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Abstract—Code reading is one of the most frequent activities
in software maintenance; before implementing changes, it is
necessary to fully understand source code often written by other
developers. Thus, readability is a crucial aspect of source code
that might significantly influence program comprehension effort.
In general, software readability models take into account only
structural aspects of source code, e.g., line length and a number of
comments. However, code is a particular form of text; therefore,
a code readability model should not ignore the textual aspects
of source code encapsulated in identifiers and comments. In this
paper, we propose a set of textual features that could be used
to measure code readability. We evaluated the proposed textual
features on 600 code snippets manually evaluated (in terms of
readability) by 5K+ people. The results show that the proposed
features complement classic structural features when predicting
readability judgments. Consequently, a code readability model
based on a richer set of features, including the ones proposed in
this paper, achieves a significantly better accuracy as compared
to all the state-of-the-art readability models.

I. INTRODUCTION

Beatiful, Clean, Great, or Good code [1], [2], [3] are
common expressions that describe the type of code that soft-
ware developers expect/hope to write or read. In fact, having
“great/clean/good/beautiful code” is more important during
software evolution and maintenance tasks, because developers
spend a lot of time maintaining code (which can be written
by others), far more than writing the code from scratch [4].
Reading code is the very first step during incremental change
[5], [6], which is required to perform concept location, impact
analysis, and the corresponding change implementation/prop-
agation. Developers need to read and understand the code be-
fore changing it. Therefore, “readable code” is a fundamental
and highly desirable property of source code.

Several facets have been reported as components that con-
tribute to having readable code. For instance, complexity,
usage of design concepts, formatting, source code lexicon,
and visual aspects (e.g., syntax highlighting) have been widely
recognized as elements that impact program understanding [1],
[2], [3]. However, metrics for software readability are still
under development and have started gaining traction just
recently in the research community [7], [8], [9].

As of today, only three models for source code readability
have been proposed [7], [8], [9], which extract features from a
code snippet, and then report a readability ranking or a binary
classification (i.e., “readable”, “not-readable”). State-of-the-art
code readability models aim at capturing how the source code
have been constructed and how it looks to the developers;

the models mostly rely on structural properties of the source
code (e.g., number of identifiers). However, despite a plethora
of research that has demonstrated the impact of source code
lexicon on program understanding [10], [11], [12], [13], [14],
[15], [16], state-of-the-art code readability models are still
syntactic in nature and do not consider textual features that
reflect the quality of source code lexicon.

Under the hypothesis that source code readability should be
captured using both syntactic and textual code features, in this
paper we present a set of textual features that can be extracted
from source code to improve the accuracy of state-of-the-art
code readability models. Unstructured information embedded
in the source code reflects to a reasonable degree the concepts
of the problem and solution domains of the software as well
as the computational logic of the source code. Therefore,
textual features capture the domain semantics of the software
and add a new layer of semantic information to the source
code, in addition to the programming language semantics. To
validate the hypothesis and measure the effectiveness of the
proposed features, we performed a two-fold empirical study:
(i) we measured to what extent the proposed textual features
complement the structural ones proposed in the literature for
predicting code readability; and (ii) we computed the accuracy
of a readability model based on structural and textual features
as compared to state-of-the-art readability models. Both parts
of the study were performed on on a set of 600 code snippets
manually evaluated (in terms of readability) by 5K+ people.

The contributions of this paper are as the following:
• A set of textual features that enrich previous code

readability metrics by considering textual (or lexical)
aspects of source code, which we claim to be crucial
for effectively capturing code readability;

• An empirical study conducted on three data sets of
snippets aimed at analyzing the effectiveness of the
proposed approach while measuring the code readability.
The results indicate that the model based on structural and
textual features is able to outperform the state-of-the-art
code readability metrics;

• A new set of 200 code snippets in Java that was manually
tagged (in terms of readability) by nine participants.
This new dataset is made of complete code snippets
(e.g., existing datasets contain only partial snippets) and
was collected to consider textual features. Therefore, the
new dataset complements existing ones used in previous
studies.



II. BACKGROUND AND RELATED WORK

In the next sub-sections we highlight the importance of
source code lexicon (i.e., terms extracted from identifiers
and comments) for software quality; in addition, we describe
state-of-the-art code readability models. To the best of our
knowledge, three different models have beed defined in the
literature for measuring the readability of source code [7],
[8], [9]. Besides estimating the readability of source code,
readability models have been also used for defect prediction
[7], [9]. Recently, Daka et al. [17] proposed a specialized
readability model for test cases, which is used to improve the
readability of automatically generated test suites.

A. Software Quality and Source Code Lexicon

Identifiers and comments play a crucial role in program
comprehension and software quality since developers express
domain knowledge through the names they assign to the
elements of a program (e.g., variables and methods) [10],
[11], [12], [13], [14], [15], [16]. For example, Lawrie et al.
[14] showed that identifiers containing full words are more
understandable than identifiers composed of abbreviations.
From the analysis of source code identifiers and comments
it is also possible to glean the “semantics” of the source
code. Consequently, identifiers and comments can be used to
measure the conceptual cohesion and coupling of classes [18],
[19], and to recover traceability links between documentation
artifacts (e.g., requirements) and source code (e.g., [20]).

While the importance of meaningful identifiers for program
comprehension is quite consolidated, there is no agreement on
the importance of the presence of comments for increasing
code readability and understandability. While the previous
studies pointed out that comments make source code more
readable [21], [22], [23], the more recent studies, for instance
by Buse and Weimer [7], showed that the number of com-
mented lines is not an important factor in their readability
model. However, the consistency between comments and
source code has been shown to be more important than the
presence of comments, for code quality. Binkley et al. [24]
proposed the QALP tool for computing the textual similarity
between a component comment and its code. The QALP
score has been shown to correlate with human judgements of
software quality and is useful for predicting faults in modules.
Specifically, the lower the consistency between identifiers and
comments in a software component (e.g., a class), the higher its
fault-proneness [24]. Such a result has been recently confirmed
by Ibrahim et al. [25]; the authors mined the history of three
large open source systems observing that when a function and
its comment are updated inconsistently (e.g., the function code
is modified, the comment not), the defect proneness of the
function increases. Unfortunately, such a bad practice is quite
common since very often developers do not update comments
when they maintain source code [26], [27].

