
Distribution of the Longest Path of a Stochastic

Activity Network with Continuous Activity Durations

Lawrence Leemis · Jeffrey Mallozzi · Kerry Connell ∗

The College of William & Mary
Williamsburg, VA

May 6, 2002

Abstract

The probability distribution of the longest path of a stochastic activity network

with continuous activity durations is calculated for arbitrary networks. The three

techniques used here are a recursive Monte Carlo simulation algorithm, series-parallel

decomposition, and conditioning. Examples illustrate the use of the three techniques.

1 Introduction

Activity networks are used to plan projects by showing precedence relationships between the

various activities that constitute a project. An activity network is a special case of a directed

graph in which the nodes or vertices represent events in time and the arcs or edges represent

activities with time values representing activity durations. Figure 1 shows an example of

a stochastic activity network, where the positive random variable Yij denotes the time to

complete the activity associated with arc ij. Activity start times are constrained in that

no activity emanating from a given node can start until all activities which enter that node

have been completed.

∗The authors gratefully acknowledge support from the National Science Foundation for providing funding

for an Educational Innovation Grant CDA9712718 “Undergraduate Modeling and Simulation Analysis.”

They also thank Professor Sid Lawrence for his help with the analytic approach in the non-series-parallel

case.

1



1

2

3

4Y23

Y24Y12

Y13 Y34

Figure 1: A four-node, five-arc stochastic activity network.

2 Notation

Activity networks have one source node labeled node 1 and one terminal node labeled node

n, where n is the number of nodes in the network. Node 1 has one or more arcs leaving it

and node n only has arcs entering it. All other nodes must have at least one arc entering

and at least one arc leaving. Arc ij is denoted by aij, where i is the arc’s source node and j

is its terminal node. There is no possibility for feedback or looping within the network. The

number of arcs in the network is denoted by m.

For each arc aij, there is a random activity duration Yij with positive support. The

distribution of Yij is determined by its cumulative distribution function FYij(t). For each

node j there is a random time value Tj which is the time of completion of all activities

entering node j. Tn is therefore the time of completion of the entire network.

When an arc leaves node i and enters node j, as in Figure 2, then it is said that i is

adjacent to j and that j is adjacent from i. The “before” set B(i) is the set of all nodes

adjacent to or immediately before i, and similarly, the “after” set A(i) is the set of all nodes

adjacent from or immediately after i.

For each network, there will be a number of paths leading from node 1 to node n. Let M

be the set of all paths, with each path labeled π1, π2, ..., πr, where r = |M | is the number of

paths. A path may be viewed as a set of arcs leading in succession from node 1 to node n.

2



i j
Yij

Figure 2: Arc aij.

Thus arc aij ∈ πk means that arc aij is along the path πk. The length of path πk, denoted

Lk, is the convolution of all Yij corresponding to the arcs aij ∈ πk.

For each realization of a stochastic network, there is a critical path πc which is the path

with the longest length, Lc = max{L1, L2, ..., Lr}. The length of the critical path determines

the time to complete the entire network. For a stochastic network, a path in M is the critical

path with some probability p(πk) = Pr(πk ≡ πc), k = 1, 2, . . . , r. Some arcs may be along

more than one path. The probability that arc aij is along the critical path, also called the

arc’s criticality , denoted by ρij, is the sum of all p(πk) where aij ∈ πk.

2.1 Matrix representation of the network

The first step in building a model is defining a mathematical representation of any network.

A matrix is well suited for this task because two subscripts can be used to define arc aij and

the ease of computer implementation. There are two ways in which a matrix can be used to

represent an activity network: an adjacency matrix and a node-arc incidence matrix.

