
When and How to Visualize Traceability Links?
Andrian Marcus, Xinrong Xie, Denys Poshyvanyk

Department of Computer Science
Wayne State University

Detroit MI 48202

{amarcus, xxr, denys}@wayne.edu

ABSTRACT
This position paper discusses the situations when visualizing
traceability links is opportune, as well as what information
pertaining to these links should be visualized and how.

It also presents a prototype tool, which is used to visualize
traceability links to provide support for the user during
recovery, maintenance, and browsing of such links.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming environments –
Graphical environments, integrated environments, interactive
environments, and programmer workbench.

General Terms
Documentation.

Keywords
Traceability, software visualization

1. INTRODUCTION
Traceability among various software artifacts is an important
issue in software engineering as it supports a variety of tasks
such as testing, re-documentation, or comprehension. Much
work in the area is focused on the recovery of such traceability
links between artifacts [2, 7, 13, 15, 16], as in many cases these
links are not explicitly represented in the software system. In
other cases, parts of the system evolve at different speeds and
the existing links are not updated. Other work in the area is
focused on the representation [10, 12, 17, 18, 22] and
maintenance [1, 4] of traceability links.

The software maintenance research community is developing
tools that support users in better understanding and changing
existing software. In achieving these goals, such tools provide
the user with a wealth of information about the software system.
Traceability links are often needed to support such tasks and
they should also be used with this type of tools. In order to
achieve that, we need to establish in what context and

circumstances traceability links should be incorporated into
maintenance tools and how they should be presented to the user.

One can argue that representing and navigating traceability links
is a trivial matter, as they can be shown as a simple matrix, a
graph, or a set of document pairs. In contrast, we advocate in
this paper that visualizing traceability links is important, non
trivial, and considerable support is needed to recover, browse
and maintain these links.

In support of our position, we discuss the elements and
properties of the traceability links that lend themselves for
visualization. We also propose a set of high level requirements
for a general visualization tool that would support browsing of
traceability links. Finally, we present a prototype of a software
visualization tool we are working on, which implements some of
these requirements.

Requirements for visualization of traceability links should result
from a discussion in the research community and industry
practitioners. This position paper desires to be an opening
statement in such a discussion.

2. ELEMENTS AND PROPERTIES OF
TRACEABILITY LINKS
When dealing with traceability links, one has to keep track of
several things. Traceability links have intrinsic components:
source and target. These elements, which indicate various
software artifacts, have several properties that are important:
artifact name; artifact type (e.g., requirement, design diagram,
test case, manual, etc.); location; creation time; update time;
version (e.g., the version in CVS for example); etc.

In addition to the properties of the source and the target, a link
also has several general properties such as: discovery method
(e.g., automatic, semi-automatic, manual, explicit), which
indicates how this link was identified; creation time; update
time; documentation, which can contain author information and
rationale description; version, which also provides a reference to
the previous structure of the link that evolved into this current
version; usage history, which shows when this particular link
has been browsed by a user; status (e.g., active or deleted); etc.
Some of these properties are independent, while others are
composite (e.g., version depends on update time).

The elements and properties of traceability links determine
many categories of such links. Different tasks may require
access to a specific set of links, based on their properties. For
example, during the maintenance of such links, the user may
need to access only those links that may not be consistent
anymore (i.e., either their source or target changed). As no two

links are created equal, capturing and presenting this additional
information to the user is important.

Some categories are already defined in the literature based on
other information. For example, some classifications are based
on a meta-model for requirement traceability [17], which defines
four types of traceability links: Satisfies Links, Dependency
Links, Evolves-To Links, and Rationale Links. Satisfies Links
and Dependency Links form a group called product-related,
which describe properties and relationships of design objects,
while the Evolves-To Links and the Rationale Links belong to a
second group called process-related, which can be captured only
by looking at the history of actions taken in the traceability
process itself.

Action-centric views on traceability can be created. For
example, traceability links are also captured by Pohl’s
dependency model [16], eighteen different dependency links are
categorized into five classes: Condition Links, Content Links,
Documents Links, Evolutionary Links, and Abstraction Links.
Leads To and Modifies links are defined between requirements
and decisions, while Implies and Creates links exist between
decisions and design objects [18].

Traceability data also determines various types of links [6]:
Product Data, Supplementary Product, Process Observation
Data, and Dependency Data, which provides a data-centric view
on traceability.

A recovery method-centric view is presented in [5]: Lost Links,
which are recovered by a recovery tool but not traced by users;
Warning Links, which are traced by the user but missed by the
tool; False Positive Links, which are recovered by the tool but
classified as false positive by the user; and Normal Links, which
are recovered by the tool and confirmed by the user.