B. Structural Features as a Proxy of Readability

Buse and Weimer [7] proposed the first model of software
readability and provided evidence that a subjective aspect like

TABLE I
FEATURES USED BY BUSE AND WEIMER FOR THEIR READABILITY MODEL
[7]). THE TRIANGLES INDICATE IF THE FEATURE IS POSITIVELY (UP) OR
NEGATIVELY (DOWN) CORRELATED WITH HIGH READABILITY, AND THE

COLOR INDICATES THE PREDICTIVE POWER (GREEN = “HIGH”, YELLOW =
“MEDIUM”, RED = “LOW”).

FEATURE AVG MAX

Line length (characters) H H
N. of identifiers H H
Indentation (preceding whitespace) H H
N. of keywords H H
Identifiers length (characters) H H
N. of numbers H H

N. of parentheses H
N. of periods H
N. of blank lines N
N. of comments N
N. of commas H
N. of spaces H
N. of assignments H
N. of branches (if) H
N. of loops (for, while) H
N. of arithmetic operators N
N. of comparison operators H

N. of occurrences of any character H
N. of occurrences of any identifier H

TABLE II
FEATURES DEFINED BY DORN. THE TABLE MAPS CATEGORIES (I.E.,

VISUAL PERCEPTION, SPATIAL PERCEPTION, ALIGNMENT OR NATURAL
LANGUAGE ANALYSIS) TO INDIVIDUAL FEATURES EXTRACTED FROM THE

SOURCE CODE.

FEATURE VISUAL SPATIAL ALIGNMENT TEXTUAL

Line length •
Indentation length •
Assignments •
Commas •
Comparisons •
Loops •
Parentheses •
Periods •
Spaces •

Comments • •
Keywords • •
Identifiers • • •
Numbers • •
Operators • • •

Strings •
Literals •

Expressions •

readability can be actually captured and predicted automat-
ically. The model operates as a binary classifier, which was
trained and tested on code snippets manually annotated (based
on their readability). Specifically, the authors asked 120 human
annotators to evaluate the readability of 100 small snippets
(for a total of 12,000 human judgements). The features used
by Buse and Weimer to predict the readability of a snippet
are reported in Table I. Note that the features consider only
structural aspects of source code. The model succeeded in clas-
sifying snippets as “readable” or “not readable” in line with
the human judgements in more than 80% of the cases. From
the 25 features, Average number of identifiers, average line
length, and average number of parentheses were reported to
be the most useful features for differentiating between readable
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and non-readable code. Table I also indicates, for each feature,
the predictive power and the direction of correlation (positive
or negative).

Posnett et al. [8] defined a simpler model of code readability
as compared to the one proposed by Buse and Weimer [7]. The
approach by Posnett et al. uses only three structural features:
lines of code, entropy and Halstead’s Volume metric. Using
the same dataset from Buse and Weimer [7], and considering
the Area Under the Curve (AUC) as the effectiveness metric,
Posnett et al.’s model was shown to be more accurate than the
one by Buse and Weimer.

C. A Universal Model of Code Readability
Dorn introduced a “generalizable” model, which relies on a

larger set of features for code readability (see Table II), which
are organized into four categories: visual, spatial, alignment,
and linguistic [9]. The rationale behind the four categories is
that a better readability model should focus on how the code
is read by humans on screens. Therefore, the aspects such as
syntax highlighting, variable naming standards, and operators
alignment are considered by Dorn [9] as important for code
readability, in addition to structural features that have been
previously shown to be useful for measuring code readability.
In the following we describe the four categories of features
used in Dorn’s readability model.
Visual features: In order to capture the visual perception
of the source code, two types of features are extracted from
the source code (including syntax highlighting and formatting
provided by an IDE) when represented as an image: (i) a ratio
of characters by color and colored region (e.g., comments), and
(ii) an average bandwidth of a single feature (e.g., indentation)
in the frequency domain for the vertical and horizontal dimen-
sions. For the latter, the Discrete Fourier Transform (DFT) is
computed on a line-indexed series (one for each feature), for
instance, the DFT is applied to the function of indentation
space per line number.
Spatial features: Given a snippet S, for each feature A
marked in Table II as “Spatial”, it is defined as a matrix
MA ∈ {0, 1}L×W , where W is the length of the longest line
in S and L is the number of lines in S. Each cell MA

i,j of the
matrix assumes the value 1 if the character in line i and column
j of S plays the role relative to the feature A. For example, if
we consider the feature “comments”, the cell MC

i,j will have
the value “1” if the character in line i and column j belongs
to a comment; otherwise, MC

i,j will be “0”. The matrices are
used to build three kind of features:
• Absolute area (AA): it represents the percentage of

characters with the role A. It is computed as:

AA =

∑
i,j M

A
i,j

L×W
• Relative area (RA): for each couple of features A1, A2,

it represents the quantity of characters with role A1 with
respect to characters with role A2. It is computed as:

RA =

∑
i,j M

A1
i,j∑

i,j M
A2
i,j

• Regularity: it simulates “zooming-out” the code “until the
individual letters are not visible but the blocks of colors
are, and then measuring the relative noise or regularity of
the resulting view”[9]. Such a measure is computed using
the two-dimensional Discrete Fourier Transform on each
matrix MA.

Alignment features: Aligning syntactic elements (such as “=”
symbol) is very common, and it is considered a good practice
in order to improve the readability of source code. Two
features, namely operator alignment and expression alignment,
are introduced in order to measure, respectively, how many
times the operators and entire expressions are repeated on the
same column/columns.
Natural-language features: For the first time, Dorn intro-
duces a textual-based factor, which simply counts the relative
number of identifiers composed by words present in an English
dictionary.

