
Feature Location via Information Retrieval based Filtering
of a Single Scenario Execution Trace

Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, Václav Rajlich

Department of Computer Science
Wayne State University

Detroit, MI 48202
1-313-577-5408

[dliu, amarcus, denys, rajlich]@wayne.edu

ABSTRACT
The paper presents a semi-automated technique for feature
location in source code. The technique is based on combining
information from two different sources: an execution trace, on one
hand and the comments and identifiers from the source code, on
the other hand.

Users execute a single partial scenario, which exercises the
desired feature and all executed methods are identified based on
the collected trace. The source code is indexed using Latent
Semantic Indexing, an Information Retrieval method, which
allows users to write queries relevant to the desired feature and
rank all the executed methods based on their textual similarity to
the query.

Two case studies on open source software (JEdit and Eclipse)
indicate that the new technique has high accuracy, comparable
with previously published approaches and it is easy to use as it
considerably simplifies the dynamic analysis.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – enhancement, restructuring, reverse engineering,
and reengineering

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Program understanding, feature identification, concept location,
dynamic and static analyses, information retrieval

1. INTRODUCTION
Identifying the parts of the source code that correspond to a
specific functional requirement is one of the most common and
important activities undertaken by software engineers during
software evolution. This activity is known as feature or concept
location [36]. The goal of feature or concept location is to

identify some part of the source code, for example a single
method, which will be modified in response to a change request
and in this way it gives the programmer a starting point in this
process. The full extent of the change is later defined through the
separate activities of impact analysis and change propagation [26,
27].

The main difference between concepts and features is that the
user can exercise the latter. Features are usually described in the
requirements of the software system. There are other concepts,
usually from the solution domain, that do not necessarily
correspond to features, such as a “linked list” or a “hash table”
and hence the notion of concept is more general than the notion of
feature. This paper deals with feature location only.

While in small systems, developers can perform feature location
manually, it is more often than not that tool support is necessary,
especially for large and complex software systems. Tool support
for feature location was addressed in previous work [3, 25, 36,
38]. Depending on how such tools extract information from the
source code, there are two flavors of (semi)automated feature
location techniques: static and dynamic. If the information is
gleaned without executing the subject program, both the
information and the tool are categorized as static; otherwise they
are dynamic. Dynamic techniques are based on collecting and
analyzing execution traces and mapping them to the source code
[3, 9, 12, 33, 35, 36, 38]. Static techniques use program
dependencies and the textual information from the source code
and associated documentation to help the user search the software
[1, 4, 29, 32, 40]. A number of techniques use both types of
analyses [11, 25].

Both static and dynamic techniques have their own limitations. In
general, dynamic techniques are conservative in nature, as
execution traces are often very large and contain a lot of noise, as
stated in [3] “we cannot distinguish feature-relevant and feature-
irrelevant events with one unique trace alone. We need multiple
traces from different scenarios and exercising different features to
identify feature-relevant events”. Selection of proper test cases or
scenarios to be executed is another problem of these techniques.
Simmons et al [33] reckon that “poorly chosen test cases that
exercise too much or too little of the system may cause
problems”. Most dynamic techniques use at least two execution
traces, where the role of one is to filter the other. Complex
mechanisms were proposed to improve the trace filtering problem
(see Section 4 for details). The hybrid techniques usually aim at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’07, November 5-9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011…$5.00.

the same problem, where static information is used to filter the
execution traces. Previous work [25] provided evidence that the
information obtained from overlapping traces, on one hand, and
textual information obtained from the source code, on the other
hand, are orthogonal with respect to feature identification, thus
their combination results in a very effective feature location
technique.

In this paper we introduce a novel hybrid feature location
technique. The proposed approach is based on the idea that a
single execution trace of a scenario, exercising a feature of
interest, contains all the necessary information to find the most
important parts of the source code that are implementing this
feature [12, 15, 17, 30] and that filtering the single trace with data
based on textual analysis is sufficient to extract the relevant
pieces of source code. More than that, developers can construct
marked-traces [30] to reduce the size of the traces. Filtering is
done using Latent Semantic Indexing (LSI) [7], an Information
Retrieval (IR) method. LSI is used to index the textual
information from the source code (that is, comments and
identifiers) and allows the users to run queries, describing a
feature in natural language and obtain results as a ranked list of
source code elements (that is, classes, methods, or functions).
The novel feature location technique is named SIngle Trace and
Information Retrieval (SITIR).

The next section describes SITIR and its component technologies.
Section 3 presents two case studies that emphasize the
effectiveness of SITIR when compared to the results obtained
with earlier similar approaches. Section 4 presents other related
dynamic feature location approaches and discusses their
differences and similarities to SITIR. Section 5 concludes the
paper and shows future research directions.

2. THE PROPOSED APPROACH
In order to present the details of SITIR, we need to discuss how
the dynamic analysis is performed in order to obtain the execution
traces. We also present briefly how LSI is used for feature
location in this work.

2.1 Dynamic Analysis
In this work, the dynamic analysis uses a profiling tool, namely
Java Platform Debugger Architecture (JPDA)1. Although other
approaches for collecting execution traces are available, for
example, source code and byte-code instrumentation, or even
instrumentation of the Java virtual machine [34], we opted for the
JPDA-based approach to obtain execution traces, because it offers
flexibility and ease of use. The JPDA-based tracer allows the
user to collect marked-traces [30] by manually controlling when
to start and stop tracing. It organizes tracing information into
separate thread-based log files and provides support for method-
and class-level granularity as well as multiple output formats for
the execution traces. For feature location, the tracer outputs a set
of methods (or classes) that were executed in each thread.

