Overview of Genetic Algorithms February 16, 2000

An Overview of Genetic Algorithms

Joseph Carnahan
Undergraduate Modelling, Simulation, and Analysis
February 16, 2000

Based primarily on Chapter 1 of the book Genetic Algorithms in
Search, Optimization, and Machine Learning, by David E.
Goldberg, (©1989 by Addison-Wesley Publishing Company, Inc.

Overview of Genetic Algorithms February 16, 2000

Outline

Review of the algorithm

Step-by-step walk through a simple example

Look at a few more sophisticated variations

Look at the limitations of genetic algorithms

Overview of Genetic Algorithms February 16, 2000

The GA Algorithm

Given a problem:

1. Devise a means for representing a solution to the problem.

2. Devise a heuristic for evaluating the fitness of any particular
solution.

3. Generate a population of possible solutions, either randomly or
with malice of forethought.

Overview of Genetic Algorithms February 16, 2000

4. Evaluate the fitness of each member of the population.

5. Produce a new generation of solutions by picking from the
existing pool of solutions with a preference for solutions which
are better-suited than others.

6. Randomly pair off members of the new generation.

7. Within each pair, swap parts of the members’ solutions to
create offspring which are a mixture of the parents.

8. Randomly mutate a very small fraction of genes in the

population.

9. Go back to step 4.

Overview of Genetic Algorithms February 16, 2000

Some Obvious Questions

e Does this algorithm converge? Will it always be producing
better and better solutions?

e Is this algorithm even remotely efficient?

e Does this algorithm leave any part of the search space
unexplored?

e How easy is it to fool the algorithm?

e Bottom Line: Does it work?

Overview of Genetic Algorithms February 16, 2000

A Simple Example

As a trivial example, let us attempt to maximize the function
HOESS

over the range of integers from 0...31.

This function could be solved by a variety of traditional methods,
such as a hill-climbing algorithm which uses the derivative of f(x):

1. Start from any integer x in the domain of f.
2. Evaluate the derivative at that point, f'(x).

3. Observing that the derivative is positive, we pick a new = which

is a small distance in the positive direction from our current z.

4. Repeat until z = 31.

Overview of Genetic Algorithms February 16, 2000

However, in many real-life situations, derivative information may
be either unavailable or unhelpful.

So, let’s see how a genetic algorithm would approach this

problem. . .

1. Devise a means to represent a solution to the problem.

We will represent = with five-digit unsigned binary integers.

2. Devise a heuristic for evaluating the fitness of any particular

solution.

Since the function which we are trying to maximize is easy to
evaluate, we will use the f(x) value itself to rate the fitness of a
solution. If f(z) were more complicated, we might consider a
simpler heuristic that would still point us in more or less the

same direction.

Overview of Genetic Algorithms February 16, 2000

Why binary?

Genetic algorithms often process binary represenations of
solutions. In part, this works well because crossover and
mutation can be clearly defined for binary solutions:

crossover: Pick a random point inside the string. Then, create the
two offspring from the two parents by swapping the substrings
that come after the break point. Given two strings 00000 and
11111 and a break point after the second digit, the crossover is

00000 = 00/000 = 00111
11111 = 11/000 = 11000

mutation: With predetermined (and usually very low) probability,
flip an individual bit. 01011 could turn into 01001, for example.

Overview of Genetic Algorithms February 16, 2000

3. Randomly generate a set of solutions.

To make things easier, we will only consider a population of

four solutions. Obviously, larger populations are used in real
applications to explore a larger part of the search space more
quickly.

Qur four solutions:

01101
11000
01000
10011
9
Overview of Genetic Algorithms February 16, 2000

4. Fvaluate the fitness of each member of the population.

Here are is the evaluation of the initial population:

Chromosome | Value of x| Value of f(z) | Fraction of Total
01101 13 169 0.144
11000 24 576 0.492
01000 8 64 0.055
10011 19 361 0.309
Total 1170 1.000

We look at the total fitness because each solutions’ fraction of
the total will determine its likelihood of reproduction.