The model was evaluated by conducting a survey with
5K+ human annotators judging the readability of 360 code
snippets written in three different programming languages (i.e.,
Java, Python and CUDA). The results achieved on this dataset
showed that the model proposed by Dorn achieves a higher
accuracy as compared to the Buse and Weimer’s model re-
trained on the new dataset [9].

In general, models for code readability mostly rely on
structural properties of source code. Source code lexicon,
while representing a valuable source of information for
program comprehension, has been generally ignored for
estimating source code readability. Only Dorn provides an
initial attempt to consider such valuable source of informa-
tion [9] by considering the number of identifiers composed
of words present in a dictionary. However, we conjecture
that more pertinent aspects of source code lexicon can
be exploited aiming at extracting useful information for
estimating source code readability.

III. TEXT-BASED CODE READABILITY FEATURES

Well-commented source code and high-quality identifiers,
carefully chosen and consistently used in their contexts, are
likely to improve program comprehension and support devel-
opers in building consistent and coherent conceptual models
of the code [16], [28], [29], [30], [10], [11]. Our claim is
that the analysis of source code lexicon cannot be ignored
when assessing code readability. Therefore, we propose seven
textual properties of source code that can help in characterizing
its readability. In fact, in Section IV-B we will show that the
proposed features improve the effectiveness of state-of-the-
art models for code readability. In the next subsections we
describe the features. Note that we use the word term to refer
to any word extracted from source code.

A. Comments and Identifiers Consistency (CIC)

This feature is inspired by the QLAP model proposed by
Binkley et al. [24] and aims at analyzing the consistency

3



between identifiers and comments. Specifically, we compute
the Comments and Identifiers Consistency (CIC) by measuring
the overlap between the terms used in a method comment and
the terms used in the method body:

CIC(m) =
|Comments(m) ∩ Ids(m)|
|Comments(m) ∪ Ids(m)|

where Comments and Ids are the sets of terms extracted
from the comments and identifiers in a method m, respectively.
The measure has a value between [0, 1], and we expect that
a higher value of CIC is correlated with a higher readability
level of the code.

Note that we chose to compute the simple overlap between
terms instead of using more sophisticated approaches such as
Information Retrieval (IR) techniques (as done in the QLAP
model), since the two pieces of text compared here (i.e., the
method body and its comment) are expected to have a very
limited verbosity, thus making the application of IR techniques
challenging [31]. Indeed, the QLAP model measures the
consistency at file level, thus focusing on code components
having a much higher verbosity.

One limitation of CIC (but also of the QLAP model) is
that it does not take into account the use of synonyms in
source code comments and identifiers. In other words, if
the method comment and its code contain two words that
are synonyms (e.g., car and automobile), they should be
considered consistent. Thus, we introduce a variant of CIC
aimed at considering such cases:

CIC(m)syn =
|Comments(m) ∩ (Ids(m) ∪ Syn(m))|
|Comments(m) ∪ Ids ∪ Syn(m)|

where Syn is the set of all the synonyms of the terms in Ids.
With such a variant the use of synonyms between comments
and identifiers contribute to improve the value of CIC.

B. Identifier Terms in Dictionary (ITID)

Empirical studies indicated that full-word identifiers ease
source code comprehension [10]. Thus, we conjecture that the
higher the number of terms in source code identifiers that are
also present in a dictionary, the higher the readability of the
code. Thus, given a generic line of code l, we measure the
feature Identifier terms in dictionary (ITID) as follows:

ITID(l) =
|Terms(l) ∩Dictionary|

|Terms(l)|

where Terms(l) is the set of terms extracted from the line
l of the method and Dictionary is the set of words in a
dictionary (e.g., English dictionary). As for the CIC, the higher
the value of ITID, the higher the readability of the generic line
of code l. In order to compute the feature Identifier terms in
dictionary for an entire snippet S, it is possible to aggregate
the ITID(l),∀l ∈ S—computed for each line of code of the
snippet— by considering the min, the max or the average of
such values. Note that the defined ITID is inspired by the
Natural Language Features introduced by Dorn [9].

Fig. 1. Example of hypernyms and hyponyms of the word “state”.

C. Narrow Meaning Identifiers (NMI)

Terms referring to different concepts may increase the pro-
gram comprehension burden by creating a mismatch between
the developers’ cognitive model and the intended meaning
of the term [28], [32]. Thus, we conjecture that a readable
code should contain more hyponyms, i.e., terms with a specific
meaning, than hypernyms, i.e., generic terms that might be
misleading. Thus, given a generic line of code l, we measure
the feature Narrow meaning identifiers (NMI) as follows:

NMI(l) =
∑
t∈l

specificity(t)

where t is a term extracted from the line of code l and
specificity(t) represents the specificity of term t, which is
computed as the number of hops from the node containing t
to the root node in the hypernym tree of t. Thus, the higher
the NMI, the higher the specificity of the terms in the lines
of code l, i.e., the terms in the line of code l have a specific
meaning allowing a better readability. Fig. 1 shows an example
of hypernyms/hyponyms tree: considering the word “state”,
the distance between the node that contains such a term from
the root node, which contains the term “entity”, is 3, so the
specificity of “state” is 3. In order to compute the feature
NMI for an entire snippet S, it is possible to aggregate the
NMI(l),∀l ∈ S, by considering the min, the max or the
average of such values.