Internally, JPDA has three layers: the Java Virtual Machine Tool
Interface (JVMTI, which substituted JVMPI and JVMDI in Java
5.0), which works in Java virtual machines; the Java Debug Wire
Protocol (JDWP), which serves as a standard communication

1 http://java.sun.com/javase/technologies/core/toolsapis/jpda/

protocol; and the Java Debug Interface (JDI), which supplies the
programmer with a high-level Java language interface.

We use JPDA for tracing as follows. The tracer starts up a
separate Java Virtual Machine (JVM) on which the subject
program is executed. Once the tracing procedure is initiated, the
tracer sends a message to the second JVM specifying what kind of
events it should report and what packages/classes it should ignore.
The tracer can change its settings any time by sending different
instructions to the second JVM. Thus, the tracer communicates to
the second JVM only, but not to the subject program. The subject
program runs on the second JVM and interacts with the running
environment without any knowledge of the tracing utility. In
such a way, the interference of the tracing tool with the subject
program is minimal (from the program’s point of view it seems
like it is running on a slower machine). The fact that the tracer is
running on the first JVM is transparent to the environment.

Other researchers used JPDA for collecting execution traces.
Salah et al. [30] used JVPROF, which is built on top of JPDA, to
record the method call sequences for different scenarios. Reiss
and Renieris [28] used TMon, which is built on top of JVMPI to
trace Java programs.

2.2 Information Retrieval based Ranking of
Methods
Using advanced IR techniques, such as LSI, allows users to
capture relations between terms (words) and documents in large
bodies of text. A significant amount of domain knowledge is
embedded in the comments and identifiers present in source code.
Using IR methods, users are able to index and effectively search
this textual data formulating natural language queries, which
describe the concepts they are interested in. Identifiers and
comments present in the source code of a software system form a
language of their own without a grammar or morphological rules.
LSI derives the meanings of words from their usage in passages,
rather than a predefined dictionary, which is an advantage over
existing techniques for text analysis that are based on natural
language processing [32].

In software engineering, LSI has been used for a variety of tasks
closely related to feature location, such as software reuse [14, 19,
39], abstract data types identification [20], high level concept
clone detection [21], traceability link recovery between software
artifacts [2, 6, 22], topic identification in source code [18],
requirements tracing [16], etc.

We introduced previously [24] a methodology to index and search
the source code using LSI. The methodology was subsequently
refined and combined with dynamic information (see Section 4
for details) to improve its effectiveness [25].

In a nutshell, the comments and identifiers from the source code
are extracted and a corpus is created, where each document
corresponds to a method in the system. LSI indexes this corpus
and creates a signature for each document (method). These
indices are used to define similarity measures between methods.
As LSI does not use a predefined grammar or vocabulary it is
very robust with respect to outlandish identifier names and stop
words (which are subsequently eliminated). Users can originate
queries in natural language (as opposed to regular expressions or
some other structured format) and the system returns a list of all
the methods in the system, ranked by their semantic similarity to

the query. The use is similar to many existing web search
engines.

As the use of LSI in this work is similar to its previous uses, we
refer the interested reader for more details on this approach and
on LSI to [23-25].

2.3 Single Execution Traces and Information
Retrieval
SITIR is a semi-automated technique, which implies that the user
input is needed and of course, results are sensitive to that input.
Developers have to decide on a scenario that will exercise the
desired feature. Using the tracing utility, a marked-trace is
obtained, from which a set of uniquely executed methods is
extracted. More precise marking will generate more compact
traces. The user is involved in the marking as well.

The user then formulates a query as a set of terms (such as, words
or identifiers) describing the feature. The more knowledge the
user has about the system, the better the query (and its results)
will be. The set of uniquely executed methods is sorted based on
their semantic similarity to the user query, computed with LSI.

Prior to using SITIR for feature location the tracing tool should be
configured and the software system needs to be indexed with LSI.
The indexing is a one time process and only needs to be redone if
significant changes are done to the source code. This process
requires minimum user involvement.

The feature identification methodology with SITIR requires little
domain or software system specific knowledge and it consists of
the following steps:
1. Formulating and executing a single scenario. The

developer formulates a scenario that captures the feature of
interest; she marks the intervals in this scenario for which the
trace should be collected and runs the scenario. A set of
executed methods is obtained. If the user is uncertain on
where to mark the traces, complete scenarios can be
executed.

2. Formulating the query. The developer selects a set of
terms, a query, which describe the feature. The tool checks
whether the words from the query are present in the
vocabulary of the source code (produced by LSI). If some
word is not present, then the tool suggests similar words or it
eliminates the word from the initial query.

3. Ranking the executed methods. Based on the LSI index,
the set of methods generated in step 1 is sorted based on the
similarity between the methods and the user query. The
ranked list of methods is presented to the user.

4. Examining the results. The programmer inspects the
methods ranked in step 3, starting with the methods on the
top of the list. For every method in the list, the developer
makes a decision whether the method belongs to the feature
or not. If it is part of the feature, then SITIR stops. If it is
not and new knowledge obtained from the investigated
documents helps to reformulate the scenario or to write a
better query, then the user is directed back to step 1 or 2, as
needed. The user may opt to reformulate the scenario, the
query, or both.

The feature location process based on SITIR is interactive, but the
user’s role is relatively simple. In our previous experience [23,
25] most users tend to look at less than ten methods before

interacting with the system to improve the results. The goal of
SITIR is to rank relevant methods within the top ten. Given the
complementary nature of the analyses employed in SITIR (that is,
textual and dynamic), the user can improve the results by either
reformulating the query or reducing the part of scenario which
will be executed via marking mechanism. The case studies
presented in the next section show that the SITIR is more
sensitive to query reformulation than trace size reduction,
however combining the results of the analysis of textual
information and the analysis of the execution traces produces
significantly better results than any of these techniques if used on
a standalone basis.

