

Combining Probabilistic Ranking and
Latent Semantic Indexing for Feature Identification

Denys Poshyvanyk1, Yann-Gaël Guéhéneuc2, Andrian Marcus1*, Giuliano Antoniol3, Václav Rajlich1

1Department of Computer Science
Wayne State University
Detroit Michigan 48202
denys@cs.wayne.edu,

amarcus@cs.wayne.edu
rajlich@cs.wayne.edu

2GEODES – Research Group on
Open, Distributed Systems,

Experimental Software Engineering
University of Montreal, Canada

guehene@iro.umontreal.ca

3Département de Génie
Informatique,

École Polytechnique de Montréal,
Canada

antoniol@ieee.org

Abstract

The paper recasts the problem of feature location in
source code as a decision-making problem in the
presence of uncertainty. The main contribution
consists in the combination of two existing techniques
for feature location in source code. Both techniques
provide a set of ranked facts from the software, as
result to the feature identification problem. One of the
techniques is based on a Scenario Based Probabilistic
ranking of events observed while executing a program
under given scenarios. The other technique is defined
as an information retrieval task, based on the Latent
Semantic Indexing of the source code.

We show the viability and effectiveness of the
combined technique with two case studies. A first case
study is a replication of feature identification in
Mozilla, which allows us to directly compare the results
with previously published data. The other case study is
a bug location problem in Mozilla. The results show
that the combined technique improves feature
identification significantly with respect to each
technique used independently.*

1. Introduction
Software evolution requires adding new

functionalities to software systems, improving existing
functionalities, and removing bugs, which can be
considered as unwanted functionalities. Identifying the
parts of the source code that correspond to a specific
functionality is a prerequisite to evolution and is one of
the most common activities undertaken by software
engineers. In software engineering, this process is
called concept location [19]. The concepts that
represent a functionality of a system accessible and
visible to the users, usually captured by the
requirements explicitly, are called features.

* A. Marcus is visiting in the Department of Mathematics and
Computer Science at Babeş-Bolyai University Cluj-Napoca, Romania

While the developers often perform concept location
manually, tool support is needed for large and complex
software. Existing tools that support concept location
rely on the information that is gleaned from the
program by static and/or dynamic analysis. These
analyses can provide a large number of facts and
extracting the relevant facts is an information retrieval
task, similar in nature with those from other fields like
data mining or web searching. In this context,
precision is used to measure the number of false
positives returned by a query and recall is used to
measure the number of false negatives. In all cases, the
users judge the retrieved results.

Results often have low precision and/or recall, when
querying repositories of purely static or of purely
dynamic data. In particular, dynamic analyses are often
unable to distinguish between overlapping features.
Indeed, the same code region may contribute to several
features (i.e., several features execute the same code).
It is difficult to separate overlapping features, thus
impacting precision. While static analyses may filter
and organize the facts, they rarely identify entities
contributing to a specific execution scenario exactly.

The research community has recognized the need to
combine static and dynamic data to improve program
understanding and to help in feature identification [2, 7,
9, 10, 21]. All current hybrid techniques share a
common assumption: the fact that a statement belongs
to an execution trace or that a module is activated by a
feature are deterministic information, which are often
expressed as Boolean values.

However, it is not always possible to state and
quantify facts as deterministic quantities. Imprecision
of the measure, uncertainty in the environment,
perturbation phenomena, or simply the lack of
knowledge, may require to express relations and facts
in non deterministic terms [6]. When we execute a
specified scenario, we have a deterministic relation
between the trace and the scenario. Yet, we cannot be
certain whether a called method and/or accessed field is

relevant to the feature, thus there is a non-deterministic
relation between the scenarios and the features.

Our goal is to use both certain and uncertain
knowledge extracted with both static and dynamic
analyses, filter it by probabilistic and information
retrieval techniques, and in this way to identify features
in source code. Static and dynamic knowledge are
thought of as collaborating experts providing their
valuable expertise and judgments in parallel. As in
other domains, such as medical or financial domains,
our goal is to combine the subjective judgments of
these experts to improve our understanding of the facts.