2.1.1 Adjacency matrix

The adjacency matrix is an n × n matrix where a 1 in the i, jth position represents an arc

leaving node i and entering node j, and all other positions are marked with a 0. Since all

arcs enter a higher numbered node than that which it leaves, the result is that the adjacency

3



matrix is an upper-diagonal matrix with zeros on the diagonal. The matrix

























0 1 1 0

0 1 1

0 1

0

























is the adjacency matrix of the network in Figure 1. The disadvantage of this network

representation, however, is that it is incapable of representing more than one arc between

the same two nodes and going in the same direction. Even if it is defined that activity

networks can not have more than one arc between two nodes it will become necessary for

the parallel decomposition operation presented in Section 4.1.1 for our representation to

have the ability to do so in order to decompose a network. Thus a slightly more flexible

representation is required to represent networks for the algorithms presented here.

2.1.2 Node-arc incidence matrix

The node-arc incidence matrix is an n×m matrix N , where each row represents a node and

each column represents an arc. Let

N [i, j] =































1 arc j leaves node i

−1 arc j enters node i

0 otherwise.

The matrix

N =

























1 1 0 0 0

−1 0 1 1 0

0 −1 −1 0 1

0 0 0 −1 −1

























,

4



for example, is a node-arc incidence matrix of the network in Figure 1. The only limitation of

this representation is that it can not show an arc which leaves and enters the same node. This

ability will not be necessary since feedback is not allowed by our definition of a stochastic

activity network.

3 Simulation

We first consider the development of a simulation algorithm for estimating the distribution

of the time to complete the network, the probability that a path is a critical path, and

the criticality of an arc. Point and interval estimators for these measures of performance

are discussed prior to presenting the algorithm. The simulation algorithm is presented to

highlight the use of recursion and for checking analytic algorithms presented subsequently.

3.1 Point estimators

If T1 is assumed to be 0.0 (without loss of generality), then

Tj = max
i∈B(j)

{Ti + Yij},

for j = 2, 3, . . . , n, and Tn is the time to complete the entire network. The point estimator

for E[Tj], for example, is the sample mean of the Tj’s generated using the algorithm to follow

(which is based on the expression above). The point estimator for the probability that path

πk is a critical path, for example, is the fraction of the networks generated that have πk as

the critical path, k = 1, 2, . . . , r. The criticality ρij of some arc aij is the probability that

arc aij is along the critical path or

ρij =
r

∑

k=1

p(πk)δij,

where δij is 1 if aij ∈ πk and 0 otherwise.

5



3.2 Interval estimators

An approximate (1− α) · 100% confidence interval for E[Tj] is

x̄− tn−1,α/2
s√
n− 1

< E[Tj] < x̄+ tn−1,α/2
s√
n− 1

,

for any node j, where n is the number of replications of the simulation, x̄ is the sample mean

of the simulated Tj’s, s is the sample standard deviation of the simulated Tj’s, and tn−1,α/2 is

the 1−α/2 fractile of a t distribution with n−1 degrees of freedom. It will often be the case

that the distribution of Tj will be closer to Gaussian (via the Central Limit Theorem) as

one moves from left to right in the stochastic activity network, resulting in improved actual

coverage for this confidence interval.

To determine an approximate (1 − α) · 100% confidence interval for the two probability

estimates of p(πk) and ρij, denoted generically below by p, we use

1

1 + n−y+1
yF2y,2(n−y+1),1−α/2

< p <
1

1 + n−y
(y+1)F2(y+1),2(n−y),α/2

,

where y is the number of occurrences of some event out of n independent replications,

F denotes the F distribution, and the third subscript on F denotes the right-hand tail

probability (Leemis and Trivedi, 1996).

3.3 Algorithm

The recursive algorithm below generates a single time to completion Tj for some node j

given that the network is represented by the node-arc incidence matrix N and the stochastic

activity durations Yij associated with each arc aij are generated prior to the call to T . Loops

and conditions are indicated by indentation.