3. CASE STUDIES
In order to evaluate the performance of SITIR, we designed and
conducted several case studies. Our assumption was that SITIR
performs better than LSI used alone and better than using the
single execution trace alone.

We present here two different case studies. In the first case study
we used SITIR to locate three features in JEdit2 associated with
change requests. In the second case study, we replicated a
previously published case study for locating three features
associated with Eclipse3 bugs [25]. In the second case study, we
were able to compare the results obtained by SITIR with two
other approaches, namely Probabilistic Ranking Of Methods
based on Execution Scenarios and Information Retrieval
(PROMESIR) [25] and Scenario-based Probabilistic Ranking
(SPR) [3].

3.1 Design and objectives of the case studies
In these case studies we chose methods as the level of document
granularity. In other words, SITIR returns to the user a set of
ranked methods for investigation. Note that SITIR can be used
also with a class level granularity, where classes are returned to
the user. In order to compare SITIR with other techniques, we
assess the effectiveness of each feature locating techniques by
considering the ranking of a first method implementing the
feature, which is relevant to the change request. We consider a
method relevant to a change request if it will be modified in
response to it. All the features investigated in these case studies
are linked to explicit change requests or implicit ones (i.e., bug
descriptions). Clearly not all methods implementing a feature are
relevant to specific change requests. For example, most features
have a corresponding part of the GUI, which is usually easy to
find, but often does not change. Let’s assume the “print” feature
of a text editor program. It is likely that most such editors have a
menu item labeled “print”. If a change request states that we need
to add a new feature that prints the selected text (not a usual
feature in most editors), one will have to locate relevant methods
that implement the “print” feature and methods that implement
the “select text” feature. We are considering methods relevant to
a change request, as their identification can be matched against
available changes, thus providing an objective mechanism for
evaluation.

The goal of each feature location technique is to reduce the
programmer’s effort in finding such methods. Once such a
method is identified, other methods relevant to the change and to

2 http://www.jedit.org/
3 http://www.eclipse.org

the feature are inferred by following program dependencies [5] or
inspecting the history of common changes [41], etc. So, a feature
location technique is considered better than another one if it
returns at least one method relevant to the feature on a better
position in the list of ranked results. In such a situation, the user
needs to inspect fewer methods before she finds the relevant one.

We chose one large and one medium-size open-source systems to
show the scalability of our novel technique and to allow
replication of our case studies.

One of the goals of the presented case studies is to allow for
quantitative evaluation between different techniques. This is a
notoriously difficult task (see the related work section) as it is
hard to define the entire extent of the implementation of a feature
in large systems. One feature may be implemented by hundreds
of methods and many of them may contribute towards several
features. In order to have a gold standard against which we can
define objective measures, we narrow the extent of feature
implementation to those methods relevant to a change request.

For the first case study on JEdit, we located the starting point for
three distinct features, originally described in two change
requests. These features were implemented during a graduate
class project by students in our research lab, none of which co-
authored this paper. We used their implementations to verify the
correctness of the results produced by SITIR. In this case study
we also studied the extent to which query refinement and
selection of scenarios impacts the results returned by SITIR.

In the second case study on Eclipse, we use documented bugs to
asses our method and compare that with related approaches, as
reported in [25]. The bug description is considered as a change
request.

Each documented bug is used as a gold standard against which we
compare the results of the techniques. Indeed, the documentation
of each bug specifies which methods were changed to fix that
bug. We consider these changed methods as belonging to the
feature associated with the bug. One method may belong to more
than one bug (that is, changed in different bug fixes), but it is at
least exercised in the associated feature. We do not attempt to
identify defects (that is, the root cause of a bug) such as a
condition for infinite loop because SITIR works at the method
level and therefore, no information on the executed statements is
available. In order to allow replication of the results, we located
the same bugs as those studied in [25]. The following major
criteria were previously used to select those bugs:
• The bugs should be well-known, documented, and

reproducible;
• The bugs should have available and approved patches

applied in recent releases.

3.2 Objects of the Case Studies
JEdit 4.2 is an open source programmer’s text editor, which
consists of approximately 500 classes implemented in about 5,000
methods with about 88,000 lines of Java source code and internal
comments.

Eclipse is an open-source integrated development environment
(IDE) used both in the open-source and industrial development
settings. Eclipse is mostly written in Java, with some C/C++ code
used mainly for the widget toolkit, which we did not analyze

within this case study. We used version 2.1.3, which contains
approximately 7,000 classes with about 89,000 methods in more
than 8,000 source code files implemented in nearly 2.4 MLOC.

In both case studies we followed the approach for indexing and
ranking the source code methods with LSI briefly outlined in
Section 2.2. We built the corpus for Eclipse and JEdit by
extracting all comments and identifiers from all Java source code
files in these systems. The extracted source code is processed as
follows: predefined tokens are eliminated (such as, operators,
special symbols, numbers, Java programming language keywords,
Java standard library class names, etc.); the identifier names in the
source code are split based on the naming conventions observed
in Eclipse and JEdit while the original form of every identifier is
kept as well (for details on this procedure refer to the previous
work in [22, 25]); every document in the corpus is created with
the comments and identifiers corresponding to each method in
every software system. We used a dimensionality reduction
factor of 500, as in our previous case studies [25], which
adequately represents a semantic space of large programs such as
Eclipse. The Eclipse corpus has 56,861 unique terms encountered
in approximately 89,000 documents (methods) and the JEdit
corpus has 7,353 distinctive terms in about 5,000 documents.

3.3 Evaluation
In order to evaluate SITIR, we need a standardized measure to
compare with it other feature location techniques. We used the
effectiveness measure, introduced in [25], since it allows
comparing SITIR directly with other techniques such as
PROMESIR and SPR. We decided not to use standard
Information Retrieval measures such as precision and recall
because SITIR will rank all the executed methods. Thus, without
a threshold, recall will always be 100%, whereas precision will be
1/n, where n is the number of executed methods to a given
scenario. We could potentially utilize some configurable
threshold based on initial observations of SITIR performance
however such a solution would artificially increase the
complexity of the novel technique, whereas our major goal is to
keep that simple with as little overhead for the user as possible.