Probably the most common classification of traceability links is
the artifact-centric view, which may be created based on the
type of the source and target artifacts. At a high level, one
dimension distinguishes between vertical traceability and
horizontal traceability [14]. A second dimension takes into
account types of links among items, which can be either explicit
or implicit (this property can be used to generate recovery
method-centric view as well). Another dimension divides
traceability links into Structural and Cognitive links.

We want to see in a traceability management tool (which would
of course include a visualization component) the means that will
allow the user to access and update the link properties and
define their own categories (or views) of interest, based on the
linkage properties. Each view may be best suited for specific
tasks. For example, one can define a view based on how many
times the links were updated, used or investigated.

3. WHY AND WHEN DO WE NEED TO
VISUALIZE TRACEABILITY LINKS?
There is no standard way to store or represent traceability links.
Traditionally, they are stored as a matrix and represented as
graphs. While simplicity is the main advantage of the traditional
approaches, they are unsuitable for the representation of all the
information relevant to the traceability links. In addition to their
intrinsic elements, traceability links have several properties (see
section 2) and recent research defined several types of
traceability links based on various criteria (see section 2). These

attributes provide useful information to the user during many
engineering or maintenance tasks, so representation of such
information in conjunction with the traceability links is quite
desirable.

Many software analysis tools developed today to support
software evolution are integrated with IDEs, they have a
visualization component, and are designed to interface with
other similar tools. When information about traceability links is
needed while using such a tool, it makes more sense to create a
representation that matches the one used by the tool (or IDE)
than to use a traditional representation of such links. In such
cases, visualizing traceability links will help supporting software
analysis and understanding.

One can still argue that sophisticated visualization is still not
needed as, given a source artifact, it is easy to simply list all
linked artifacts and their properties. While this is true, there are
additional scenarios when simple, but more powerful
visualization techniques should be used. As discussed in section
2, the properties of traceability links determine several views
over the links. Thus, when showing all the links with a given
source, we need to differentiate between the multitude of links
types, as only some may be of interest to the user. More than
that, sometimes developers work with several artifacts at the
same time (e.g., parts of the source code) and they need to see
all the related artifacts to those under analysis, or an intersection
of them. It is thus desirable to display at the same time all the
traceability links associated with these artifacts and to provide
visual differences between links to or from different artifacts, as
well as allow the users to visually filter out elements that are not
of interest. Once again, to support such user needs, visualization
is needed and it has to be quite powerful (i.e., beyond a simple
list of artifacts).

Visualizing different views of traceability, based on the linkage
properties, will support the user in solving development and
maintenance problems, as well as in gaining a better
understanding of the system.

In addition, visualizing traceability links will directly support
three main activities related to these links: recovery, browsing
and maintenance of traceability links. Browsing, in turn,
supports other software engineering tasks, as discussed before.

There is no completely automated traceability recovery process,
as they all include a human component. Decisions on the links
suggested by a tool must be taken by the user. In these
situations, recovery-method centric view may be visualized and
help the user with the decision. For example, during the
recovery of traceability links, the user may need to know that
there are multiple links from a given source artifact and how
many of them are false positives.

Finally, traceability links, once recovered, need to be maintained
in a consistent way to be useful in other processes or tasks.
During the maintenance of the traceability links, developers
need to have access to all relevant artifacts and link properties.
They also must be able to change these properties and links.
Once again, visualization would be a plus in this task.

4. REQUIREMENTS FOR VISUALIZING
TREACEABILITY LINKS
Based on the situations that warrant the use of visualization to
represent traceability links and on the information that needs to
be visualized, we are proposing a set of high level requirements
for visualizing traceability links to support their recovery,
browsing, and maintenance.

Such a tool should be able to:

1. Visualize and store traceability links among various
artifacts, regardless of the extraction methodology used;

2. Interface or integrate with traceability link recovery tools;

3. Allow the user to browse the traceability links through
multiple types of user interactions;

4. Allow the user to add, delete and edit the properties of
existing links and their connecting artifacts;

5. Seamlessly integrate with an IDE to support a common
look and feel for the software artifacts and the traceability
links. Changes on one side (i.e., IDE or links) should
propagate to the other;

6. Interoperate with other software engineering tools (e.g.,
analysis tools, document management tools, etc.);

7. Capture and maintain browsing history for traceability
links;

8. Provide comprehensive configuration management and
change tracking facilities, focused on the link properties
and integrated with the source code management tools;

9. Support various data representation formats;

10. Support user querying and filtering of the traceability links;

11. Offer flexible and user customizable views of the
traceability data;

12. Analyze and summarize the data on the traceability process
and links.

This is of course a non exhaustive list, which we hope to further
expand and change (if needed) following discussions with
fellow researchers in the community.

