## Monte Carlo Method Samples

-By combining renormalization methods and Monte Carlo techniques for making b very large it is possible to generate  $\nu \sim \frac{4}{3}$  and generate today's best known estimate for  $p_c=.59827$ 

## Sample Calculation

$$\nu = \frac{log2}{log1.5274} = 1.635$$

$$\nu$$
exact =  $\frac{4}{3}$ 

-"interface" problem

-reduced as b gets large

## More Renormalizing

p' - p\* = R(p) - R(p\*) 
$$\sim \lambda(p - p*)$$
  
 $\lambda = \frac{dR}{dp}|p = p*$   
 $|p' - p*|^{-\nu} = lambda^{-\nu}|p - p*|^{-\nu}$ 

from last slide:

$$b^{-1} = \lambda^{-\nu}$$

$$\nu = \frac{\log b}{\log a \lambda}$$

## Application of Renormalization

-Solving the recursion relation for b=2

$$p*=.61804$$

-The renormalized connectedness lengths

$$\xi' = \frac{\xi}{b}$$

-because all lengths contract by distance b

-Since  $\xi(p) = const|p - p_c|^{-\nu} forp \sim p_c$ 

$$|p' - p*|^{-\nu} = b^{-1}|p - p*|^{-\nu}$$

#### Renormalized Derivations

**define** p' = R(p)

p' is the probability that a renormalized square is occupied

p' = sum of all possiblities p' =  $R(p) = p^4 + 4p^3(1-p) + 2p^2(1-p)^2$ -notice that if p0=.5, p1=.44, p2=.35 ...  $pn \rightarrow 0$ at  $p_c$  we want  $p^* = R(p^*)$ 

# Renormalization Group

## Dimension Dependence

- -Earlier,  $p_c$  depended on symmetry and dimension of lattice
- -Critical Exponents don't explicity depend on dimension
- -Introduce Scaling Law

$$2\beta + \gamma = \nu d$$

-Derivation of law can be found in references

## More Finite Size Scaling

Since  $\xi(p) \sim L$ 

$$P_{\infty}(p=p_c) \sim L^{\frac{-\beta}{\nu}}(L \to \infty)$$

-use to evaluate critical exponents

-generate  $p = p_c$  for increasing values of L

-calculate  $P_{\infty}$  as a function of L

-as L gets large, estimate  $\frac{\beta}{\nu}$ 

## Fininte Size Scaling

In critical region

$$\xi(p) \sim L \sim |p - p_c|^{-\nu}$$
  
or  $|p - p_c| \sim L^{\frac{-1}{\nu}}$ 

or 
$$|p - p_c| \sim L^{\frac{-1}{\nu}}$$

## Correcting for the Divergence

- -Results obtained are close to table
- -Difference is cause by finite size of grid and the divergence of  $\xi$
- -For  $p \ll p_c$  and  $p \gg p_c$  the system is indistinguishable from a macroscopic system

## Redefining $P_{\infty}$

in critical region

$$P_{\infty} \sim (p_c - p)^{\beta}$$

 $P_{\infty}$  is called the order parameter of the model

 $\beta$  describes how connectedness of the infinte cluster goes to 0 at threshold

also, mean cluster size S(P)

$$S(P) \sim |p - p_c|^{-\gamma}$$

# Divergence of $\xi(p)$

Define **critical exponent**  $\nu$  such that

$$-\xi(p) \sim |p - p_c|^{-\nu}$$

-also notice  $\xi(p_c) \sim L$  so that

 $-\xi(p)$  diverges in the "critical region"  $|p-p_c|\ll 1$  as  $L\to\infty$ 

## Mean Connectedness Length

 $\xi_p(p) = \text{Radius of Gyration}$ 

$$R_s^2 = \frac{1}{s} \sum_i (\mathbf{r_i} - \mathbf{r})^2$$

where 
$$\mathbf{r} = \frac{1}{s} \sum_{i} \mathbf{r_i}$$

- -Notice  $\mathbf{r}$  is the well defined center of mass of cluster
- - $\xi$  is associated with the largest non-spanning cluster

## Critical Exponents

- -Thermodynamical phase transitions
- -Curie "critical" temperature
- -Percolation phase transition
- -All have to do with large finite blocks
- -Properties of  $n_{\rm s}$ 
  - decreases rapidly for  $p < p_c$  and  $p > p_c$
  - decreases slowly for  $p = p_c$

#### Labeling Routine

- 1. Initialize the Array
- 2. Define array of size of number of labels, initialize each value to 0
- 3. Set np[label] = minimum label of neighbors
- 4. Assign neighbors to minimum proper label
- 5. Set each occupied site equal to assigned proper labels

## Cluster Labeling

-Hoshen and Kopelman

$$np(0)=0$$
  $np(1)=0$   $np(2)=0$   $np(3)=0$   $np(4)=3$   $np(5)=3$ 

# Spanning Infinite Clusters

$$P_{\infty}(p) = \frac{\text{num sites in spanning cluster}}{\text{num occupied sites}}$$

For and infinite lattice

$$P_{\infty}(p < p_c) = 0$$

$$P_{\infty}(p > p_c) = increasing$$

$$P_{\infty}(p=1)=1$$

## Quantities of Interest

mean cluster size distribution

 $n_s = \frac{\text{num clusters of size s}}{\text{num of items in lattice}}$ 

probability site w belogs to s size cluster

$$w_s = \frac{s * n_s}{\sum_s n_s}$$

mean cluster size

$$s = \sum_{s} s * w_{s} = \frac{\sum_{s} s^{2} * n_{s}}{\sum_{s} s * n_{s}}$$

(spanning cluster is excluded)

#### Percolation Threshold

6

- Pc is the probablity at which an infinite spanning cluster first appears in an infinite lattice. (a.k.a. "percolation phase transition")
- pc (L) is average value of pc for various L's and approaches pc as L appraoches infinity
- pc (L) depends on the symetry and dimensions of lattice
- pc (L) depends on the current definition of spanning

Connectedness is Key

-Four percolation probablities

4

# Clustering

#### Clusters

VS

#### **Spanning Cluster**

-Spanning in one direction for convenience

#### **Critical Probability**

$$p \ge p_c$$

and

$$p < p_c$$

# Types of Percolation

Site

Bond

Continuum

# Visualizing Perolation

Cookies

**Clusters** -Finite Cells

-Universal Local Probablity

#### Percolation

-foundations of the new physics

#### Introduction

- -physical relations (phase transition, conduction)
- -what is *exactly* is percolation?
- -types of percolation

#### The Percolation Threshold

#### Implementation Method

-Labeling Routine

#### Critical Exponents and Finite Size Scaling

#### Renormalization Methods

-Monte Carlo Applications