The rank of the first changed method related to the feature of
interest is used to define the effectiveness measure. Since the
objective of every feature location technique is to reduce the
developer’s effort during the location process, we measure this
effort as the number of methods which appear in the final ranked
list that the developer needs to investigate. The effectiveness
measure of a technique i, Ei is defined as the rank r(mi) of the
method mi, where mi is the top-ranked method according to the
gold standard among the methods that must be changed (that is,
implementing a part of the located feature, which is relevant to
the change request). A lower value for Ei indicates less effort,
hence a more effective technique.

3.4 Locating features in JEdit
The features we locate in the JEdit case study are based on two
change requests:
1. Add a “Search and mark all” menu item in the “Search”

menu, which will locate all matches to a search phrase and
add markers to all of the lines.

2. Currently jEdit shows a red dot at the end of every line.
Newline is the only whitespace symbol that jEdit shows.
Add a menu item “Show/Hide whitespace” under menu

“View” to allow the user to choose whether all whitespace
symbols (newlines, blanks, and tabs) will be shown. At this
stage you do not have to worry about editing of the text with
whitespace showing.

From the first change request we extracted two distinct features
affected by this change (#1 and #2 below) and from the second
change request we extracted one feature (#3 bellow):
1. “Search”: searching for the occurrence of the provided

search phrase.
2. “Add marker”: adding a marker to the selected line in the

text.
3. “Show whitespace”: showing whitespaces as a symbol in the

text.

In order to locate these features with SITIR, the scenarios
described in Table 1 have been defined and executed to obtain the
marked-traces. One of the co-authors of the paper with good
knowledge of JEdit formulated the scenarios. We also executed
one query for each feature, shown in Table 1 using LSI. Another
one of the co-authors, also with good knowledge of JEdit,
formulated the queries, independently of the previous co-author.
The first relevant methods encountered in the search results for
each feature are as follows:
• jedit.search.SearchAndReplace.find for the “search” feature;
• jedit.Buffer.addMarker for the “add marker” feature; and
• edit.textarea.TextAreaPainter.paintValidLine for the “show

whitespace” feature.
The effectiveness measure is computed based on the rank of these
methods (see Table 2) for each feature.
Given these scenarios, the tracing utility generated traces with the
following number of unique methods:
• 202 methods for the “search” feature;
• 304 methods for the “add marker” feature, and
• 284 methods for the “show whitespace” feature.
The list of executed methods extracted from an execution trace is
not ranked. One could rank them based on the order of their first
call. Given that such an ordering is not really related to the
change request, we do not define the effectiveness measure for a
single trace.

For the “add marker” feature the relevant method topped the
ranked list (see Table 2). For the “search” and “show whitespace”
features the top relevant methods are ranked on positions 14 and 7
respectively by SITIR. In these two cases we refined each query
by adding an additional term to each query, shown in parentheses
in the last column of Table 2. The LSI results and the SITIR
results were affected, as reflected by the number in the
parentheses in Table 2. The LSI ranking improved from 59 to 36,
and 56 to 43 respectively, while the SITIR ranks improved from
14 to 9 and from 7 to 5, respectively. These results show the
effect of refining the user queries on the effectiveness of LSI and
SITIR.
As discussed earlier, another way to improve the results is to
reduce the size of the traces by using marked-traces. We
investigated the effect of marking the scenarios on the
effectiveness of the results produced by SITIR. We attempted to
locate the same features without selecting marked traces, but
rather automatically recording the execution of the complete
scenario, including launching and closing JEdit. Such a usage is
likely when programmers know little about how the software
under analysis behaves and which features can be captured by
particular scenarios.

Table 2. Effectiveness of each technique for locating features
in JEdit. The results for refined queries are in parentheses

Feature ELSI ESITIR

Search 59 (36) 14 (9)

Add marker 5 1

Show whitespace 56 (43) 7 (5)

As expected, the resulting traces increased in size (for “search”
we collected 1,477 unique methods; for “add marker” – 1,478
unique methods, and for “show whitespace” – 1,462 unique
methods), however we did not observe significant drop of the
rankings of the first relevant method in the SITIR results (see
Table 3). Table 3 provides the results (that is, the ranks of the
best ranked relevant methods) for all possible combinations of
original and refined queries with methods captured with full and
marked-traces for the “show whitespace” and “search” features.

 Table 1. Scenarios (with marks) and queries for locating three features in JEdit

Feature Precise scenarios that exercise features LSI queries: original +(refined)

Search

The programmer opens a document, opens the Search and
Replace dialog by selecting the menu item Search | Find, puts
into the search textbox a word which exists in the current
document, starts tracing, clicks the button Find, waits until a
matched place is highlighted, and then stops tracing.

search find + (next)

Add marker
The programmer opens a document, starts tracing, selects the
menu item Markers | Add/Remove Marker, waits until a marker
is shown at the beginning of the text line, and then stops tracing.

add marker

Show whitespace

The programmer opens a document with whitespace hidden,
starts tracing, selects the menu item View | Show/Hide
Whitespace, waits until whitespace is shown, and then stops
tracing

whitespace text area visible +
(paint)

Since the method relevant for “add marker” was already ranked
on top, we did not change any parameters for that case.