5. VISUALIZING AND REPRESENTING
TRACEABILITY LINKS IN PRACTICE
Based on these high-level requirements, we developed a
prototype tool, called TraceViz (see Figure 2). Some of the
requirements are already refined and implemented (partially) in
this prototype.

TraceViz is integrated into the Eclipse IDE as a plug-in and its
implementation is based on an open-source visualization Eclipse
plug-in, Creole [11] – requirement #5. TraceViz is linked with
the Eclipse text editor and there is easy navigation between the
TraceViz view and the source code.

TraceViz is integrated (in part) with our tool [13], which uses
latent semantic indexing to recover traceability links between
source code and external documentation – requirement #2.

However, the tool could be used in conjunction with any other
recovery method.

The traceability link data is stored in a simple XML format,
which captures all the elements and properties of the links (see
Figure 1 – requirement #1. This format is of course open to
debate and modifications. Arguments exist to organize the data
based on artifacts, rather than the links, as most software
maintenance tools use such a representation. This format is
adopted for simplicity at this stage.

TraceViz has some limited ability to analyze the traceability
data. It can use the stored information to extract views, based on
user specified values of link attributes – requirements #11 and
#12. The current prototype supports the following views :

• Recovery method-based view – groups manually recovered
vs. automatically recovered links, as well as the four groups
defined in [5] (see section 2);

• Consistency-based view – groups together links whose
elements changed or did not change;

• Artifact-based view - groups together links with the target
of the same type.

The user can define additional views and categories, based on
other attributes, or group of attributes. The data for these
categories is saved together with the project in separate files.
TraceViz provides two mechanisms to visualize the categories:
color and position.

It can handle several document types, through Eclipse, in
addition to the source code and it allows the user to add and
delete links, as well as to modify their properties manually –
requirement #4.

5.1. The TraceViz User Interface
TraceViz uses standard Eclipse views to host the major
components of the user interface (UI). The TraceViz UI has
three major parts (see Figure 2):

1. The elements area, on the left, which contains the source
and target browsers;

2. The link area, in the middle, which shows the links for a
specific source or target (one of them is selected in the

<Link>
<Elements>

 <Source>
 <Name> </Name>

 <Artifact type> </Artifact type>
 <Path> </Path>

…
 </Source>
 <Target>
 <Name> </Name>
 <Artifact type> </Artifact type>
 <Path> </Path>

…
</Target>
</Elements>
<Attributes>

…
</Attributes>

</Link>

Figure 1. XML format of the traceability link data

Figure 2. The TraceViz interface. The TraceViz view has three main areas: (1) the elements area, on the left, which contains the
source and target browsers; (2) the link area, in the middle, which shows the links for a specific source or target (one of them is

selected in the view); (3) the information area, on the right, which contains the link properties and browsing history

view). The links are grouped into categories, based on the
chosen view (at the bottom). Each small colored square
corresponds to a link, while a group of links in a large,
labeled square correspond to a type of links. Links colored
with the same color also form another type of link, based
on different attributes.

3. The information area, on the right, which contains the link
properties and browsing history. The link panel shows all
the available attributes of the link and their values, while
the browsing history panel shows the sequence of the links
and artifact that were visited by the user using TraceViz.

Additional components may be added to these as well.

5.2. Using TraceViz
Figure 2 shows how TraceViz visualizes traceability links for
the GanttProject (http://sourceforge.net/projects/ganttproject/). This
is an open-source Java software with external documentation
available in the form of user and developer manuals. We
manually recovered and encoded in XML the links for this
example.

The Eclipse user, while editing any file in the project, may
launch TraceViz and the edited document becomes
automatically the source of the traceability links. This is
highlighted in the source browser. In Figure 2 the
WeekendCalendarImpl.java file is the selected source for the
traceability links. All links that have this file as their source
artifact are represented as small squares in the middle, link area.

http://sourceforge.net/projects/ganttproject/

The links are grouped in larger squares, corresponding to the
artifact-centric view (selected at the bottom of the window).
This GanttProject file is linked to four types of documents from:
Handbook, Developer Guide, Test, and Data. Each group of
documents may be browsed directly from the link area or the
target area.

In addition, color is used to denote the classification proposed in
[5] (see section 2 and Table 1)

Table 1. Mapping of the types of links defined in [5] to
colors. The user can define specific mapping.