D. Textual Coherence (TC)

The lack of cohesion of classes negatively impacts the
source code quality and correlates with the number of defects
[18]. Based on this observation, our conjecture is that when
a snippet has a low cohesion, i.e., it implements several con-
cepts, it is harder to comprehend than a snippet implementing
just one “concept”. The textual coherence of the snippet can
be used to estimate the number of “concepts” implemented
by a source code snippet. Specifically, we considered the
syntactic blocks of a specific snippet as documents and we
compute (as done for Comments and Identifiers Consistency)
the vocabulary overlap between all the possible pairs of
syntactic blocks. Thus, the Textual coherence (TC) of a snippet
can be computed as the max, the min or the average overlap
between each pairs of syntactic blocks of the snippet. For
instance, the method in Fig. 2 has three blocks: B1 (lines
2-11), B2 (lines 5-8), and B3 (lines 8-10); for computing
TC, first, the vocabulary overlap is computed for each pair of
blocks, (B1 and B2, B1 and B3, B2 and B3); then the three
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1 public void buildModel() {
2 if (getTarget() != null) {
3 Object target = getTarget();
4 Object kind = Model.getFacade().getAggregation(target);
5 if (kind == null
6 || kind.equals(Model.getAggregationKind().getNone())) {
7 setSelected(ActionSetAssociationEndAggregation.NONE_COMMAND);
8 } else {
9 setSelected(ActionSetAssociationEndAggregation.AGGREGATE_COMMAND);

10 }
11 }
12 }
13

Fig. 2. An example of calculation of textual coherence

values can be aggregated by using the average, the maximum
or the minimum.

E. Comments Readability (CR)

While many comments could surely help to understand the
code, they could have the opposite effect if their quality is low.
Indeed, a maintainer could start reading the comments, which
should ease the understanding phase. If such comments are
inadequate, the maintainer will waste time before starting to
read the code. Thus, we introduced a feature that calculates the
readability of comments (CR) using the Flesch-Kincaid [33]
index, commonly used to assess readability of natural language
texts. Such an index considers three types of elements: words,
syllables, and phrases. A word is a series of alphabetical
characters separated by a space or a punctuation symbol; a
syllable is “a word or part of a word pronounced with a single,
uninterrupted sounding of the voice [...] consisting of a single
sound of great sonority (usually a vowel) and generally one or
more sounds of lesser sonority (usually consonants)” [34]; a
phrase is a series of words that ends with a new-line symbol,
or a strong punctuation point (e.g., a full-stop). The Flesch-
Kincaid (FK) index of a snippet S is empirically defined as:

FK(S) = 206.835−1.015
words(S)

phrases(S)
−84.600

syllables(S)

words(S)

While word segmentation and phrase segmentation are easy
tasks, it is a little harder to correctly segment the syllables of
a word. Since such features do not need the exact syllables,
but just the number of syllables, relying on the definition, we
assume that there is a syllable where we can find a group of
consecutive vowels. For example, the number of syllables of
the word “definition” is 4 (definition). Such an estimation may
not be completely valid for all the languages.

We calculate the CR (i) putting together all commented
lines from the snippet S; (ii) joining the comments with a
“.” character, in order to be sure that different comments are
not joined creating a single phrase; (iii) calculating the Flesch-
Kincaid index on such a text.

F. Number of Meanings (NM)

All the natural languages contain polysemous words, i.e.,
terms which could have many meanings. In many cases the
context helps to understand the specific meaning of a polyse-
mous word, but, if many terms have many meanings it is more
likely that the whole text (or code, in this case) is ambiguous.
For this reason, we introduce a feature which measures the
number of meanings (NM), or the level or polysemy, of a

snippet. For each term in the source code, we measure its
number of meanings derived from WordNet [35]. In order to
compute the feature Number of Meanings for an entire snippet
S, it is possible to aggregate the NI(l) values—computed for
each line of code of the snippet—considering the max or the
average of such values. We do not consider the minimum but
still consider the maximum, because while it is very likely
that a term with few meanings is present, and such a fact does
not help in distinguishing readable snippets from not-readable
ones, the presence of a term with too many meanings could
be crucial in identifying unreadable snippets.

IV. EMPIRICAL STUDY DESIGN

To validate the value provided by the textual features
proposed in this paper, we performed an empirical study.
In particular the goal of the study is to analyze the role
played by textual features in assessing code readability, with
the purpose of improving the accuracy of state-of-the-art
readability models. The quality focus is the prediction of
source code readability, while the perspective of the study is
of a researcher, who is interested in analyzing to what extent
structural and textual information can be used to characterize
code readability.

A. Research Questions and Context

In the context of our study we formulated the following
research questions:
• RQ1: To what extent the proposed textual features com-

plement the structural ones proposed in the literature for
predicting code readability? This preliminary question
assesses the contribution of the textual features proposed
in this paper when describing source code readability.
Specifically, we are interested in verifying whether the
proposed textual features complement structural ones
when used to measure code readability. This represents a
crucial prerequisite for building an effective comprehen-
sive model considering both families of features.

• RQ2: What is the accuracy of a readability model based
on structural and textual features as compared to the
state-of-the-art readability models? This research ques-
tion aims at verifying to what extent a readability model
based on both structural and textual features overcomes
readability models mainly based on structural features,
such as the model proposed by Buse and Weimer [7], the
one presented by Posnett et al. [8], and the most recent
one introduced by Dorn [9].

An important prerequisite for evaluating a code readability
model is represented by the availability of a reliable oracle,
i.e., a set of code snippets for which the readability has
been manually assessed by humans. This allows measuring to
what extent a readability model is able to approximate human
judgment of source code readability.

In the context of our study, we evaluate the accuracy of the
experimented readability models on three different datasets of
code snippets. All the datasets are composed of code snippets
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for which the readability has been assessed via humans judg-
ment. In particular, each snippet in the datasets is accompanied
by a flag indicating whether it was considered readable by
humans (i.e., binary classification). The first dataset (in the
following Db&w) was provided by Buse and Weimer [7] and
it is composed of 100 Java code snippets having a mean size
of seven lines of code. The readability of these snippets was
evaluated by 120 student annotators. The second dataset (in
the following Ddorn) was provided by Dorn [9] and represents
the largest dataset available for evaluating readability models.
It is composed of 360 code snippets, including 120 snippets
written in CUDA, 120 in Java, and 120 in Python. The
code snippets are also diverse in terms of size including for
each programming language the same number of small- (∼10
LOC), medium- (∼30 LOC) and large- (∼50 LOC) sized
snippets. In Ddorn, the snippets’ readability was assessed by
5,468 humans, including 1,800 industrial developers.