Global parameters: node-arc incidence matrix N , one realization of activity durations Yij

Procedure name: T

6



Argument: node j

int i loop index for rows of N
int k ← 1 index for the columns of N
int l ← 0 index for the predecessors to node j
float t completion time of arc aij
float tmax ← 0.0 longest time of all possible paths to node j
while (l < |B(j)|) loop through predecessor nodes to node j

if (N [j, k] = −1) if column k of N corresponds to an arc entering node j
i← 1 begin search for predecessor node
while(N [i, k] 6= 1) while i does not correspond to the predecessor index

i← i+ 1 increment i
t← Ti + Yij recursive call: t is the completion time of aij
if (t ≥ tmax) tmax ← t; choose largest completion time
l ← l + 1 increment predecessor index

k ← k + 1 increment column index
return (tmax) return completion time Tj

One advantage to this recursive implementation is that it avoids the use of an event

calendar, which is typically the case in the standard discrete-event simulation approach. In

most cases, this algorithm is called with argument n so that a realization of the time to

complete the entire network Tn is generated. This algorithm has been implemented in C and

is available from the first author.

3.4 Example

The simulation approach was tested on an activity network described by Pritsker (1995,

pages 216–221) shown in Figure 3 with n = 6 nodes and m = 9 activities. One node-arc

7



1

2
Y12

4

5

63

Y25

Y34

Y46

Y13 Y36

Y14

Y23

Y56

Figure 3: Network from Pritsker (1995, pages 216–221).

incidence matrix that describes the network is

N =









































1 1 1 0 0 0 0 0 0

−1 0 0 1 1 0 0 0 0

0 −1 0 −1 0 1 1 0 0

0 0 −1 0 0 −1 0 1 0

0 0 0 0 −1 0 0 0 1

0 0 0 0 0 0 −1 −1 −1









































.

The distribution of the duration of each arc aij is given in Table 1. The three parameters

on the triangular distribution are the minimum, mode, and maximum. The triangular

distribution is often used for stochastic activity networks using the three parameters as

the optimistic, most likely, and pessimistic times to complete an activity. An algorithm for

parameter estimation using maximum likelihood is given in van Dorp and Kotz (2002).

The r = 6 paths in the network are given in Table 6. The simulation was run for one

million realizations of the network using the multiplicative linear congruential generator

xi+1 = 75xi mod (231 − 1) (Park and Miller, 1988) and an initial seed of 8641. When the

algorithm is called to generate one million T6’s, the order of the recursive calls associated with

the node-arc incidence matrix given above is T6, T3, T1, T2, T1, etc. For each realization, the

8



Arc Index Arc Distribution of Yij
1 a1,2 Triangular(1, 3, 5)
2 a1,3 Triangular(3, 6, 9)
3 a1,4 Triangular(12, 13, 19)
4 a2,5 Triangular(3, 9, 12)
5 a2,3 Triangular(1, 3, 8)
6 a3,6 Triangular(8, 9, 16)
7 a3,4 Triangular(4, 7, 13)
8 a5,6 Triangular(3, 6, 9)
9 a4,6 Triangular(1, 3, 8)

Table 1: Distributions for arc durations.

k Node sequence πk
1 1→ 3→ 6 {a13, a36}
2 1→ 2→ 3→ 6 {a12, a23, a36}
3 1→ 2→ 5→ 6 {a12, a25, a56}
4 1→ 4→ 6 {a14, a46}
5 1→ 3→ 4→ 6 {a13, a34, a46}
6 1→ 2→ 3→ 4→ 6 {a12, a23, a34, a46}

Table 2: Paths πk.

time to completion Tj was calculated for each node in the network according to the algorithm

in Section 3.3. Some sample statistics for Tj are given in Table 3, where the columns show

the the sample means of the times to completion, the sample standard deviations of the time

to completion, and the 95% confidence interval half-widths. Table 4 shows point estimates

and 95% confidence interval interval halfwidths for p(πk). The point estimates total 1.001,

rather than 1, due to roundoff. Table 5 shows point estimates and 95% confidence interval

halfwidths for ρij. Table 5 also shows which paths each arc aij are in according to the path

indexes in Table 6. Figure 4 shows the empirical cdf of the time to complete the network for

the one million realizations. The random variable T6 has support on 11 < t6 < 34, where the

lower limit corresponds to minimum activity durations on the paths π1 and π4 and the upper

limit corresponds to maximum activity durations on path π6. Due to memory limitations, the

empirical cdf was drawn by counting the one million realizations of the number of network