In the presented work, we reformulate the feature
identification problem as a decision-making problem in
the presence of uncertainty. We are in the same
position as a manager who must combine expert
subjective forecasts [11, 26]. We have previously
developed two techniques for feature identification.
The developed techniques exploit different sources of
information and provide complementary results. The
first technique is based on Latent Semantic Indexing
(LSI) [5] of the source code [16]. The second
technique is a Scenario Based Probabilistic (SBP)
ranking of events, observed while executing a program
under given scenarios [2].

Using LSI, programmers can query static documents
(i.e., classes, methods, and documentation), indexed via
LSI, to obtain a ranked list of facts likely to be relevant
to a feature. The role of the query is to capture some
semantic characteristics of the feature of interest.

Using SBP, programmers can analyze dynamic
traces of execution scenarios and get a list of entities
(e.g., methods and classes) ranked according to their
likelihood to be relevant to a feature exercised under
the given scenarios.

The problem is that both techniques provide a
different uncertain judgment and, to improve our
knowledge, we must combine these judgments. The
LSI and SBP ranking techniques could be considered
our experts; the ranked lists are the judgments of these
experts. We combine the respective ranked lists
produced via an affine transformation where the affine
coefficients express our confidence in the two experts
and their ability to identify features correctly.

We compare the resulting combination with known
results and thus gather evidence that the combination
outperforms the judgments of each single expert. We
perform the comparison in two case studies. First, we
apply the combination to the scenarios presented in an
earlier case study from [2]. Results clearly show the
superiority of the combination. In the second case
study, we identify methods and classes involved in a
documented bug. We compare methods identified as
being relevant to the bug with those actually contained
in the official patch applied to fix the bug. We show

that the combination indeed identifies the relevant
methods with better precision and recall than either of
the techniques does individually.

The remaining sections of this paper are organized
as the following. Section 2 presents an overview of the
related work on dynamic and static techniques for
feature and concept location. It also briefly introduces
necessary background information on our techniques.
Section 3 presents our novel, hybrid technique for
feature identification. The evaluation of the new
technique via two case studies is presented in Section 4.
The conclusions and future work are outlined in Section
5.

2. Previous Work
Existing techniques for concept location and feature

identification fall into three broad categories: using
static data, using dynamic data, and using both. We
cover the main work on these techniques in subsection
2.1. Then, we present background information from
our previous work on feature identification using the
SBP ranking [2] in Section 2.2, and on concept location
using LSI [16] in Section 2.3. Sections 2.2 and 2.3
introduce the formalism required to describe our novel
technique in Section 3.

2.1. Related Work on Concept Location
The work by Wilde et al. [24] and Biggerstaff et al.

[3] are the starting points of much of the work on
concept and feature location, including the present
paper.

Wilde and Scully [25] proposed the dynamic
technique to identify features by analyzing execution
traces of test cases. They use two sets of test cases to
build two execution traces: an execution trace where
the desired functionality is exercised and an execution
trace where the functionality is not used. The two
traces are compared to identify the parts of the program
that implement the feature(s) associated with the
functionality. In their work, the authors use only
dynamic data to identify features; no static analysis on
the program is performed. The method was recently
extended [2, 6, 8].

Chen and Rajlich [4] proposed a semi-automated
technique for static concept location based on searching
on Abstract System Dependence Graph (ASDG).
Maintainers identify features manually using the ASDG
following a precise process.

Marcus et al. [16] proposed an information retrieval-
based technique for static concept location. A
comparison of several static concept location
techniques is presented in [15].

Zhao et al. [27] proposed a static and non-interactive
method for feature identification, which uses

information retrieval technique to reveal the basic
connections between features and functionalities in the
source code. A branch-reserving call graph is used to
further recover both the relevant and the specific
computational units for each feature.

Combining previous techniques, Eisenbarth et al. [7]
used both static (i.e., dependencies) and dynamic (i.e.,
execution traces) data to identify features in software.
They also used concept analysis techniques to relate
features together.

Salah and Mancordis [20] also use both static and
dynamic data to identify features in Java programs.
They went beyond feature identification by creating
feature-interaction views, which highlight dependencies
among features.

2.2. Feature Identification using Probabilistic
Ranking

The key steps of the process of identifying features
and studying their evolution with a probabilistic
ranking technique are summarized in this subsection.
Static and dynamic analyses are used to extract data
from executions of several releases of a system,
following given scenarios.