10

Overview of Genetic Algorithms

February 16, 2000

5. Produce a new generation of solutions by picking from the

existing pool of solutions with a preference for solutions which

are better-suited than others.

We divide the range 0.0...1.0 into four bins, sized according to

the relative fitness of the solutions which they represent:

Overview of Genetic Algorithms

String | Associated Bin
01101 0.0...0.14
11000 0.14...0.63
01000 0.69...0.69
10011 0.69...1.00

11

February 16, 2000

By generating 4 Uniform(0, 1) random variate values and

seeing which bin they fall into, we pick the four strings that

will form the basis for the next generation:

Random Number | Falls Into... | Chosen String
0.08 0.0...0.14 01101
0.24 0.14...0.63 11000
0.52 0.14...0.63 11000
0.87 0.69...1.00 10011

Notice that the least-fit solution, 01000 (z = 8), has already
“died out”, since no random numbers were picked from its bin.

12

Overview of Genetic Algorithms February 16, 2000

6. Randomly pair off members of the new generation.

We decide (or rather, “Our random number generator decides
for us”) to mate the first two strings together and the second

two strings together.

7. Within each pair, swap parts of the members’ solutions to

create offspring which are a mizture of the parents.

For the first pair of strings,
01101, 11000

we randomly select the crossover site to be after the fourth
digit. Crossing these two strings at that point yields

01101 = 0110/1 = 01100
11000 = 1100/0 = 11001

13

Overview of Genetic Algorithms February 16, 2000

For the second pair of strings,
11000, 10011

we randomly select the crossover site to be after the second

digit. Crossing these two strings at that point yields

11000 = 11/000 = 11011
10011 = 10/011 = 10000

8. Randomly mutate a very small fraction of genes in the

population.

With a typical mutation probability of 0.001 per bit, it
happens that none of the bits in our population are mutated.

14

Overview of Genetic Algorithms February 16, 2000

9. Go back and reevaluate the fitness of the population.

This would be the first step in generating a new generation of
solutions. However, it is also useful in showing the way that a
single iteration of the genetic algorithm has improved this

sample.
Chromosome | Value of © | Value of f(z) | Fraction of Total
01100 12 144 0.082
11001 25 625 0.356
11011 27 729 0.416
10000 16 256 0.146
Total 1754 1.000

Observe that the total fitness has gone from 1170 to 1754 in a
single generation.

15

Overview of Genetic Algorithms February 16, 2000

e Also, it is interesting to note that the algorithm has already
come up with the string 11011 (z = 27) as a possible solution.

e How did this happen?

— In part: Random chance.

— More important: The algorithm favors decent solutions under
the assumption (which holds in this case) that they can be
used to build even better solutions.

Even in our trivial example, the decision to produce two
copies of the best string (11000) and zero copies of the worst
string (01000) made a difference in generating 11011.

— The “Building-Block Hypothesis”: Genetic algorithms work

well as long as better solutions can be built by combining

parts of other solutions.

16

Overview of Genetic Algorithms February 16, 2000

More Sophsisticated Examples

(Most of the information in this section comes from the book
Practical Genetic Algorithms by Randy L. Haupt and Sue Ellen
Haupt, (©1998 by John Wiley & Sons, Inc.)

e Continuous vs. Binary representation schemes

— How can the algorithm do crossovers?

— How can the algorithm do mutations?
e Efficiency Considerations

— How can the algorithm avoid re-evaluating expensive
functions?

e Alternative Swap Schemes

17

Overview of Genetic Algorithms February 16, 2000

Continuous Representations

Often, binary numbers do not accurately reflect the parameters of
the function which we are trying to optimize. Consider, for
instance, a question of finding the highest point on a physical
landscape. The height function f(X,Y) maps a lattitude and a
longitude to a height H:

f:XxY = H.