9



j Ê[Tj]
√

V̂ [Tj] h

1 0.000 – –
2 3.001 0.817 0.002
3 7.419 1.388 0.003
4 16.037 1.971 0.004
5 10.997 2.041 0.004
6 20.754 2.087 0.004

Table 3: Estimated expected time to completion Tj for one million simulation replications
and 95% confidence interval halfwidth h.

k p̂(πk) h
1 0.074 0.0005
2 0.170 0.0007
3 0.129 0.0007
4 0.198 0.0008
5 0.130 0.0007
6 0.300 0.0009

Table 4: Estimated critical path probability p̂(πk) for one million simulation replications and
95% confidence interval halfwidth h.

Arc Paths ρ̂ij h
a1,2 π2, π3, π6 0.600 0.0010
a1,3 π1, π5 0.203 0.0008
a1,4 π4 0.198 0.0008
a2,5 π3 0.129 0.0007
a2,3 π2, π6 0.469 0.0010
a3,6 π1, π2 0.244 0.0008
a3,4 π5, π6 0.429 0.0010
a5,6 π3 0.129 0.0007
a4,6 π4, π5, π6 0.627 0.0010

Table 5: Estimated criticality ρ̂ij for one million simulation replications and 95% confidence
interval halfwidth h.

10



10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

t6

F t   (  )6

Figure 4: Empirical cdf of T6 for 1,000,000 replications.

completion times that fell in 23,000 equal-width cells on 11 < t6 < 34, e.g., [11.000, 11.001),

[11.001, 11.002), . . . , [33.999, 34.000).

11



4 Analytical approaches

While general, the simulation approach has a distinct drawback. Each additional digit of

accuracy of the estimate of E[Tn], for example, requires approximately a 100-fold increase

in replications due to the square root in the denominator of the confidence interval formulas

for E[Tn]. The next two sub-sections outline efforts to arrive at the various performance

measures analytically, eliminating the need for simulation.

4.1 Series-parallel networks

A series-parallel activity network is a special case of an activity network that can be reduced

by a sequence of decompositions to a simple network consisting of one arc and two nodes.

Decompositions consist of taking two arcs, either in series or in parallel, and replacing them

with a single arc that has a random duration whose distribution is calculated in the algorithm.

Once the network is completely decomposed, the distribution of the remaining arc is the

distribution of the time to complete the original network Tn. The recursive algorithm then

reconstructs the network to determine the critical path probabilities and criticalities. Parallel

and series decompositions and reconstructions are described below. These represent the only

types of operations that the algorithm described here will encounter to reduce a series-parallel

network to a single arc to determine the distribution of Tn and then reconstruct the network

to determine the critical path probabilities and the criticalities.

4.1.1 Parallel decomposition

The algorithm described in Section 4.1.5 will encounter two two arcs in parallel, as illustrated

in Figure 5. A parallel decomposition is the process of reducing these two arcs to a single

arc. Let Xij denote the duration of one arc, and let Yij denote the duration of the other.

12



i j

Xij

Yij

Figure 5: Two arcs in parallel.

Without loss of generality, if Ti = 0.0 then Tj = max{Xij, Yij}. So

FTj(t) = Pr[Tj ≤ t]

= Pr[max{Xij, Yij} ≤ t]

= Pr[Xij ≤ t and Yij ≤ t]

= Pr[Xij ≤ t] · Pr[Yij ≤ t]

= FXij(t)FYij(t)

on the support of Tj. The portion of the recursive algorithm given in Section 4.1.5 prior to

the recursive call uses this formula to decompose two arcs in parallel to a single arc.

4.1.2 Parallel reconstruction

Consider the single arc aij after a parallel decomposition. If the probability that this arc is

on the critical path, ρij, is known then this probability can be allocated to the two original

parallel arcs x and y based on each arc’s activity duration CDF:

ρx = Pr[Xij > Yij] · ρij = Pr[Xij − Yij > 0] · ρij

and

ρy = ρij − ρx.