We borrow from a previous work [2] key definitions
and equations. A feature links program architecture
with its dynamic behavior. Thus, a first step is to
recover the program architecture. Second, a subset of
the program architecture, a micro-architecture, must be
identified as participating in the implementation of the
functionality. Third, intra- and inter-feature
relationships across releases are studied to highlight
feature evolution.

We acquired and developed several parsers and tools
to analyze existing software statically with reasonable
precision. In particular, we developed our own C++
parser, which manages the previous degrees of
imprecision, to generate AOL files [1]. AOL files are
higher-level representations of object-oriented systems
(classes, methods, relationships), which are simple to
handle programmatically.

We assume that the source code is available and that
a compiled version can be exercised under different
scenarios. Dynamic analysis provides the necessary
source of data to link functionalities (features) with
software constituents and thus, to identify micro-
architectures responsible for the specific
implementation of functionalities.

We reuse our previous technique [2] inspired by
Wilde’s [6]. We instrument and generate traces of the
executions of a software, given a certain scenario,
which exercises a functionality of interest. We
experimented with processor emulation on the Mozilla

web-browser, using Valgrind1, with satisfying results,
to collect execution traces. We compared processor
emulation with profiling techniques2 and found that
processor emulation collects more accurate data than
profiling techniques, with little performance overhead.

We associate events in the execution trace with the
functionality using a relevance index, a ranking
quantifying the probability that an event is relevant to
the functionality. We concur with Wilde [23, 25] to
avoid the use of set operations. Avoiding set
operations implies using thresholds and maintainer
interactions to validate identified features. However,
we can limit the use of thresholds and minimize
maintainer interactions by ranking the events
according to their relevance to the feature of interest.

Let F* be a set of scenarios exercising a
functionality of interest and F a set of scenarios not
exercising the functionality. Execution of scenarios in
F* produces a set of intervals I* containing events
relevant to the functionality of interest. We mark these
intervals as relevant via Start/Stop signals. Scenarios
in F always produce intervals in I, intervals irrelevant to
the functionality. However, intervals I* (I, respectively)
may contain irrelevant (relevant) events. Indeed, any
scenario is likely to decompose in a few intervals in I*
surrounded by many intervals in I. If NI* and NI are the
overall numbers of events in the two sets I* and I, then
the frequency of a relevant event ei in I* is
fI*(ei) = NI*(ei)/NI* and its frequency in I is
fI(ei) = NI(ei)/NI. The relevance index of ei is then:

)()(

)(
)(

*

*

iIiI

iI
i ee

e
er

ff
f

+
=

 (1)

Equation (1) is a renormalization of Wilde's

equation, where events are re-weighted by population
sizes (frequencies) to make events comparable directly.
We use equation (1) to classify events in the I* and I sets
with respect to the functionality of interest. Then, we
use equation (2) to keep the most relevant events with
respect to a positive threshold t.

{ }tere iit >=Ε)(* (2)

The size of the set *

tΕ depends on t: 100.00% means
that we only retain events that do not appear in intervals I
and that, thus they are most relevant to the functionality.

1 http://valgrind.kde.org/
2 Profiling techniques do not collect traces but time spent in functions
and methods along with callees and callers; such data can be used to
build traces.

2.3. Concept Location using Latent Semantic
Indexing

Developers usually use regular expressions when
searching for the location of concepts, in the absence of
sophisticated tools. They look for identifiers and
comments, as these encode domain knowledge in the
source code. We use LSI [5] to improve the search by
allowing users to formulate more relaxed queries and to
obtain ranked results at different levels of granularity.

Previous work covers in detail the use of LSI to
index software elements for retrieval purposes [14, 16].
In summary, LSI works much like today’s popular
search engines (e.g., Google) by creating a signature (in
this case a real valued vector) for each element of
interest in the source code. We provide tool support
[18] to define these elements of interest, which can be
classes, methods, functions, interfaces, parts of
documentation, etc. Once defined, these are extracted
from the source code (i.e., in form of comments and
identifiers) and used to generate a semantic space,
which is used for the search. Users can write queries,
which are also converted into vectors in the semantic
space and the results of the search are returned as a list
of software elements, ranked by their similarity to the
user query.