The main drawback of the above datasets is that some
of the snippets they include are not complete code entities
(e.g., methods) but pieces of code only representing a partial
implementation (and thus they are not syntactically correct).
This represents an impediment for the computation of one
of the key features introduced in the work, i.e., textual co-
herence (TC); it is impossible to extract code blocks from a
snippet if an opening or closing bracket is missing. For this
reason, we built an additional dataset (Dnew), by following
an approach similar to the one used in the previous work
to collect Db&w and Ddorn [7], [9]. Firstly, we extracted
all methods of four open source Java projects, namely jUnit,
Hibernate, jFreeChart and ArgoUML, having a size between
ten and 50 lines of code (including comments). We focused
on methods because they represent syntactically correct and
complete snippets of code.

When building Dnew, we identified 13,044 methods that
satisfied our constraint on the size. The human assessment of
all these methods is practically impossible, since it would re-
quire a significant human effort. For this reason, we evaluated
the readability of only 200 sampled methods. The selection
was not random, but rather aimed at identifying the most rep-
resentative methods for the features used by all the readability
models defined and studied in this paper. Specifically, for each
method (i.e., 13,044 methods) we calculated all the features
(i.e., the structural features proposed in the literature and those
proposed in this paper) aiming at associating each method with
a feature vector containing the values for each feature. Then,
we used a greedy algorithm for center selection [36] to find the
200 most representative methods. The distance function used
in the implementation of such algorithm is represented by the
Euclidean distance between the feature vector of two snippets.
The adopted selection strategy allowed us (i) to enrich the
diversity of the selected methods avoiding the presence of
similar methods in terms of the features considered by the
different experimented readability models, and (ii) to increase
the generalizability of our findings.

After selecting the 200 methods in Dnew, we asked 30
Computer Science students from the College of William and

Mary to evaluate the readability r of each of them. The
participants were asked to evaluate each method using a five-
point Likert scale ranging between 1 (very unreadable) and
5 (very readable). We collected the rankings through a web
application where participants were able to (i) read the method
(with syntax highlighting); (ii) evaluate its readability; and (iii)
write comments about the method. The participants were also
allowed to complete the evaluation in multiple rounds (e.g.,
evaluate the first 100 methods in one day and the remaining
after one week). Among the 30 invited participants, only nine
completed the assessment of all the 200 methods. This was
mostly due to the large number of methods to be evaluated;
the minimum time spent to complete this task was about two
hours. In summary, given the 200 methods in mi ∈ Dnew and
nine human taggers tj ∈ T , we collected readability rankings
r(mi, tj),∀i,j , i ∈ [1, 200], j ∈ [0, 9].

After having collected all the evaluations, we computed, for
each method m ∈ Dnew, the mean score that represents the
final readability value of the snippet, i.e., r̄(m) =

Σ9
1r(m,j)

9 .
We obtained a high agreement among the participants with
Cronbach-α=0.98, which is comparable to the one achieved in
Db&w=0.96. This confirms the results achieved by Buse and
Weimer: “humans agree significantly on what readable code
looks like, but not to an overwhelming extent” [7]. Note that
in order to train a binary classifier we needed to classify each
snippet in the dataset as readable or non-readable; therefore,
we used the mean of the readability score among all the
snippets as a cut-off value. Specifically, methods having a
score below 3.6 were classified as non-readable, while the
remaining methods as readable. A similar approach was also
used by Buse and Weimer [7].

B. Planning and Execution

We used a classifier, namely logistic regression, to train a
model for determining the readability of each snippet. To avoid
over-fitting, we performed feature selection using a wrapper
strategy [37] available in the Weka1 machine learning toolbox.
In the wrapper selection strategy each candidate subset of
features is evaluated through the accuracy of the classifier
trained and tested using only such features. The final result is
the subset of features which obtained the maximum accuracy.

In order to answer our first research question (RQ1), we
built a readability model (i.e., a binary classifier) based only on
the textual features proposed in this paper (hereinafter referred
to as TFM). Then, we analyzed its complementarity with
respect to the three approaches presented in the literature and
mainly based on the structural features: the Buse and Weimer’s
(BWM) [7], the Posnett’s (PM) [8], and the Dorn’s (DM)
model [9]. Specifically, we computed the following overlap
metrics between TFM and each of the three competitive
models (CT):

correctTFM∩CT =
|correctTFM ∩ correctCT |
|correctTFM ∪ correctCT |

%

1http://www.cs.waikato.ac.nz/ml/weka/
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correctTFM\CT =
|correctTFM \ correctCT |
|correctTFM ∪ correctCT |

%

correctCT\TFM =
|correctCT \ correctTFM |
|correctTFM ∪ correctCT |

%

where correctTFM and correctCT represent the sets
of code snippets correctly classified as readable/non-
readable by TFM and the competitive model (CT ∈
{BWM,PM,DM}), respectively. correctTFM∩CT mea-
sures the overlap between code snippets correctly classified
by both techniques and correctTFM\CT (correctCT\TFM )
measures the snippets correctly classified by TFM (CT) only
and wrongly classified by CT (TFM).

Turning to the second research question (RQ2), we com-
pared the accuracy of a readability model based on both all
the structural and textual features (from now on All-Features)
with the accuracy of the three baselines, i.e., BWM, PM, and
DM. In order to compute the accuracy, we fist compute:
• true positives (TP ): number of snippets correctly classi-

fied as readable;
• true negatives (TN ): number of snippets correctly clas-

sified as non-readable;
• false positives (FP ): number of snippets incorrectly

classified as readable;
• false negatives (FN ): number of snippets incorrectly

classified as non-readable;
We compute accuracy as TP+TN

TP+TN+FP+FN , i.e., the rate of
snippets correctly classified.

In addition, we report the accuracy achieved by the read-
ability model only exploiting textual features (i.e., TFM).
In particular, we measured the percentage of code snippets
correctly classified as readable/non-readable by each technique
on each of the three datasets.