Table 3. Results for different combinations of original and
refined queries with full and marked-traces while locating the
“show whitespace” and “search” features in JEdit with SITIR

Feature Trace Original
query

Refined
query

Full 23 23 Search
Marked 14 9

Full 25 25 Show
whitespace Marked 7 5

Based on our previous experience with using LSI for concept
location [24, 25] we assumed that the effectiveness of SITIR
would be most sensitive to the user queries. Users with little
knowledge of the software system or its domain will write poor
queries, while users with good knowledge of the software system
will write better ones.
In order to assess this sensitivity to user queries we ran several
queries formulated by several programmers based on the rules
described in Section 2.3. We asked four members of our research
lab to formulate queries which best describes each feature. These
queries and the results of LSI and SITIR are presented in Table 4.
The results of SITIR are obtained by using rankings produced via
the given queries to filter the same execution traces in each case
(for every feature we had a marked and full execution traces).
The users had different levels of experience with JEdit: the first
one (labelled with #1 in Table 4) never used JEdit, nor has he ever
seen its source code, but he is familiar with the application
domain. The other users had some knowledge of the JEdit source
code as they implemented other features for JEdit, which did not
relate to those used in this case study.
We observe that SITIR significantly reduces the search space
even in those cases when users formulate peculiar queries, given
the fact that they are unfamiliar with the system vocabulary and
thus produce low LSI ranks. This data does not support our initial
assumption and supports the fact that users do not have to
formulate precise queries to capture the feature of interest as this
query will be used to rank an already reduced search space of

methods, which are executed with respect to given scenario. The
data supports the idea that LSI and the execution traces each
capture different information about the implementation of features
in the source code, information which is complementary to each
other.

3.5 Locating features in Eclipse
We applied SITIR to locate three different features in Eclipse. In
this case study, the features are associated with bug descriptions.
As this is a replicated case study, the complete details of the
original case study design can be found elsewhere [25]. We
provide here concise descriptions of these bugs:
1. Bug #51384, described as “Double-click-drag to select

multiple words doesn’t work”.
2. Bug #317795, described as “UnifiedTree should ensure

file/folder exists”.
3. Bug #741496, described as “The search words after ' " ' will

be ignored”.

We identify a feature relevant to each bug description:
• “select multiple words via double-click and drag” for bug

#5138;
• “add files and folders to UnifiedTree” for bug #31779
• “search the text in help documentation” for bug #74149.
We refer to these features with a shortened form later in the paper
to improve readability: “select”, “add files”, and “search”,
respectively.
Table 5 describes the scenarios used to obtain the marked-traces
for each feature and the queries formulated (used and formulated
in the original experiment [25]).
While executing every scenario, the marked-traces for each
scenario contained the following number of unique methods:
• 721 methods for the “select” feature;
• 740 methods for “add files” feature; and
• 771 methods for the “search” feature.

4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149

 Table 4. Results for different queries produced by four developers for each of the features in the case study
 (the developer ID is indicated in the column DevID)

Feature DevID Query LSI SITIR
(marked)

SITIR
(full)

1 search find phrase word text 61 6 11
2 search final all forward backward case sensitive 243 20 57
3 find search locate match indexof findnext 32 6 13 Search

4 searchdialog find findbtn searchselection save searchfileset searchandreplace 189 11 36
1 marker select word display text 26 1 5
2 add remove marker markers 1 1 1
3 select highlight mark change background 3242 160 662 Add marker

4 buffer addmarker marker selection 20 4 5
1 red dot newline whitespace view show display tab 956 30 152
2 show hide whitespace blank space display 626 48 130
3 symbol replace changecolor setvisible addlayer whitespace loadsymbol 497 16 104

Show
whitespace

4 userinput textareapainter paint whitespace newline pnt 78 8 23

The first relevant methods identified with SITIR for every feature
associated with Eclipse bugs are:
• JavaStringDoubleClickSelector.doubleClicked for the

“select” feature;
• UnifiedTree.createChildNodeFromFileSystem for the “add

files” feature; and
• QueryBuilder.tokenizeUserQuery for the “search” feature.
Table 6 presents the effectiveness measures for LSI, PROMESIR,
SPR, and SITIR. We can observe that the results produced with
SITIR are comparable to those obtained with PROMESIR. In
each case, the best ranked relevant method was in the second
position. Also, the output of the tracing tool used in SITIR, based
on marked-traces, is of the same order of magnitude as SPR (note
that ESPR in Table 6 is based on the average case scenario, thus, in
order to be compared with the output of the SITIR tracing tool,
ESPR the numbers should be doubled). We also observe that
SITIR significantly outperforms approaches based on SPR or LSI
used alone.

Table 6. Effectiveness of each technique for the
Eclipse features

Feature ELSI EPROMESIR ESITIR ESPR

Select 7 1 2 268
Add files 2 1 2 170
Search 5 3 2 456

3.6 Discussion of the Results
As expected, the results of the second case study confirm that
SITIR outperforms LSI and SPR in locating bug related features
in Eclipse. The SITIR results for the Eclipse case study are very
close to the PROMESIR results. The major differences between
SITIR and PROMESIR lie in the way tracing is done and how the
results of the two types of analyses are combined. Compared to
PROMESIR, SITIR requires a single scenario in most cases and

only one execution trace to be collected. Note that the size of the
set of executed methods in SITIR is comparable with the one
obtained with SPR alone, however in order to obtain that, SPR
requires multiple (at least two) scenarios. In addition, the
combination of the analysis results is more transparent in the
SITIR case. The JEdit case study showed that SITIR is
significantly less sensitive to poor user queries than LSI alone.
We can also see that using marked-traces, not only reduces the
size of the traces, but also improves the effectiveness of SITIR.
Yet, even with full traces, SITIR gives good results when user
queries are refined.

3.7 Threats to Validity
In this section we discuss some of the issues that might have
affected the results of the case studies and may limit the
interpretations and generalizations of the results.

The first issue is the extent to which the software systems used in
the case studies are representative of those used in practice.
While Eclipse is a real-world program, JEdit is rather average
sized. This threat can be reduced if we experimented with other
software systems of different sizes taken from other domains.

