,(z).

More precisely, let f(z) = T(P;) and fn(z) =
T(P.), where P, is the empirical distribution of
an i.i.d. random sample wq,...,wn ~ Px. Then

Fu(z) 5 f(2),

SO we can obtain more accurate estimates by
drawing larger samples.

Such problems routinely arise in simulation-
based estimation.



Methods for Numerical Optimization

0. Direct comparison of f values.

Examples: Grid Search, Pattern Search.

1. Local linear models of f, usually constructed
from first derivative information.

Example: Steepest Descent.

2. Local quadratic models of f, usually con-
structed from first and second derivative
information.

Example: Newton's Method.



Direct Search

Example: “Compass Search” in R2

Do until convergence:

1. From z., look A units to NSEW.

2. If find f(x:) < f(xc), then xe «— xy¢;

else A — A/2,

Direct search methods are often recommended
for optimization in the presence of random noise,
i.e. when function evaluation is uncertain.

Why?



Supporting evidence for this recommendation
is largely anecdotal, bolstered by a few simu-
lation studies, e.q.

R.R. Barton (1984). Minimization algorithms
for functions with random noise. American
Journal of Mathematical and Management Sci-
ences, 4:109—-138.

What is invariably considered is how algorithms
designed for optimization in the absence of
random noise perform in the presence of ran-
dom noise.



Convergence

TO ensure convergence, it is necessary for n —
oo as A — 0. Recent theoretical results in

e E.J. Anderson & M.C. Ferris (2001), A direct search
algorithm for optimization with noisy function eval-
uation, SIAM Journal on Optimization, 11:837—857;
and

e M.W. Trosset (2000). On the use of direct search
methods for stochastic optimization, Technical Re-
port 00-20, Department of Computational & Ap-
plied Mathematics, Rice University, Houston, TX,

suggest that an alarming number of observa-
tions are required for direct search to progress
as A becomes small.



Anderson & Ferris (2001) proposed a class of
algorithms for the case that function evalua-
tion is corrupted by adding normal errors:

wi,...,wn ~ Normal <f(a:),<72>

T hese algorithms employ three operations:

® 7)1 = reflect(Zy), preserving the size of
the design, and ngy41 = ng;

e T;11 — expand(ZFy), essentially doubling the
size of the design, and ngy4; =~ ng/4; and

® 7)1 = contract(Zy), essentially halving the
size of the design, and ny4 1 ~ 4ny.

The convergence analysis depends critically on
the tail behavior of the normal distribution.



Anderson & Ferris defined the size of a design
x to be

D (¥) = max{‘

T; — ij L T, T € f}
and decreased o/,/n;, faster than D(Z)) to en-
sure convergence. This condition is virtually

identical to the condition derived in Trosset's
power analysis.

T heir numerical results reinforce Trosset’'s con-
clusion that using direct search in the presence
of random noise is extraordinarily expensive.
With ¢ = 0.1, they set £&(Zp) = 1 and stopped
when £(Z;) < 0.0001, where

£ (X)) = min {|
Thus, after the penultimate contraction, each

estimated function value required a sample of
size

T; —xJH L T, T € f} :

n, ~ 413 = 67,108, 864.



Stochastic Approximation

At z., choose o™ to minimize

g9(a) = f(zc — aVf(zc));

then set

Ty = Tc — Oz*Vf (zc) -

This is the method of steepest descent.

If derivatives are not available, then they must
be approximated, usually by finite differencing:

(20) 1 i f(xzc+ Be1) — f(zc — Ber) |
Vi(xe) — :
28 i f(5130‘|‘5€p) —f(l“c—ﬁep) |

Both the differences and the line search are
highly unstable in the presence of noise.



Classical Stochastic Approximation

J. Kiefer & J. Wolfowitz (1952). Stochas-
tic estimation of the maximum of a regression
function. Annals of Mathematical Statistics,
23:462—-466.

Let o and (. satisfy

xo
Br—0, > oap =00,
k=1

O @)

Z apBr < 00, Z a%ﬁ% < 00,

e.d. ap =k ! and g8, = k—1/3.

The algorithm is

Tht1 = Tk — ;—Bkk Fn (g + Br) — Fn (2 — Br)|

typically for n = 1.

Note: Paul Goger's UMSA project and senior
honors thesis explored various strategies for
choosing ny..
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Response Surface Methodology

Instead of approximating V f(xz.) by finite dif-
ferencing. ..

1. Design an experiment, i.e. specify an ex-
perimental region E in the vicinity of =z,
and choose design sites wy,...,wy € E.

2. Perform the experiment, i.e. observe values
Y; = fn(wz) for ¢ = 1,...,d.

3. Fit a local linear model A7 to the data

(w1,91) -, (Wa, yg) 5

e.g. by least-squares regression.

4. Compute Vhqi(xc) and proceed as with sto-
chastic approximation.
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Quadratic Models

For numerical optimization, we often write

f(z) = {(xc) + (@ —2)" VI (ze) +
S (@ = 2T [V2f (20)] (& — )
= q(x)

and set x4 equal to the stationary point of the
quadratic approximation g. This is equivalent
to solving Vf(z) = 0 by Newton's method.

Alternatively, we might choose z to solve

minimize  q(x)
subj to |z — x| < 7e,

where the constraint set is the region in which
we “trust” the quadratic approximation q.
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When function evaluation is uncertain. ..

1. Design an experiment, i.e. specify an ex-
perimental region E in the vicinity of =z,
and choose design sites wq,...,wg € E.

2. Perform the experiment, i.e. observe values
Y; = fn(wz) for 1 = 1,...,d.

3. Fit a local quadratic model ho to the data

(w1,Y1) - -5 (Wg, Yg) 5

e.g. by least-squares regression, and pro-
ceed as above.

Remark: In RSM, solving the trust region sub-
problem is called ridge analysis.
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