13



This calculation involves determining the distribution of the difference between the two

random variables. The portion of the recursive algorithm given in Section 4.1.5 after the

recursive call calculates the distribution of Xij − Yij and calculates the probability that this

random variable is positive.

4.1.3 Series decomposition

The algorithm described in this subsection will encounter two arcs in series, as illustrated

in Figure 6. Let Yij and Yjk denote the durations of the two arcs with CDFs FYij(t) and

i j
Yij Yjk

k

Figure 6: Two arcs in series.

FYjk(t). Without loss of generality, if Ti = 0 then Tk = Yij + Yjk. The CDF of Tk is (Casella

and Berger, 2002, page 215):

FTk(t) = Pr[Tk ≤ t] =
∫ t

0
FYij(t− yjk)fYjk(yjk) dyjk.

4.1.4 Series reconstruction

Consider the single arc aik after a series decomposition. For any two arcs aij and ajk in series

which have been decomposed into a single arc aik, ρij = ρjk = ρik. If two arcs in series are

along the critical path then so must their decomposed arc.

4.1.5 Algorithm

The following recursive algorithm decomposes a series-parallel network, where N is the node-

arc incidence matrix of the network, the PDFs for the activity durations of each arc are

stored in a vector Y (indexed by the index of each arc in the matrix N) and the criticalities

of each arc are stored in a vector C (indexed by the index of each arc in N). This algorithm

14



recursively decomposes the network one decomposition at a time until the network consists

of just one arc. At this time, the value of C for that one arc is set to one and then the

network is recomposed on the return calls in reverse order, determining values of C for each

arc based on the value of C of the decomposed arc. The algorithm returns the distribution

of the time to complete the network and C contains ρij for all arcs aij in the network.

Arguments: node-arc incidence matrix N , CDFs of activity durations Yij

Procedure name: GetCriticalities

Returned value: Criticalities C[m]

GetCriticalities := proc(NET, YA, ma)
local C, N, Y, g, i, j, time, m, rowsum, absrowsum, negidx; local posidx, c, d, l, k,

empty, same, changed, x3, x4;
g ← [[x → −x], [−∞, ∞]];
m ← ma;
N ← NET;
Y ← YA;
if m = 1 then

C[1] ← 1;
time ← Y[1];
print(NET);
print(C);
print(time);
RETURN(C)

end if;
for i to maxnodes do

rowsum ← 0;
absrowsum ← 0;
for j to maxedges do

rowsum ← rowsum + N[i, j];
absrowsum ← absrowsum + abs(N[i, j]);
if N[i, j] = −1 then negidx ← j end if;
if N[i, j] = 1 then posidx ← j end if

end do;
if rowsum = 0 and absrowsum = 2 then

c ← Y[negidx];
d ← Y[posidx];
Y[negidx] ← Convolution(c, d);
for j to maxnodes do

N[j, negidx] ← N[j, negidx] + N[j, posidx];
N[j, posidx] ← 0

15



end do;
m ← m − 1;
C ← GetCriticalities(N, Y, m);
for l to maxnodes do

if N[l, negidx] = −1 then
N[l, negidx] ← 0; N[l, posidx] ← −1

end if
end do;
N[i, negidx] ← −1;
N[i, posidx] ← 1;
Y[negidx] ← c;
Y[posidx] ← d;
C[posidx] ← C[negidx];
print(N);
print(C);
RETURN(C)

end if
end do;
for j to maxedges do for k from j + 1 to maxedges do

empty ← 0;
same ← 0;
for i to maxnodes do

if N[i, j] 6= N[i, k] then same ← same + 1
end if;
if N[i, j] 6= 0 then empty ← empty + 1
end if

end do;
if same = 0 and empty 6= 0 then

c ← Y[j];
d ← Y[k];
Y[j] ← Maximum(c, d);
for i to maxnodes do N[i, k] ← 0 end do;
m ← m − 1;
changed ← 1;
C ← GetCriticalities(N, Y, m);
for i to maxnodes do N[i, k] ← N[i, j]
end do;
Y[j] ← c;
Y[k] ← d;
x3 ← Transform(YA[k], g);
x4 ← Convolution(YA[j], x3);
C[k] ← CDF(x4, 0)*C[j];
C[j] ← C[j] − C[k];
print(N);