Another issue is the selection of scenarios to obtain the execution
traces using SITIR technique. Since we are not experts in Eclipse
and JEdit we can not claim that our scenarios are the best ones to
capture the features which are being located. Thus, depending on
the chosen scenarios, the results may differ.

The queries formulated to produce the LSI-based rankings are
dependent on the programmer’s knowledge, thus the final results
are also sensitive to user query to some extent.

In our case studies the effectiveness measures for SPR is defined
on an average case scenarios (see [25] for details). In reality, the
developer may find one of the related methods in the execution
trace much faster, for example using search techniques. Since we
have the large difference between the SITIR and SPR accuracies,

Table 5. Scenarios and queries for locating the features in Eclipse

Feature Simplified scenarios that exercise the features LSI Query

Select

The programmer opens Java code, starts tracing, double clicks on some Java
code and holds the left mouse button, moves the mouse, and releases the mouse
button, waits until the first clicked Java word is highlighted, and then stops
tracing.

mouse double click up down
drag release
select text offset document
position

Add files

The programmer starts Eclipse and creates a file using the file system in a
project. Because every other refreshing, the file just created shows or
disappears, the programmer traces Eclipse in two scenarios: scenario 1: after
refreshing, the file does not show; 2. after refreshing, the file shows. Only traces
in the second scenario are collected.
In every scenario, the programmer starts Eclipse and creates a file using the file
system in a project. He starts tracing, right clicks in the navigator view, the
clicks the menu item “refresh”, waits until the focus on file disappears (in
scenario 1) or shows (in scenario 2), and then he stops tracing.

unified tree node file system
folder location

Search

The programmer invokes the help system of Eclipse, he searches with arbitrary
words to warm up the system, then he formulates a query which contains
unclosed double quote mark, starts tracing, waits until “Nothing found”
window appears, and then he stops tracing.

search query quoted token

modifying the formula for computing the effectiveness of these
techniques will not drastically change the results.

Finally, the features or bug fixes may be implemented by more
methods than those which are suggested in official bug fixes (as
in the case of Eclipse). This observation does not impact the
results of this case study, since considering more candidate
methods will only increase the possibility of identifying one of
those methods earlier in the process of feature location.

4. Related Work
While existing techniques for feature location broadly fall into
three categories based on the type of analysis they use (that is,
static, dynamic, and hybrid), we focus here on dynamic and
hybrid techniques. A good overview of static techniques is
presented in [23].

Wilde and Scully [36] introduced software Reconnaissance based
on analyzing overlapping execution traces of test cases, further
formalized by Deprez and Lakhotia [8]. In order to identify a
feature of interest, the developer needs to formulate at least two
test cases, where the first one exercises the desired feature and the
second one does not. In its simplest form, the analysis takes the
set of software components executed in tests with the feature and
subtracts the set of such components executed in the remaining
tests. The result contains elements of the source code relevant to
the feature of interest. The technique is further developed in [33]
and adapted to be applied in distributed systems in [9].

Wong et al. [38] use metrics-based approach to quantify the
disparity between a feature and a component, the concentration of
a feature in a component, and the dedication of a component to a
feature. An extended version of this approach characterizes the
distance between features using both a static method and a

dynamic one, which takes into account a system operational
profile [37].

The Reconnaissance approach is also extended by Antoniol and
Guéhéneuc (i.e., SPR) [3] with statistical hypothesis testing based
on the events which occur in the marked traces, knowledge-based
filtering, and support for multi-threaded applications using
processor emulation techniques such as Valgrind for trace
collection in C/C++ and Jikes RVM for Java programs.

Eisenberg and De Volder [12] addressed the problem of multiple
vs. single traces, by using a complete set of test cases in the target
system with one test case per feature. These test cases are
partitioned manually into feature-specific subsets which are
subsequently used to obtain execution traces. Based on the
collected traces for feature-specific test cases, the methods are
ranked using heuristic-based criteria.

Eisenbarth et al. [11] proposed a first hybrid technique, by
combining static and dynamic analysis to identify features in the
source code. The dynamic analysis is performed similarly to
Reconnaissance. Formal concept analysis is applied on the
resulting execution traces to link the features together, which is
used to guide the static analysis. Feature location is performed by
means of set operations on concepts, which requires running at
least several test cases to identify a single feature.

One of the most recent hybrid approaches [25], PROMESIR
combines two existing techniques for feature identification:
Scenario-based Probabilistic Ranking [3] of events and an
information-retrieval-based technique that uses Latent Semantic
Indexing [24]. The developer, using SPR, formulates at least two
scenarios: one exercising the feature of interest and one not. With
the resulting execution traces, SPR produces a set of ranked
methods relevant to the feature. In addition, the developer

Table 7. Summary of feature location approaches, which use dynamic analysis. The techniques that have names are identified
with their acronym and a reference, while the other approaches are identified by the first author of the publication where it was

presented and the relevant reference. In the case of multiple papers on the same technique we referenced the latest.

