A Nonparametric Estimation of the Cumulative Intensity

Function for a Nonhomogeneous Poisson Process

Lawrence M. Leemis

February 25, 2002

A Scenario . . .

The year is 2020.

The place, some urban strip mall.

e Back in 2003, I cracked under the pressure of my computer science and

math classes, and switched to philosophy.

e The job market for philosophy majors was not as good as I had hoped.
Luckily, McDonalds had an opening ...

e After 17 years of slaving over McNuggets and Happy Meals, I finally had

my potential noted, and was promoted to manager.

e My boss wants to cut down on employment costs, but he also wants to
make sure customers are served quickly. How can he decide what number

of employees he needs at different times during the day?

e He knows that I took lots of math and computer science courses back in

the day, so he asks me if I can find a solution.

e It is too complicated a problem to solve explicitly (that is, I cannot do
a single-variable optimization a la Calculus 112). But I could make a

computer simulation of a typical day ...

A Scenario (cont’d)

e First things first. I need some real-world data, also known as " realizations.”
So I estimate how long it takes to make certain menu items, and how quickly
the cashiers can fill certain types of orders. But how to model the arrival

of customers?

e | decide to sit near the entrance for a working day (all 24 hours - it’s the
McDonald’s of the future) and make a mark on a piece of paper every time
a customer enters, so I'll know approximately how many people come in
during an average day. [make lots and lots of slash marks on paper. (Years

of working for McDonald’s has deep-fried my brain.)

e But I have to keep in mind that that particular day may have been National
FEat at McDonald’s Day, and therefore my supposed average is far too
high.

e In order to make sure my average has not been perturbed by uncharac-
teristic data, I need to take multiple “realizations”, i.e. I need to combine

data found over several days instead of using the data from just one day.

e [decide to take the next two weeks up taking observations of the entering
customers to mitigate the effect of any corporate holidays. I ended up
having 10080 customers in two weeks, giving an average of 720 customers

every day at a rate of one every two minutes.

e When I decide to implement my simulation, I don’t think it will be very
representative to have a single customer arrive once every two minutes. So
I decide to use a pseudo-random number generator to make variable arrival

times in my simulation.

Making My Model

e Since I have an average of 720 customers every day, why not generate 720
random times throughout the day, sort them into chronological order, and

use that for my simulation?

e Luckily, before I actually code that approach up, I take a look in my good

ol’ Simulation textbook and notice two bits of useful information:

1. First of all, in a given time period there is a Poisson(u) probability
distribution of the number of arrivals in that period, where p is the

average number of arrivals expected for that period.

Poisson(u), a discrete random variable, is defined functionally as

f(x):%exp(—u) r=0,1,2,... .

When represented graphically, it looks something like this:

Approximation of Poisson Probability Distribution, Mu = 30
0.08

T
Poisson(mu)

0.07
0.06 |-
0.05

0.04

Percentage

0.03 |-

0.02

0.01 |

0 1 il ‘ ‘ ‘ ‘ ‘ Ly
0 10 20 30 40 50 60
Value

2. Secondly, random arrivals within an interval can be generated in order

by summing a series of Exponential(v) random variate calls, where v/

is the average expected interarrival time (in this case, two minutes).

FExponential(p), a continuous random variable, is defined functionally

as
1

flz) = . exp(—z/pn) x> 0.

And the graphical representation of its probability density is something
like this:

Exponential Probability Distribution, lambda=2

0.6

Exponentialll(lambda)

Probability

Interarrival Time

e When I'm making a lot of arrivals, I can save myself a lot of sorting time

by using Exponential interarrivals instead of Uniform arrival times. So I

go that way.

Generating Random Variates by Inversion

e If we have a continuous probability density function (pdf) f(x), then the

cumulative distribution function (cdf) is defined as

F(z)=Pr(X <z)= /tgx f(t)dt.

Note that if s is the smallest value s.t. f(X) > 0, and S is similarly the
largest value, then the integral of F'(x) from s to S must always be equal to

1. More importantly, the cdf maps the range of possible values onto (0, 1).

e Now we consider the inverse distribution function (idf) F * (u). The idf is

defined as the function s.t.

F*(u) = x for the unique z for which F(z) = u.