16



print(C);
RETURN(C)

end if
end do
end do;
RETURN(C)

end proc

This algorithm requires symbolic processing capability in order to calculate the distribu-

tion of the maximum of two independent random variables (for parallel decomposition) and

the distribution of the convolution of two independent random variables (for series decompo-

sition). The Maple-based APPL language (Glen, Leemis, and Evans, 2001) has procedures

Maximum and Convolution that can be used for these operations.

4.1.6 Example

Figure 7 is an example of a series-parallel network from Elmaghraby (1978, page 261) which

can be described by the node-arc incidence matrix:

N =

































1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 1 1 0

0 0 0 −1 0 1

0 0 −1 0 −1 −1

































.

The network can be decomposed and recomposed as illustrated in Figure 8.

17



1

3

Y12

Y13

4

5

Y25

Y35

Y45

2

Y34

Figure 7: Series-Parallel network from Elmaghraby (1978, page 261).

If the duration of each arc Yij is an exponential(b) random variable (where b is the failure

rate), the CDF of the time to complete the network (T5) according to the algorithm in

Section 4.1.5 is:

FT5(t) = −3bte−bt−
b2t2

2
e−bt−3e−2bt+

5b2t2

2
e−2bt+

b3t3

2
e−2bt+3bte−3bt+2e−3bt+ b2t2e−3bt+1

for t > 0. This CDF is plotted in Figure 9 for b = 1/2.

The r = 3 paths in the network are described in Table 6. Table 6 also shows which paths

each arc aij are in according to the path indexes.

k Node sequence πk p(πk)
1 1→ 2→ 5 {a12, a25} 115/432 = 0.266
2 1→ 3→ 5→ 6 {a13, a35} 317/1728 ∼= 0.183
3 1→ 3→ 4→ 5 {a13, a34, a45} 317/576 ∼= 0.550

Table 6: Paths πk and estimated critical path probabilities p(πk) when b = 0.5.

18



Figure 8: Decomposition and recomposition of a series-parallel network.

Arc Paths ρij
a1,2 π1 115/432 ∼= 0.266
a1,3 π2, π3 317/432 ∼= 0.734
a2,5 π1 115/432 ∼= 0.266
a3,5 π2 317/1728 ∼= 0.183
a3,4 π3 317/576 ∼= 0.550
a4,5 π3 317/576 ∼= 0.550

Table 7: Criticalities ρij when b = 0.5.

19



0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

t5

F(t )5

Figure 9: CDF of T5 for b = 1/2.

20



4.2 Non Series-Parallel Networks

Now consider the case of a non-series-parallel network. Determining the distribution of

the time to complete the network is complicated by the fact that the network cannot be

decomposed as in the series-parallel case. We begin with two examples that illustrate the

difficulty.

Example 1: Elmaghraby (1978, page 305) considers the network shown in Figure 10. The

1

2

3

4

Y24Y12

Y13 Y34

Y23

Y14

Figure 10: A four-node, six-arc stochastic activity network.

activity durations are exponentially distributed with means of 5 (for Y12, Y24, Y34) and 10 (for

Y13, Y14, Y23). There are four paths through the network, with random durations

W1 = Y12 + Y24

W2 = Y12 + Y23 + Y34

W3 = Y13 + Y34

W4 = Y14.

Since Y12 and Y34 lie on more than one path, the conditional CDF of the time to complete

the network T4, given Y12 = y12 and Y34 = y34 is

FT4(t|y12, y34) = FW1(t|y12, y34)FW2(t|y12, y34)FW3(t|y12, y34)FW4(t|y12, y34)

21



since, when Y12 = y12 and Y34 = y34 are fixed,

Pr(T4 ≤ t) = Pr(max{W1,W2,W3,W4} ≤ t)

= Pr(W1 ≤ t,W2 ≤ t,W3 ≤ t,W4 ≤ t)

= Pr(W1 ≤ t) Pr(W2 ≤ t) Pr(W3 ≤ t) Pr(W4 ≤ t).