Each readability model was trained on each dataset individu-
ally and a 10-fold cross-validation was performed. The process
for the 10-fold cross-validation is composed of five steps:
(i) randomly divide the set of snippets for a dataset into 10
approximately equal subsets, (ii) set aside one snippet subset
as a test set, and build the readability model with the snippet in
the remaining subsets (i.e., the training set), (iii) classify each
snippet in the test set using the readability model built on the
snippet training set and store the accuracy of the classification,
(iv) repeat this process, setting aside each snippet subset in
turn, (v) compute the overall average accuracy of the model.

In order validate the results, we used statistical tests to
assess the significance of the achieved results. In particular,
since we used 10-fold cross validation, we consider the
accuracy achieved on each fold by all the models. We used
the Wilcoxon test [38] (with α = 0.05) in order to estimate
whether there are statistically significant differences between
the classification accuracy obtained by TFM and the other
models. Our decision for using the Wilcoxon test, is a conse-
quence of the usage of the 10-fold cross validation to gather
the accuracy measurements. During the cross-validation, each
fold is selected randomly, but we used the same seed to have
the same folds for all the experiments. For example, the 5th

testing fold used for BWM is equal to the 5th testing fold used
with All-features. Consequently, the pairwise comparisons are
performeed between related samples. Moreover, because we
performed multiple pairwise comparisons (i.e., All-features vs.
the rest), we adjusted our p-values using the Holm’s correction
procedure [39]. In addition, we estimated the magnitude of
the observed differences by using the Cliff’s Delta (d), a non-
parametric effect size measure for ordinal data [40]. Cliff’s
d is considered negligible for d < 0.148 (positive as well as
negative values), small for 0.148 ≤ d < 0.33, medium for
0.33 ≤ d < 0.474, and large for d ≥ 0.474 [40].

V. ANALYSIS OF THE RESULTS

In this section we analyze the obtained results aiming at
answering the research questions in our study.

A. RQ1: To what extent the proposed textual features com-
plement the structural ones proposed in the literature for
predicting code readability?

Table III reports the overlap metrics computed between
TFM (i.e., the readability model based only on textual features)
and the state-of-the-art models (i.e., BWM [7], PM [8], and
DM [9]). Across the three datasets, the TFM exhibits an
overlap of code snippets correctly classified as readable/non-
readable included between 62% (TFM ∩ PM ) and 71%
(TFM∩DM ). This means that, despite the competitive model
considered, almost 30% of the code snippets are differently
assessed as readable/non-readable when only relying on textual
features. Indeed, (i) between 12% (TFM \ DM ) and 21%
(TFM \ PM ) of code snippets are correctly classified only
by TFM and (ii) between 17% (PM \ TFM ) and 18%
(BWM \ TFM ) are correctly classified only by the com-
petitive models exploiting structural information.

These results highlight a high complementarity between
structural and textual features when used for readability assess-
ment. An example of a snippet for which the textual features
are not able to provide a correct assessment of its readability is
reported in Fig. 3. Such a method (considered “unreadable” by
human annotators) has a pretty high average textual coherence
(0.58), but, above all, it has a high comment readability
and comment-identifiers consistency, i.e., many terms co-
occur in identifiers and comments (e.g., “batch” and “fetch”).
Nevertheless, some lines are too long, resulting in a high
maximum and average line length (146 and 57.3, respectively),
both impacting negatively the perceived readability [7].

Fig. 4 reports, instead, a code snippet correctly classified
as “readable” only when exploiting textual features. The
snippet has suboptimal structural characteristics, such as a high
average/maximum line length (65.4 and 193, respectively) and
a high average number of identifiers (2.7), both negatively cor-
related with readability. Nevertheless, the method has a very
high average textual coherence (∼ 0.73) and high comments
readability (100.0). The result is source code that can be read
almost as natural language text. The semantic of each line
is pretty clear, but such an aspect is completely ignored by
structural features.
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TABLE III
RQ1 : OVERLAP BETWEEN TFM AND THE TECHNIQUES MAINLY EXPLOITING STRUCTURAL FEATURES: BWM , PM , AND DM .

Dataset TFM ∩BWM TFM \BWM BWM \ TFM TFM ∩ PM TFM \ PM PM \ TFM TFM ∩DM TFM \DM DM \ TFM
Db&w 76% 14% 10% 73% 8% 19% 72% 14% 13%
Ddorn 69% 16% 15% 63% 16% 21% 74% 14% 12%
Dnew 54% 24% 22% 55% 21% 24% 66% 22% 12%
Overall 66% 18% 16% 62% 17% 21% 71% 17% 12%

1 /**
2 * 1. Recreate the collection key -> collection map
3 * 2. rebuild the collection entries
4 * 3. call Interceptor.postFlush()
5 */
6 protected void postFlush(SessionImplementor session) throws HibernateException {
7
8 LOG.trace( "Post flush" );
9

10 final PersistenceContext persistenceContext = session.getPersistenceContext();
11 persistenceContext.getCollectionsByKey().clear();
12
13 // the database has changed now, so the subselect results need to be

invalidated
14 // the batch fetching queues should also be cleared - especially the collection

batch fetching one
15 persistenceContext.getBatchFetchQueue().clear();
16
17 for ( Map.Entry<PersistentCollection, CollectionEntry> me : IdentityMap.

concurrentEntries( persistenceContext.getCollectionEntries() ) ) {
18 CollectionEntry collectionEntry = me.getValue();
19 PersistentCollection persistentCollection = me.getKey();
20 collectionEntry.postFlush(persistentCollection);
21 if ( collectionEntry.getLoadedPersister() == null ) {
22 //if the collection is dereferenced, remove from the session cache
23 //iter.remove(); //does not work, since the entrySet is not backed by

the set
24 persistenceContext.getCollectionEntries()
25 .remove(persistentCollection);
26 }
27 else {
28 //otherwise recreate the mapping between the collection and its key
29 CollectionKey collectionKey = new CollectionKey(
30 collectionEntry.getLoadedPersister(),
31 collectionEntry.getLoadedKey()
32 );
33 persistenceContext.getCollectionsByKey().put(collectionKey,

persistentCollection);
34 }
35 }
36
37 }

Fig. 3. Code snippets correctly classified as “non-readable” only when relying
on structural features and missed by TFM