Since it is unlikely that the mountain peak which we are seeking
lies directly on an integer-valued lattitude or longitude line, X and

Y are naturally floating-point numbers.

18

Overview of Genetic Algorithms February 16, 2000

More generally, when a genetic algorithm is processing a problem
with heuristic function f and f takes n floating-point parameters,
then the GA usually looks at solutions as lists of the form

S = (81, S92, .. .Sn).

So, in our zy-coordinate example, if we were trying to find
locations in between 75° and 80° west longitude and between 40°
and 45° north lattitude, we could generate an initial population of

possible solutions which would look like
72.54234, 44.98703),
73.21234, 42.08763

)
)
70.62311, 41.93537)
73.82468, 44.23617). . .

bl

bl

(
(
(
(

and so forth.

19

Overview of Genetic Algorithms February 16, 2000

Continuous Crossovers

Problem:

How does the genetic algorithm “mate” the potential solutions?

Possible Solution:

Pick a point in the parameter list sq, ss,...s,_1 and swap the

solutions’ values after that point.

In the zy-coordinate example, that would mean that ordered pairs
would swap their y-coordinates when mating:

(72.54234, 44.98703)
(73.21234, 42.08763)

(72.54234, 42.08763)

=
= (73.21234, 44.98703)

However, this adds very little variety to the sample.

20

Overview of Genetic Algorithms February 16, 2000

A Better Solution:

In mating, combine chromosomes element-by-element with a
Uniform(0,1) weighting 5. This means that the offspring of

Siea = (dady,dads,...dad,,)
Smom = (momy,moms,...momy,)
would be
Schita = (childy, childs, . .. child,)
where

child; = pf-dad;+ (1 —) mom,.

Another child could be produced in the same way by switching
dad; and mom; with each other.

21

Overview of Genetic Algorithms February 16, 2000

However, this does not explore outward. A combination of the two
points (4.0, 4.0) and (6.0, 1.0) will always produce offspring with
4.0 < x < 6.0 and 1.0 < y < 4.0. This leaves parts of the search
space near the edges unexplored.

For this reason, more complicated offspring generation schemes
exist. Some schemes produce three offspring per parental pair, and
some involve combining parents using weights outside of the range
0.0 < 8 < 1.0. For instance, a child’s parameters could be produced
by the following equation:

8 = =05
child; = —0.5-dad; + 1.5- mom;

22

Overview of Genetic Algorithms February 16, 2000
Continuous Mutations

Mutating continuous solutions in a genetic algorithm’s population
is relatively simple. With some small probability, replace one of the
parameters of a solution with a totally new random number which
is within the range of valid parameters.

So, the continuous solution

(0.12345, 0.67890, 0.09876, 0.54321)

(with all parameters constrained to the range 0.0...1.0) could
mutate to

(0.12345, 0.24682, 0.09876, 0.54321)

where the second parameter happens to be replaced by a new

floating-point number from the range 0.0...1.0.

23

Overview of Genetic Algorithms February 16, 2000

Efficiency Concerns

One of the major problems with the efficiency of genetic algorithms
is that they may re-evaluate the heuristic function value of a
particular solution many times. If a string occurs multiple times in
the inital population, or if multiple copies of a string survive
reproduction (such as when a string is crossed with a copy of itself),
then the GA will evaluate the function more than it needs to.

e One simple trick is to make sure that there are no duplicates in
the initial population. For instance, if the solutions are binary
strings and there will be a population of 8 solutions, just make
sure that the first three digits of each solution differ:

000... 001... 010... OI1...
100... 101... 110... 111...

24

Overview of Genetic Algorithms February 16, 2000

Ensuring diversity in the initial population will reduce, if not
eliminate, the number of unneeded function evaluations.

e A much more complicated trick is to keep track of all of the
strings that have been evaluated so far. This list would not be
part of the current population, but whenever the need arose to
evaluate a member of the population, the algorithm would
consult this list to make sure that this member had not already
been evaluated.