This function maps (0, 1) onto the domain of the pdf. So we can use this
function on a random value from a Uni form(0, 1) call to generate a value
in the pdf.

e The whole point of this creation of the idf is to allow us to quickly produce
random variates the way the pdf would. For one thing, it only requires one
call to Random(). And it also allows us to not have to calculate the pif

(we only need the cif - the aforementioned cumulative intensity function).

Back to the Fast Food Joint

e So [create my simulation using Fxponential() interarrival times, although
in simulation terms it is referred to as a stationary (or homogeneous) Pois-

son arrival process.

e After creating my simulation, I test and modify the input parameters re-

peatedly to find a near-optimal solution.

e [give my boss the results of my testing, and assure him that I've done

plenty of testing to make sure the results are correct.

e Unfortunately, when my boss implements my recommendations, everything
goes haywire because my simulation suggests that there is equal demand
throughout a day. So the night crews are the same size as the afternoon
crews, and while bored workers are deep-frying the salt shakers at 2 AM,
lines build up into the parking lot during the lunchtime rush as people wait

to be served.

e Needless to say, my boss is not happy. But after enough grovelling and

brown-nosing, he decides to give me one more chance to redeem myself.

e This time, you can be sure that the specification model is going to be more

accurate.

Time for Nonhomogeneity

e Obviously a stationary Poisson process is not the answer! I need to factor

in a changing arrival rate over the average day.

e When I look back at my Simulation book again, I notice that there are
techniques for estimating a nonhomogeneous Poisson process. A NHPP is
simply the generalization of a stationary Poisson process, in that it has its

arrival rate A(t) as a function of time, rather than a constant value \.

e The expected number of arrivals within an interval (a,b) is no longer a
simple A(b — a) but instead /° A(7)d7. When this interval begins at 0, it is

an evaluation of the cumulative intensity function A(t), so that we have

At) = [M(r)dr, t>0.

e Of course, the expected value is only the average outcome, and generally
not a possible value (in that it’s a floating point number, while we can only
have a discrete number of events). To find the probability of exactly n

events occuring in the interval (a, b), we use the formula:

P A(E)] e e A
n!

Note that the sum of the probabilities of all possible values is equal to one

(since by basic calculus, =, k?/i! = eF).

Parametric vs. Nonparametric

e When I choose to approximate an NHPP, I have a choice between para-
metric models and nonparametric models. The difference between them is
that parametric models incorporate one or more outside variables, which
have values that are either chosen directly by the modeler or somehow sup-
plied. Nonparametric models are generated solely from the data of our

realizations.

e One common parametric technique is a Weibull process. Its mathematical

definition is

A(t) = (at)?, t>0.
Note that v and 8 have to be supplied somehow from outside the data.

e A more complicated example is used by Lee, Wilson, and Crawford to

describe weather events in the Arctic Sea.
m .
A(t) = exp {Z a;it'" + vysin(wt + qb)}, t>0.
i=0
This model has both a cyclic component (for the seasons) created by the
sinusoidal part, and an overall trend controlled by the polynomial part.

e There are also plenty of nonparametric modeling techniques, ranging from
the very simple to quite complex. Here is one that falls in the latter cate-

gory, from Lewis and Schedler:

Please, Spare This Poor Brain of Mine!

e After 18 years at McDonald’s, I really want a relatively simple way to
approximate the cif (cumulative intensity function). Luckily, a copy of Dr.

Leemis’ paper has stuck to the back of my Simulation textbook.

e His nonparametric approximation function is based on linear approxima-

tions generated in between the n data points, and the interval endpoints 0
and S.

e The basic requirements of this estimator are:

1. The intensity function must always be positive.

2. I need to do k realizations on the time interval (0, S]. In my case, this
is (0, 24].

3. I record the time of each event, and superimpose the observation times

to get an ordering of them all as t;’s. (NB: We denote time 0 as ¢, and

time S as t,11.)

4. 1 record the total number of events over the k realizations as n.

e Once all that is done, we define the cif as follows:

~ m n(t — t(i))
A(t) = + ,
() (n + 1)k (n + 1)k(t(i+1) — t(i))

to)y <t <tus), t=0,1,2,.

To gain some understanding into this complicated function, note that:

1. We are dividing by n 4+ 1 in each fraction to account for the n + 1

intervals between ¢y and %,,.1.

2. A(tn+1) = n/k, as expected (since n/k is the average number of events

over the k realizations).