1 protected void scanAnnotatedMembers(Map<Class<? extends Annotation>, List<
FrameworkMethod>> methodsForAnnotations, Map<Class<? extends Annotation>,
List<FrameworkField>> fieldsForAnnotations) {

2 for (Class<?> eachClass : getSuperClasses(fClass)) {
3 for (Method eachMethod : MethodSorter.getDeclaredMethods(eachClass)) {
4 addToAnnotationLists(new FrameworkMethod(eachMethod),

methodsForAnnotations);
5 }
6 // ensuring fields are sorted to make sure that entries are inserted
7 // and read from fieldForAnnotations in a deterministic order
8 for (Field eachField : getSortedDeclaredFields(eachClass)) {
9 addToAnnotationLists(new FrameworkField(eachField),

fieldsForAnnotations);
10 }
11 }
12 }

Fig. 4. Code snippets correctly classified as “readable” only when relying
on textual features and missed by the competitive techniques

Summary for RQ1. A code readability model solely
relying on textual features exhibits a high degree of comple-
mentarity with models mainly exploiting structural feature.
On average, the readability of 12%-21% code snippets is
correctly assessed only when using textual features.

B. RQ2: What is the accuracy of a readability model based
on structural and textual features as compared to the state-of-
the-art readability models?

Table IV shows the accuracy achieved by (i) the comprehen-
sive readability model, namely the model which exploits both
structural and textual features (All-Features), (ii) the model
solely exploiting textual features (TFM), and (iii) the three

TABLE IV
RQ2 : AVERAGE ACCURACY (ACROSS THE 10-FOLDS DURING THE

CROSS-VALIDATION) ACHIEVED BY All-Features, TFM, BWM, PM, AND
DM IN THE THREE DATASETS. THE overall LINE SHOWS THE AVERAGE OF

THE ACCURACIES OVER THE THREE DATASET WEIGHTED WITH THE
NUMBER OF SNIPPETS.

Dataset Snippets BWM PM DM TFM All-Features

Db&w 100 81.0% 78.0% 80.0% 74.0% 79.0%
Ddorn 360 78.6% 72.8% 80.0% 77.2% 83.9%
Dnew 200 70.5% 66.0% 75.5% 68.0% 79.5%

Overall 660 76.5% 71.5% 78.6% 73.9% 81.8%

state-of-the-art models mainly based on structural features
(BWM, PM, and DM).

When comparing all the models, it is clear that textual
features achieve an accuracy comparable and, on average,
higher than the one achieved by the model proposed by Posnett
et al. (PM). Nevertheless, as previously pointed out, textual-
based features alone are not sufficient to measure readability.
Indeed, the models BWM and DM always achieve a higher
accuracy than TFM.

On the other hand, if we use a model which combines
all the features, we obtain an overall accuracy (i.e., using all
the accuracy samples as a single dataset) higher than all the
compared models (from 3.2% with respect to DM to 10.3%
with respect to PM). On the dataset defined by Buse and
Weimer, the combined model achieves an accuracy lower than
DM and PM. This result could be a consequence of two
characteristics of the snippets used for such a dataset: (i)
their size is very limited, thus excluding snippets with large
comments; (ii) only few snippets are syntactically correct, thus
features like “Textual coherence” cannot be computed. Such a
limitation is more clear if we look at the accuracy achieved by
TFM: while, on average, such a model achieves an accuracy
higher than the one achieved by PM, in this case it is not true,
and, instead, PM achieves a higher accuracy.

Table V shows the p-values after correction and the Cliff’s
delta for the pairwise comparisons performed between the
model that combines structural and textual features and the
other models. When analyzing the results at dataset granu-
larity, we did not find significant differences between All-
Features and the other models. However, the effect size is
medium-large (i.e., d ≥ 0.33) in most of the comparisons. This
issue of no statistical significance with large effect size is an
artifact of the sample size, which has been reported previously
by Cohen [41] and Harlow et al. [42]; in fact, the size of the
samples used in our tests for each dataset is 10 measurements
(note that we performed 10-fold cross validation). In that
sense, we prefer to draw conclusions (conservatively) from
the tests performed on the set Dall, which has a larger sample
(30 measurements). When using the datasets as a single one
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TABLE V
RQ2 : P-VALUES (CORRECTED WITH THE HOLM PROCEDURE) OF THE

WILCOXON TEST AND CLIFF’S DELTA (d), FOR THE PAIRWISE
COMPARISONS BETWEEN All-Features AND EACH ONE OF

STATE-OF-THE-ART MODELS. THE TABLE LIST THE VALUES FOR EACH
DATA SET (e.g., Ddorn ) AND GLOBALLY, I.E., CONSIDERING THE THREE

DATASETS AS A SINGLE ONE (Dall).

Dataset BWM PM DM TFM

Db&w 1 (d = −0.08) 1(d = 0.06) 1(d = −0.02) 036(d = 0.22)
Ddorn 0.13(d = 0.52) 0.10(d = 0.75) 0.13(d = 0.33) 0.10(d = 0.55)
Dnew 0.10(d = 0.45) 0.06(d = 0.58) 0.38(d = 0.24) 0.10(d = 0.58)

Dall 0.19(d = 0.27) 0.01(d = 0.45) 0.36(d = 0.19) 0.00(d = 0.43)

●

●

●

●

●

0.70 0.75 0.80 0.85

Accuracy (mean and CIs)

F
ea

tu
re

s

BWM

PM

DM

TFM

ALL

Fig. 5. Mean accuracy and confidence intervals (CIs) with 95% of confidence
for each one of the models analyzed for RQ2

(i.e., Dall), there is significant difference in the accuracy
when comparing All-Features to PM and TFM; the results
are confirmed with the Cliff’s d that suggest a medium-large
difference (i.e., d ≥ 0.4) in both cases. Fig. 5 illustrates the
difference in the accuracy achieved with each model by using
the mean accuracy and confidence intervals (CIs). There is a
95% of confidence that the mean accuracy of All-Features is
larger than PM and TFM (i.e., there is no overlap between the
CIs). Although the mean accuracy of All-Features is the largest
one in the study, there is an overlap with the CIs for BWM
and DM. Therefore, including the proposed textual features in
state-of-the-art models, overall, improves the accuracy of the
readability model, with significant difference when compared
to the ones used in the Posnett et al. model. The statistical
tests also confirm that using only textual features is not the
best choice for a code readability model.