 Normal links

 Lost Links

 Warning Links

 False Positives

Every link in the link area may be selected by a simple mouse
click. Upon selection, the corresponding square is highlighted –
in Figure 2 the second link from the top left is selected. This
link has the WeekendCalendarImpl.java source, the GanttChart
target, which is in the Handbook and it was marked as false
positive (green) during recovery. Once the link is selected, the
Link panel on the right displays all the attributes of the selected
link (see Figure 2). Also, the Browsing history (on the right
hand side) will capture the selection of the link and the time.
Selected links may be deleted or edited – any information from
the four browsers may be changed.

There is a third way to access links in TraceViz, through the
target browser. By selecting any document from there,
TraceViz will display all links that have that document as a
target element. The user can choose to refresh the screen
automatically or not. If the screen is refreshed, the previously
displayed links are deleted, if not they are rearranged with the
new ones. So, one can visualize for example all links that have
WeekendCalendarImpl.java as the source artifact together with
all links that have GanttChart as the target artifact.

For maintaining traceability links TraceViz supports the
following tasks: defining link type, mapping links types to
colors, adding/deleting/modifying traceability links, and
documenting traceability links. The user can create
documentation for the links with a predefined format, which can
be linked to the corresponding data in the XML file.

The source and target browsers may also be used to add new
links with the buttons at the bottom of the screen. Once a link is
added, the user is required to insert all the elements and
attributes of the link.

The link attribute browser (top right) may be used not only for
editing the link attributes, but also to define views and
categories. This feature is yet to be implemented.

To better support browsing, TraceViz allows query-based
artifact/link search, filtering and sorting traceability links and
performing logical operations on sets of artifacts and links.
TraceViz also provides keyword searching; the user needs to
input the keyword and choose the category for searching such as
artifact name, link creation time, etc. Regular expression
matching is used to find the results. The results are returned in
the link area. The displayed links may be filtered; the user

needs to choose the category first and define the condition for
the filter such as link update time between 11:00 05/14/2004 and
22:00 08/20/2005. A sorting function allows the user to re-order
the display based on values of a specified attribute – by default
is the source name.

6. RELATED WORK
Though no existing work specifically addresses the opportunity
of visualizing traceability links, there are several tools that deal
with traceability links and have a visualization component.

INCOSE (International Council on System Engineering) [9]
published a list of requirements for traceability tools within a
Software Engineering Taxonomy. Some of the tools in this list
implement several of the requirements that we formulated
earlier. A few provide support for recording, displaying, and
checking the completeness of installed traces: DOORS [21],
TOOR [15], Rational RequisitePro [19], RDD-100 [8], etc. The
current traceability environments also allow the definition of
project-specific traceability data types. Some tools permit user
defining new data types by either copying a predefined data type
(e.g., CORE [23], icCONCEPT RTM [3]), or sub-typing a
predefined data type (e.g., SLATE [20]), or creating an instance
of a generic meta data type (e.g., RDD-100).

RDD-100 uses a basic entity-relationship structure to distinguish
nodes and links, and allow the user to introduce distinctions
between different types of nodes and links.

SLATE, which integrates requirements and design models,
includes a requirements management tool, a scheduling engine
that handles events and actions, and a simulation tool that
utilized the TCL scripting language and interfaces with a wide
variety of simulation models.

More details on these tools are presented in [6].

7. CONCLUSIONS AND FUTURE WORK
We argued in this paper for the need of visualizing traceability
links to support the users in recovering, browsing, and
maintaining them. Some situations lend themselves better to the
use of visualization than others. In particular, when the
developers already use analysis and comprehension tools that
have a visualization component, when simultaneous display of
links from multiple sources is desired, and when we need to see
the attributes of the traceability links, in addition to their source
and target artifacts.

In consequence, we formulated a set of high level requirements
for visualizing traceability links. We plan to augment these
requirements based on discussions within the research
community.

The prototype tool we presented is based on these requirements
and implements some of them. Future work will see the tool
evolving to address all requirements.

8. ACKNOWLEDGEMENTS
This research was supported in part by a grant from the National
Science Foundation (CCF-0438970).

9. REFERENCES
[1] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.,

"Maintaining Traceability Links During Object-Oriented
Software Evolution", Software - Practice and Experience,
vol. 31, no. 4, April 2001, pp. 331-355.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E., "Recovering Traceability Links between Code
and Documentation", IEEE Transactions on Software
Engineering, vol. 28, no. 10, October 2002, pp. 970 - 983.

[3] Chipware, "icCONCEPT tool - Replace RTM", Date
Accessed: August, http://www.chipware.com, 2005.