 DFT
[12]

Simmons
[33]

SPR
[3]

PROMESIR
[25]

Edwards
[9]

Reconnaissance
[36]

Eisenbarth
[11]

Exec. slices
[38] SITIR

Scenarios/traces
used per feature one two two or more two or more two or more two or more multiple two or more one

Trace filtering

heuristics
based on
multiple
traces

trace
intersection

probabilistic
ranking of
the events

+ static
analysis

probabilistic
ranking of the

events
+ IR

weighted
relevance of

events
+ causality

analysis

trace intersection FCA + static
analysis

trace
intersection IR

Comparison
with other
approaches

Recon. × grep and
FCA SPR and LSI × × × × PROMESIR,

SPR, LSI

Tracing
technique

AspectJ
instrum. instrum. processor

emulation

processor
emulation and

Jikes RVM
instrum. instrum.

compiled with
profiling
options –
instrum.

instrum. JPDA

Additional
requirements

large suite
of test cases

source code
is available

source code
is available

source code is
available

source code
is available

source code is
available

source code is
available

source code
is available

source code is
available

Language Java C C/C++/Java C/C++/Java C/C++ C C C Java

Case study:
software systems

HTMLUnit,
HTTPUnit,

Axion
Apache

Firefox,
Mozilla,
Chimera,

ICEBrowser,
JHtoDraw,

XFIG

Mozilla,
Eclipse

Gunner,
Joint

STARS
XREF XFIG SHARPE Eclipse, JEdit

formulates a query which describes in natural language terms the
feature of interest. Using LSI, all the methods in the system are
ranked with respect to this query. The rankings of the two
approaches, that is, SPR and LSI, are combined via an affine
transformation. The authors evaluated this approach on several
case studies and the results show that the proposed approach
significantly improves the effectiveness of feature location as
compared to SPR and LSI techniques if used standalone.

The PROMESIR approach is of interest here as the results in [25]
show that dynamic and textual data capture complementary
information relevant to the implementation of features.
PROMESIR is also the closest technique to SITIR, the main
differences consisting in how many and what type of scenarios are
executed, and how the trace data and the LSI-based rankings are
combined. Table 7 summarizes the main features of all these
techniques discussed above, highlighting the features that set
them apart from each other.

A number of dynamic approaches exist, which use single traces
per feature. They are different from the previous approaches as
they focus on identifying multiple features at a time or
relationships among them. In particular, these approaches focus
on feature interactions [10, 30, 31], feature evolution [15], hidden
dependencies among features [13] as well as identifying canonical
set of features for a given software system [17].

5. CONCLUSIONS AND FUTURE WORK
The results of using SITIR for feature location underscores
previous findings, which showed that hybrid techniques for
feature location are very effective, especially when applied to
large systems. SITIR is unique among the hybrid feature location
techniques as it generates a set of methods relevant to a feature of
interest, extracting them from a single (marked-) trace. Defining
the scenarios is straightforward as they do not have to be very
precise. Tracing is unobtrusive for Java programs, with very little
execution time overhead. Users can formulate queries that
describe in natural language the feature of interest, to rank these
methods. Results show that in most cases the relevant methods to
the located features rank in the top ten. SITIR is less sensitive to
poor user queries as the search using LSI alone. These results are
comparable with the state of the art in hybrid techniques for
feature location and obtained with less user effort (that is, one
trace vs. two or more). All these attributes of SITIR point to a
high usability, as programmers in industry may be able to employ
these techniques.

Combinations of various complementary techniques for feature
location are poised to revolutionize software evolution and open
new research directions. We are experimenting with other
possible combination of information sources to support feature
location and other software evolution tasks. Specifically, we are
combining dependency analysis with IR to improve static concept
location. The end goal is to devise the best technique to combine
all available sources of information used in feature location:
execution traces, program dependencies, and textual information.

6. ACKNOWLEDGEMENTS
This research was partially supported by grants from the US
National Science Foundation (CCF-0438970), US National
Institute for Health (NHGRI 1R01HG003491), and the 2006 IBM
Eclipse Innovation Awards.

7. REFERENCES
[1] Aho, A. V., "Pattern matching in strings", in Formal

Language Theory: Perspectives and Open Problems, New
York Academic Press, 1980, pp. 325-347.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E., "Recovering Traceability Links between Code and
Documentation", IEEE Transactions on Software
Engineering, vol. 28, no. 10, October 2002, pp. 970 - 983.

[3] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification:
An Epidemiological Metaphor", IEEE Transactions on
Software Engineering, vol. 32, no. 9, 2006, pp. 627-641.

[4] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The
Concept Assignment Problem in Program Understanding", in
Proc. of 15th IEEE/ACM International Conference on
Software Engineering (ICSE'94), 1994, pp. 482-498.

[5] Chen, K. and Rajlich, V., "Case Study of Feature Location
Using Dependence Graph", in Proc. of 8th IEEE International
Workshop on Program Comprehension (IWPC'00), 2000, pp.
241-249.

[6] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"Recovering Traceability Links in Software Artefact
Management Systems", ACM Transactions on Software
Engineering and Methodology, 2007.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for Information
Science, vol. 41, 1990, pp. 391-407.

[8] Deprez, J.-C. and Lakhotia, A., "A formalism to automate
mapping from program features to code", in Proc. of 8th
IEEE International Workshop on Program Comprehension
(IWPC'00), 2000, pp. 69-78.

[9] Edwards, D., Simmons, S., and Wilde, N., "An approach to
feature location in distributed systems", Software
Engineering Research Center 2004.

[10] Egyed, A., Binder, G., and Grunbacher, P., "STRADA: A
Tool for Scenario-Based Feature-to-Code Trace Detection
and Analysis", in Proc. of IEEE/ACM 29th International
Conference on Software Engineering (ICSE'07), 2007, pp.
41-42.

[11] Eisenbarth, T., Koschke, R., and Simon, D., "Locating
Features in Source Code", IEEE Transactions on Software
Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.

[12] Eisenberg, A. D. and De Volder, K., "Dynamic Feature
Traces: Finding Features in Unfamiliar Code", in Proc. of
21st IEEE International Conference on Software Maintenance
(ICSM'05), 2005, pp. 337-346.

[13] Fischer, M., Pinzger, M., and Gall, H., "Analyzing and
Relating Bug Report Data for Feature Tracking." in Proc. of
IEEE Working Conference on Reverse Engineering
(WCRE'03), 2003, pp. 90-101.