The CDFs for

W1 = y12 + Y24

W2 = y12 + Y23 + y34

W3 = Y13 + y34

W4 = Y14

conditioned on Y12 = y12 and Y34 = y34 are

FW1(t|y12, y34) =















0 t < y12

1− e−(t−y12)/5 t ≥ y12,

FW2(t|y12, y34) =















0 t < y12 + y34

1− e−(t−y12−y34)/10 t ≥ y12 + y34,

FW3(t|y12, y34) =















0 t < y34

1− e−(t−y34)/10 t ≥ y34,

FW4(t|y12, y34) =















0 t < 0

1− e−t/10 t ≥ 0.

Thus the unconditional CDF of T4 is given by

FT4(t) =
∫ t

0

∫ t−y12

0
FT4(t|y12, y34)fY12(y12)fY34(y34) dy34 dy12

22



where the limits are chosen to satisfy y34 ≤ t− y12 from the support of W2.

This integral yields

FT4(t) = 1− 7e−t/10 + 12e−t/5 +
2t

5
e−t/5 − 16e−3t/10 + 19e−2t/5 − 9e−t/2 − 2t

5
e−t/2

for t > 0. There are two ways to evaluate this integral using a symbolic language. The first

is to use the limits as indicated in the example. The Maple code for this example is given in

Appendix A. The second way to evaluate the integral is to run both integration limits from

0 to ∞ but use Maple’s piecewise function to assure that the proper limits of integration

are appropriately executed. This example was particularly easy because all of the activity

durations had support on (0,∞). This second computational approach is important because,

as will be seen in the next example, the limits of integration can become unwieldy for more

complicated distributions or complicated networks.

Example 2: Consider the network in Figure 1, where all Yij are U(0, 1) random variables.

We again condition on the values of y12 and y34, yielding the CDFs for

W1 = y12 + Y24

W2 = y12 + Y23 + y34

W3 = Y13 + y34

as

FW1(t|y12, y34) =































0 t < y12

t− y12 y12 ≤ t ≤ y12 + 1

1 t > y12 + 1

23



FW2(t|y12, y34) =































0 t < y12 + y34

t− y12 − y34 y12 + y34 ≤ t ≤ y12 + y34 + 1

1 t > y12 + y34 + 1

FW3(t|y12, y34) =































0 t < y34

t− y34 y34 ≤ t ≤ y34 + 1

1 t > y34 + 1.

As in the previous example, the unconditional CDF of the network completion time T4 is

given by

FT4(t) =
∫ ∫

FW1(t|y12, y34)FW2(t|y12, y34)FW3(t|y12, y34)fY12(y12)fY34(y34) dy34 dy12.

The support of T4 is 0 < t4 ≤ 3. The limits of integration are more complicated than in the

previous example. For 0 < t ≤ 1

FT (t) =
∫ t

0

∫ t−y12

0
(t− y12)(t− y12 − y34)(t− y34) · 1 · 1 dy34 dy12

as in the previous case. For 1 < t ≤ 2, Figure 11 illustrates, for t = 1.8, the integrand over

various regions in the y12, y34 coordinate system. So the integral is

FT4(t) =
∫ t−1

0

∫ t−1−y12

0
1 · 1 · 1 · 1 · 1 dy34 dy12 I

+
∫ t−1

0

∫ t−1

t−1−y12
1 · (t− y12 − y34) · 1 · 1 · 1 dy34 dy12 II

+
∫ t−1

0

∫ 1

t−1
1 · (t− y12 − y34)(t− y34) · 1 · 1 dy34 dy12 III

+
∫ 1

t−1

∫ t−1

0
(t− y12)(t− y12 − y34) · 1 · 1 · 1 dy34 dy12 IV

+
∫ 1

t−1

∫ t−y12

t−1
(t− y12)(t− y12 − y34)(t− y34) · 1 · 1 dy34 dy12 V

24



1

1

I

II

III

IV

y34

y12

V

Figure 11: Integration regions associated with t = 1.8.