Summary for RQ2. A comprehensive model of code
readability that combines structural and textual features is
able to achieve a higher accuracy than all the state-of-
the-art models. The magnitude of the difference, in term
of accuracy, is mostly medium-to large when considering
structural and textual models. The minimum improvement
is of 3.9% and, the difference is statistically significant
when compared to the Posnett et al. model.

VI. THREATS TO VALIDITY

Possible threats to validity are related to the methodology in
the construction of the new data set, to the machine learning
technique used and to the feature selection technique adopted.
In this section we discuss such threats, grouping them into
construct, internal and external validity.

Construct Validity. The main threat is the choice of a
proper metric for evaluating the models. We used the accuracy

TABLE VI
ACCURACY ACHIEVED BY All-Features, TFM, BWM, PM, AND DM IN THE

THREE DATA SETS WITH DIFFERENT MACHINE LEARNING TECHNIQUES.

ML Technique BWM PM DM TFM All-Features

D
b
&
w

BayesNet 76.0% 76.0% 67.0% 53.0% 72.0%
ML Perceptron 76.0% 77.0% 72.0% 77.0% 73.0%
SMO 82.0% 77.0% 77.0% 72.0% 81.0%
RandomForest 80.0% 77.0% 75.0% 72.0% 77.0%

D
d
o
r
n

BayesNet 75.0% 68.1% 74.7% 68.1% 76.1%
ML Perceptron 74.2% 70.3% 72.5% 74.2% 77.8%
SMO 79.7% 71.1% 76.7% 71.7% 80.6%
RandomForest 78.1% 70.3% 74.4% 74.2% 78.9%

D
n
e
w

BayesNet 62.5% 69.5% 64.0% 64.0% 71.0%
ML Perceptron 66.5% 65.5% 68.5% 66.5% 70.0%
SMO 67.0% 68.0% 72.5% 65.0% 77.0%
RandomForest 68.0% 60.5% 69.0% 65.5% 69.0%

achieved when using logistic regression as the underlying clas-
sifier for the readability models, however, we could have used
other metrics (e.g., AUC) or machine learning techniques (e.g.,
BayesNet or neural networks). We chose accuracy because
it is widely used in the literature [43], and in particular for
readability metrics [7]. In addition, the results could depend
on the machine learning technique used for computing the
accuracy of each model. Table VI shows the accuracy achieved
by each model using different machine learning techniques.
While different techniques achieve different levels of accuracy,
some results are still valid when using other classifiers; the
combined model achieves a better accuracy than any other
model on the new data set and on the one defined by Dorn,
while BWM outperforms the other models on the data set
defined by Buse and Weimer.

Internal validity. To mitigate the over-fitting problem of
machine learning techniques, we used 10-fold cross-validation
and we performed statistical analysis (Wilcoxon test, effect
size, and confidence intervals) in order to measure the sig-
nificance of the differences among the accuracies of different
models. Also, feature selection could affect the final results
on each model. Finding the best set of features in terms of
achieved accuracy is infeasible when the number of features
is large. Indeed, the number of subsets of a set of n elements
is 2n; while an exhaustive search is possible for models
with a limited number of features, like BWM, PM and TFM,
it is unacceptable for DM and All-Features. Such a search
would require, respectively, 1.2× 1018 and 3.2× 1034 subset
evaluations. Thus, we used a linear forward selection technique
[37] in order to reduce the number of evaluations and to
obtain a good subset in a reasonable time. Comparing models
obtained with exhaustive search to models obtained with a
sub-optimal search technique could lead to biased results;
therefore, we use the same feature selection technique for all
the models to perform a fairer comparison. It is worth noting
that the likelihood of finding the best subset remains higher
for models with less features.

External validity. In order to build the new data set, we had
to select a set of snippets that human annotators would eval-
uate. The set of snippets selected could not be representative
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enough and, thus, could not help to build a generic model. We
limited the impact of such a threat selecting the set of the most
distant snippets as for the features used in this study through a
greedy center selection technique. Other threats regarding the
human evaluation of the readability of snippets, also pointed
out by Buse and Weimer [7], are related to the experience
of human evaluators and to the lack of a rigorous definition
of readability. However, the students involved in the survey
showed a high agreement on the readability of snippets.

VII. CONCLUSION AND FUTURE WORK

State-of-the-art code readability models mostly rely on
structural metrics, and as of today they do not consider the
impact of source code lexicon on code readability. In this
paper we present a set of textual features that are based
on source code lexicon analysis and aim at improving the
accuracy of code readability models. The proposed textual
features measure the consistency between source code and
comments, specificity of the identifiers, usage of complete
identifiers, among the others. To validate our hypothesis (i.e.,
combining structural and textual features improves the accu-
racy of readability models), we used the features proposed
by state-of-the art models as a baseline, and measured (i) to
what extent the proposed textual-based features complement
the structural features proposed in the literature for predicting
code readability, and (ii) the accuracy achieved when including
textual features into the state-of-the-art models. Our findings
show that textual features complement structural ones, and the
combination (i.e., structural+textual) improves the accuracy of
code readability models. Our future work will focus on design-
ing more advanced textual features and to identifying whether
the proposed features can be used for defect prediction.
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