[4] Cleland-Huang, J., Chang, C. K., and Christensen, M.,
"Event-Based Traceability for Managing Evolutionary
Change", IEEE Transactions on Software Engineering,
vol. 29, no. 9, 2003, pp. 796-810.

[5] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"ADAMS Re-Trace: a Traceability Recovery Tool", in
Proceedings of 9th European Conference on Software
Maintenance and Reengineering (CSMR'05), 2005.

[6] Dömges, R. and Pohl, K., "Adapting Traceability
Environments to Project-Specific Needs",
Communications of the ACM, vol. 41, no. 12, 1998, pp.
54-62.

[7] Hayes, J. H., Dekhtyar, A., and Osborne, J., "Improving
requirements tracing via information retrieval", in
Proceedings of 11th IEEE International Conference on
Requirements Engineering, September 2003, pp. 138-147.

[8] Holagent, "Holagent Corporation product RDD-100",
Date Accessed: August,
http://www.holagent.com/products/product1.html, 2005.

[9] Incose, "SE Tools Taxonomy - Requirements Traceability
Tools", Date Accessed: August,
http://www.incose.org/productspubs/products/setools/toolt
ax/reqtrace_tools.html, 2005.

[10] Knethen, A., "Automatic change support based on a trace
model", in Proceedings of 17th Conference On Automated
Software Engineering, Edinburgh, Scotland, 2002.

[11] Lintern, R., Michaud, J., Storey, M.-A., and Wu, X.,
"Plugging-in visualization: experiences integrating a
visualization tool with Eclipse", in Proceedings of ACM
Symposium on Software Visualization, 2003, pp. 47-57.

[12] Maletic, J. I., Munson, E., Marcus, A., and Nguyen, T.,
"Combining Traceability Link Recovery with
Conformance Analysis via a Formal Hypertext Model", in
Proceedings of 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering,
Montreal, Canada, October 7th, 2003 2003, pp. 47-54.

[13] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of
Traceability Links Between Software Documentation and
Source Code", nternational Journal of Software
Engineering and Knowledge Engineering, vol. 15, no. 4,
October 2005, pp. to appear.

[14] Pfleeger, S. L. and Bohner, S. A., "A Framework for
Software Maintenance Metrics", in Proceedings of
Conference on Software Maintenance, 1990, pp. 320-327.

[15] Pinheiro, F. and Goguen, J., "An Object-Oriented Tool for
Tracing Requirements", IEEE Software 1996.

[16] Pohl, K., "PRO-ART: Enabling Requirements Pre-
Traceability", in Proceedings of 2nd International
Conference on Requirement Engineering, 1996, pp. 76-84.

[17] Ramesh, B. and Jarke, M., "Toward Reference Models for
Requirements Traceability", IEEE Transactions on
Software Engineering, vol. 27, no. 1, 2001, pp. 58-93.

[18] Ramesh, B., Tiwana, A., and Mohan, K., "Supporting
Information Product and Service Families with
Traceability", in Proceedings of 4th Workshop on Product
Family Engineering (PFE-4), 2002, pp. 353-363.

[19] Rational, "Rational RequisitePro web site", Date
Accessed: August,
http://www.rational.com/products/reqpro/index.jsp, 2005.

[20] Tdtech, "System Level Automation Tool for Engineers
(SLATE)", Date Accessed: August,
http://www.tdtech.com, 2005.

[21] Telelogic, "Telelogic product DOORS", Date Accessed:
August, http://www.telelogic.com, 2005.

[22] Toranzo, M. and Castro, J., "A comprehensive traceability
model to support the design of interactive systems", in
Proceedings of ECOOP Workshops, 1999, pp. 283-284.

[23] Vitech, "Vitech Corporation product CORE", Date
Accessed: August, http://www.vitechcorp.com, 2005.

http://www.chipware.com/
http://www.holagent.com/products/product1.html
http://www.incose.org/productspubs/products/setools/tooltax/reqtrace_tools.html
http://www.incose.org/productspubs/products/setools/tooltax/reqtrace_tools.html
http://www.rational.com/products/reqpro/index.jsp
http://www.tdtech.com/
http://www.telelogic.com/
http://www.vitechcorp.com/

	INTRODUCTION
	ELEMENTS AND PROPERTIES OF TRACEABILITY LINKS
	WHY AND WHEN DO WE NEED TO VISUALIZE TRACEABILITY LINKS?
	REQUIREMENTS FOR VISUALIZING TREACEABILITY LINKS
	VISUALIZING AND REPRESENTING TRACEABILITY LINKS IN PRACTICE
	The TraceViz User Interface
	Using TraceViz

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