for 1 < t ≤ 2. The roman numerals at the right of each double integral denote the region in

Figure 11. Finally, for 2 < t ≤ 3,

FT4(t) = 1− (1− t+ 2)2/2 +
∫ 1

t−2

∫ 1

t−1−y12
1 · (t− y12 − y34) · 1 · 1 · 1 dy34 dy12,

which yields:

FT4(t) =



















































0 t ≤ 0

11
120

t5 0 < t ≤ 1

−1
6
t4 − 1

3
t2 − 1

120
t5 + 2

3
t3 + 1

10
− 1

6
t 1 < t ≤ 2

−7
2
+ 9

2
t− 3

2
t2 + 1

6
t3 2 < t ≤ 3

1 t > 3.

As before this result can be computed solving the integrals directly or by using Maple’s

piecewise capability (the code is given in Appendix B).

25



Appendix A

restart;

Fw1 := 1 - exp(-(t - y12) / 5);

Fw2 := 1 - exp(-(t - y12 - y34) / 10);

Fw3 := 1 - exp(-(t - y34) / 10);

Fw4 := 1 - exp(-t / 10);

f12 := exp(-y12 / 5) / 5;

f34 := exp(-y34 / 5) / 5;

F := int(int(Fw1 * Fw2 * Fw3 * Fw4 * f12 * f34, y34=0 .. t - y12), y12 = 0 .. t);

Appendix B

restart;

F401 := int(int((t-y12)*(t-y12-y34)*(t-y34),y34=0..t-y12),y12=0..t);

F412 := int(int(1,y34=0..t-1-y12),y12=0..t-1)

+ int(int(t-y12-y34,y34=t-1-y12..t-1),y12=0..t-1)

+ int(int((t-y12-y34)*(t-y34),y34=t-1..1),y12=0..t-1)

+ int(int((t-y12)*(t-y12-y34),y34=0..t-1),y12=t-1..1)

+ int(int((t-y12)*(t-y12-y34)*(t-y34),y34=t-1..t-y12),y12=t-1..1);

F423 := 1-((1-t+2)^2)/2 + int(int(t-y12-y34,y34=t-1-y12..1),y12=t-2..1);

F4 := simplify(piecewise(t<=0, 0, t<1, F401, t<=2, F412, t<3, F423, 1));

References

[1] Casella, G.C., and Berger, R. (2002), Statistical Inference, Second Edition, Wadsworth

& Brooks/Cole.

[2] Elmaghraby, Salah E., Activity Networks: Project Planning and Control by Network

Models, John Wiley & Sons, 1977.

[3] Glen, A., Leemis, L., Evans, D.L. (2001), APPL: A Probability Programming Language,

The American Statistician, Volume 55, Number 2, 156–166.

26



[4] Hagstrom, Jane N., Computing the Probability Distribution of Project Duration in a

PERT Network, Networks, Vol. 20, 1990, pp 231–244.

[5] Leemis, L. and Trivedi, K. (1996), “A Comparison of Approximate Interval Estimators

for the Bernoulli Parameter”, The American Statistician, Vol. 50, No. 1, pp 63–68.

[6] Park, S.K. and Miller, K.W. (1988), “Random Number Generators: Good Ones are

Hard to Find”, Communications of the ACM, Vol. 31, pp 1192–1201.

[7] Pritsker, A. Alan B., Introduction to Simulation and SLAM II, Third Edition, John

Wiley & Sons, 1986.

[8] Shier, Douglas R., Network Reliability and Algebraic Structures, Oxford University

Press, 1991.

[9] van Dorp, J.R. and Kotz, S. (2002), “A Novel Extension of the Triangular Distribution

and its Parameter Estimation”, The Statistician, Volume 51, Part 1, pp 63–79.

27