Of course, this solution would only be used when the heuristic
function is very computationally expensive. Since building and
searching the list would take a large amount of time, and since
the list itself would take up an enormous amount of memory,
this would only be done in the most extreme situations.

25

Overview of Genetic Algorithms February 16, 2000

Alternative Binary Swapping Schemes

Swapping the ends of binary strings is not always the most effective
way to combine them. A more sophisticated or thorough method of
mixing strings can often lead to faster convergence to an optimum

solution. Two alternative swapping methods are worth considering:

Two-point Swapping: Instead of swapping all of the bits in a
string after a certain point, pick two points at random within
the string and swap all of the bits between the two points.

So, the following swap could occur:

00000000 = 000/000/00 = 00011100
11111111 = 111|111/11 = 11100011

26

Overview of Genetic Algorithms February 16, 2000

Uniform Swapping: Before combining two strings, construct a
binary string called a mask which is of the same length as the
solution strings. Then, use the following rules to cross string

parent; with parents:

1. If the ¢th bit of the mask is 0, then the ¢th bit of child, is the ith
bit of parent; and the ith bit of child, is the ith bit of parent,.

2. If the ith bit of the mask is 1, then the ith bit of child; is the ¢th
bit of parents and the ith bit of childs is the ¢th bit of parent.

So, offspring take some of the bits from of their parents, as
with one-point and two-point swapping. However, with uniform
swapping, the bits taken are considerably more random and the

mixing of the parents is more complete.

27

Overview of Genetic Algorithms February 16, 2000

Schemata and the Limitations of GAs

A schema (plural schemata) is a string over the three-character
alphabet X = {0,1,*}. The 0 and 1 correspond to the two binary
digits, and the * signifies a “don’t care”.

A schema is said to match a binary string if all of the 1’s and 0’s in
the schema match corresponding 1’s and 0’s in the same positions

in the string. So, the schema
1**10
matches the strings
10010, 10110, 11010, and 11110,

because they all have a 1 in the first and fourth places and a zero
in the fifth place.

28

Overview of Genetic Algorithms February 16, 2000

Schemata are useful for discussing the progress made by a genetic
algorithm. A GA is said to be processing a schema if a string which
matches the schema is currently in the population. So, if the string

1100

is in the population, then all of the following schemata are being
processed:

PRk KRk kkE kkk(k% RQR (k% k[Qk
1*00 **00 *100 *1*0 11*0 110* 1100 H***

The fitness of a schema is the average fitness of all of the strings
which match the schema.

29

Overview of Genetic Algorithms February 16, 2000

The order of a schema H, denoted o(H), is the number of positions
in the schema which have a 0 or a 1 for their value. So, the schema

0**110

has o(H) = 4. Meanwhile, the very non-descriptive schema

* Rk

has only o(H) = 1. There is even the schema

*okokkok ok

which has o(H) = 0. ****** magtches all six-character strings.

The order of a schema is important, because high-order schemata
are likely to be broken up in a crossover. Low-order schemata are
likely to be passed on from generation to generation, gradually
being favored or disfavored based on whether they have
above-average or below-average fitness.

30

Overview of Genetic Algorithms February 16, 2000

Fundamental Theorem of Genetic Algorithms

The good news:

The Fundamental Theorem of Genetic Algorithms states that the
number of low-order above-average schemata represented in the
population will grow at an exponential rate as the algorithm
iterates. So, as long as the building-block hypothesis holds, genetic
algorithms will perform very well.

The bad news:

Genetic algorithms are not guaranteed to converge. There are a
number of relatively simple situations (called “minimal deceptive
problems”) that can be engineered to confuse a genetic algorithm.
When the building-block hypothesis does not hold and the
combinations of good parts lead to bad results, then genetic
algorithms fail miserably.

31