[14] Frakes, W. and Kang, K., "Software Reuse Research: Status
and Future", IEEE Transactions on Software Engineering,
vol. 31, no. 7, 2005, pp. 529-536.

[15] Greevy, O., Ducasse, S., and Girba, T., "Analyzing Feature
Traces to Incorporate the Semantics of Change in Software
Evolution Analysis", in Proc. of 21st IEEE International
Conference on Software Maintenance (ICSM'05), 2005, pp.
347-356.

[16] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K., "Advancing
candidate link generation for requirements tracing: the study

of methods", IEEE Transactions on Software Engineering,
vol. 32, no. 1, January 2006 2006, pp. 4-19.

[17] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh,
A., "On Computing the Canonical Features of Software
Systems", in 13th IEEE Working Conference on Reverse
Engineering (WCRE'06), Benevento, Italy, 2006.

[18] Kuhn, A., Ducasse, S., and Gîrba, T., "Semantic Clustering:
Identifying Topics in Source Code", Information and
Software Technology, vol. 49, no. 3, March 2006, pp. 230-
243.

[19] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., "An
Information Retrieval Approach for Automatically
Constructing Software Libraries", IEEE Transactions on
Software Engineering, vol. 17, no. 8, 1991, pp. 800-813.

[20] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information",
in Proc. of 23rd International Conference on Software
Engineering (ICSE'01), 2001, pp. 103-112.

[21] Marcus, A. and Maletic, J. I., "Identification of High-Level
Concept Clones in Source Code", in Proc. of Automated
Software Engineering (ASE'01), 2001, pp. 107-114.

[22] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of
Traceability Links Between Software Documentation and
Source Code", International Journal of Software
Engineering and Knowledge Engineering, vol. 15, no. 4,
October 2005, pp. 811-836.

[23] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A., "Static Techniques for Concept Location in
Object-Oriented Code", in Proc. of 13th IEEE International
Workshop on Program Comprehension (IWPC'05), 2005, pp.
33-42.

[24] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in
Source Code", in Proc. of 11th IEEE Working Conference on
Reverse Engineering (WCRE'04), 2004, pp. 214-223.

[25] Poshyvanyk, D., Guéhéneuc, G. Y., Marcus, A., Antoniol,
G., and Rajlich, V., "Feature Location using Probabilistic
Ranking of Methods based on Execution Scenarios and
Information Retrieval", IEEE Transactions on Software
Engineering, vol. 33, no. 6, June 2007, pp. 420-432.

[26] Rajlich, V., "Changing the Paradigm of Software
Engineering", in Communications of ACM, vol. August,
2006, pp. 67-70.

[27] Rajlich, V. and Gosavi, P., "Incremental Change in Object-
Oriented Programming", in IEEE Software, 2004, pp. 2-9.

[28] Reiss, S. P. and Renieris, M., "Generating Java Trace Data",
in Proc. of the ACM Conference on Java Grande, 2000, pp.
71-77.

[29] Robillard, M., "Automatic Generation of Suggestions for
Program Investigation", in Proc. of Joint European Software

Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 2005, pp. 11 - 20

[30] Salah, M. and Mancoridis, S., "A hierarchy of dynamic
software views: from object-interactions to feature-
interactions", in Proc. of 20th IEEE International Conference
on Software Maintenance (ICSM'04), 2004, pp. 72-81.

[31] Salah, M., Mancoridis, S., Antoniol, G., and Di Penta, M.,
"Scenario-driven dynamic analysis for comprehending large
software systems", in Proc. of 10th European Conference on
Software Maintenance and Reengineering (CSMR'06), 2006.

[32] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-
Shanker, K., "Using Natural Language Program Analysis to
Locate and Understand Action-Oriented Concerns", in Proc.
of International Conference on Aspect Oriented Software
Development (AOSD'07), 2007, pp. 212-224.

[33] Simmons, S., Edwards, D., Wilde, N., Homan, J., and
Groble, M., "Industrial tools for the feature location problem:
an exploratory study", Journal of Software Maintenance:
Research and Practice, vol. 18, no. 6, 2006, pp. 457-474.

[34] Szegedi, A. and Gyimothy, T., "Dynamic Slicing of Java
Bytecode Programs", in Proc. of 5th IEEE International
Workshop on Source Code Analysis and Manipulation
(SCAM'05), 2005, pp. 35-44.

[35] Tonella, P. and Ceccato, M., "Aspect Mining through the
Formal Concept Analysis of Execution Traces", in Proc. of
11th IEEE Working Conference on Reverse Engineering
(WCRE'04), 2004, pp. 112 - 121

[36] Wilde, N. and Scully, M., "Software Reconnaissance:
Mapping Program Features to Code", Software Maintenance:
Research and Practice, vol. 7, 1995, pp. 49-62.

[37] Wong, W. E. and Gokhale, S., "Static and dynamic distance
metrics for feature-based code analysis", Journal of Systems
and Software, vol. 74, no. 3, February 2005, pp. 283-295.

[38] Wong, W. E., Gokhale, S. S., Horgan, J. R., and Trivedi, K.
S., "Locating program features using execution slices", in
Proc. of IEEE Symposium on Application-Specific Systems
and Software Engineering and Technology (ASSET'99),
1999, pp. 194-203.

[39] Ye, Y. and Fischer, G., "Supporting Reuse by Delivering
Task-Relevant and Personalized Information", in Proc. of
IEEE/ACM International Conference on Software
Engineering (ICSE'02), 2002, pp. 513-523.

[40] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F.,
"SNIAFL: Towards a Static Non-interactive Approach to
Feature Location", ACM Transactions on Software
Engineering and Methodologies, vol. 15, no. 2, 2006, pp.
195-226.

[41] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.,
"Mining Version Histories to Guide Software Changes",
IEEE Transactions on Software Engineering, vol. 31, no. 6,
June 2005, pp. 429-445.