3. All the times ¢; have their A(¢;) = (in)/((n + 1)k). So in each interval
(ti,tit1), A\ increases by n/((n+ 1)k), regardless of the interval length.
So more closely packed data points will result in a steeper slope in those

areas.

4. The second fraction in the equation is used in order to generate the

proper linear line between any two ¢; and ;.

e A special case that must be considered is when two data values are equiv-
alent, i.e. we recorded two events as happening at exactly the same time.
In this case we must be slightly more explicit than above. So if ¢, = t,,41,
we have

mn (m+ 1)n

t = ———— and i = —.
(Em+1)) (n+ 1)k an tit(lﬂn (n+ 1)k

Some Empirical Evidence

e This kind of linear estimation works much better when k is very large. In
fact, since both the estimator and the actual NHPP have the same mean
for any t in (0,5], it is possible to prove that the estimator converges to to
the actual NHPP as k goes to infinity. Intuitively, this means that as we

take more and more realizations, we make better approximations.

e The (1 — «) confidence interval for the linear estimator is as shown below:

A(t) = 2oy % < A(t) < At) + 242 %

NB: 2,9 is formed from a call to idf Normal(0, 1,1 —a/2) if you are using

Park’s rvms library.

Variate Generation

e As we saw before, the inverse distribution function (idf) can be used to
generate event times. We can use the event times from a unit Poisson pro-

cess to generate the event times as follows:

1 i1,
2. generate U; from U(0, 1),
3. B+ —In(1 - U);),
4. while E; < n/k do,
m o [,
T, ¢ 4m) + [—) (2255 —).
14— 1+ 1,
generate U; from U(0,1),
E; + FE,_1 —In(1 =U,),
end.

e Note that we can replace (1 — U;) with Uj;, although the monotonicity is

reversed.

e As can be seen by looking at the “while” condition, the generation time
of the algorithm is dependent on n/k instead of n. Therefore taking more
realizations does not increase the run time of the algorithm, as it might for

other approaches.

Another Food Example

e Here we look at an example presented in the paper that demonstrates a
real-world application; in this case, it is the number of arrivals at a lunch-
wagon over a 4.5 hour period of time at midday:.

Lunchwagon Example
60

T T
True Function —+—

50

Lambda(t)
w I
o o

N
o
T

10

e The smooth line is the true function, while the one closest to is the linear

estimator. The two outside, fuzziest lines are the 95% confidence intervals

for the generated estimator.

e Just eyeballing the graph, it seems reasonable to suggest that the confidence

interval does in fact contain the true function about 95% of the time.

Extensions

e So far we have never dealt with a case in which A(¢) = 0 for a given interval
(the basic model requires that A(t) > 0). But it is relatively simple to make
adjustments for such a period, given the interval (a, b] bounded by ¢; and

;21 on which the arrival rate is 0.

e We have (at least) two ways to account for these “zero periods”. The

first formula makes it so that the value of the zero interval is equal to
A((a+b)/2). This is:

in nla+b—2t;)(1-1;) .
(et DE T 2Dk (a—t) (t 1)t ti <t <a,
/A\(t) _ n(a+b—2ti+2i(t(i+1)—ti)) a<t< b,

\ (n+1)k 2(n+1)k(t(i+1)—b) (t(i—i—l)_ti)

e A more tractable approach is just to assume that the line segments that

, b<t < tii+1)s

touch the constant interval have the same slope. This approach gives the

formula:
e e t<t<a
(n+1)k (n+1)k(t(i+1)_t(i)—b+a)) 7 s a,
A = J n(a—t;)
A(t) - (n—zi-nl)k -+ (n+1)k(t(i+1)—t(i)—b+a)’ a<t< b7
(z+1)n ”(t_t(i+1))

e These extensions are nearly equivalent if the zero interval (a,b] is only a
small part of the interval they are contained within. In some cases they
can actually be equivalent (if the zero interval is centered within (¢;,%;11)).
Neither way is obviously “better” than the other, but since the second ap-

proach is slightly simpler it is probably the better choice in most situations.

e There are other extensions presented in the paper, but in the interests of
time we will ignore them. Essentially they all focus on making the linear

approximator more accurate for very specific types of cases.

The End

e The primary point to retain after this presentation is that when k& (the nub-
mer of realizations) is large enough, we can get fairly useful and relatively

simple results.

e After taking all this into account, I make a new model for McDonalds and
get very good results. For my efforts, I get a $1/hr raise, so it was all worth
it!!