We use as similarity measure between a query and a
source code element, the cosine between their
corresponding vectors. The cosine between two vectors
vq, corresponding to a query q, and vi, corresponding to
a source code element i (which can be a method or a
class), in the semantic space, is the length-normalized
inner product:

cos(vq, vi) =
T

q i

q 2 i 2

v v
|v | ×|v |

 (3)

This similarity measure yields values between [-1, 1]

for any pair of vectors, with 1 corresponding to
identical documents. Negative values are associated to
non-related documents.

We developed a set of tools [16, 18] and a
methodology [15] to use the information retrieval
technique for concept location in source code. We
decompose the methodology in the following steps:
1. The semantic space is generated using the available

tools, at a user defined granularity level.
2. Select a set of words/terms that describe the

concept. This set of words constitutes the query.
3. Check whether a term is present in the vocabulary

of the software system (generated by LSI). If the
term is not present, then:
a. Look up similar words using the vocabulary of

the software system (e.g., use a spell-checker

based on an editing distance function to
suggest similar terms);

b. Eliminate from the initial query the words that
are not in the vocabulary. If the elimination of
a word significantly alters the meaning of the
query, go to step 2 and select additional words
for the query.

4. Run the query with LSI on the search space. The
query returns a list of source code elements ordered
by their similarity to the query.

5. Examine the source code documents from the list
in the order they appear in the results. For every
document examined in the results a decision is
required whether the document is part of the
concept or not, if it is and it covers all the aspects
of the concept, then stop. If it is not and the new
knowledge obtained from the investigated
documents helps to formulate a better query (e.g.,
narrow down the search criteria), go to step 2; else
examine the next document in the list.

In essence, the similarity between a query expressing
some semantic characteristics of a feature and a set of
facts about the software (e.g., manual pages,
documentation, classes or methods of a program),
indexed via LSI, allows producing a ranking of entities
relevant to the feature.

3. Combining the Experts
We introduce our novel technique to improve the

precision of feature identification by combining the
SBP [2] and LSI [16] ranking techniques. We consider
the SBP and LSI rankings as the judgments of our
experts. Experts provide expertise to solve the problem
of identifying the feature precisely. We draw
inspiration from Jacobs [11] to combine the SBP and
LSI rankings. When n experts are present, judgments
can be combined using the following equation:

()∑
=

=
n

i
iii xfxf

1

)(βλ (4)

where fi(x) is the judgment of the ith expert, λi is a
weight expressing our confidence in the ith expert and βi
is a re-normalization constant. We use re-
normalization constants, because the different experts
may express judgments that are not commensurable.
We use these constants to map judgments and to allow
meaningful combinations. In the more general case, βi
is a function of the input value x. The βi coefficient can
also be selected so that fi(x) lies in the interval [0, 1]. In
any case, the judgments of the experts should be in a
same interval, thus imposing the constraints that the

weight λi defines an affine transformation: ∑
=

=
n

i
i

1
1λ .

Our experts state judgments based on different
information. The SBP expert grounds its judgment on
the probabilistic ranking of dynamic events observed in
execution traces. The LSI expert builds its judgment
from a query on a set of documents, created with static
data extracted from the source code and index with LSI.
However, we ask, in different ways, both experts to
answer the same question: we want to identify a set of
particular facts related to a feature of interest for a
maintainer. Thus, we combine the valuable expertise of
both experts to obtain a more precise set of relevant
events in order to minimize the maintainer’s effort.

In this paper, we focus on identifying classes and
methods relevant to a feature of interest. Thus, we are
interested in combining our experts’ judgments on
methods that contribute to the feature. These methods
are likely to be placed on top of both the SBP and LSI
rakings, because we ask the two experts, the same
query conceptually.

Let x be a method. For the sake of clarity, we
denote with sbp(x) and lsi(x) the relevance scores
assigned to x by our experts without detailing the actual
query performed. lsi(x) and sbp(x) are not defined over
a same domain. Thus, the combination of the two
experts’ judgments with equation (4) requires a re-
normalization of the relevant scores. This
normalization must not disrupt the LSI and SBP
experts’ judgments, because we want to promote
methods that both experts consider highly relevant.

The sbp(x) relevance score is defined on [0, 1] while
the lsi(x) score takes values in [-1, 1]. Among several
possible renormalizations, we select two
transformations: variable standardization and simple
normalization. The latter transformation is grounded
on the fact that LSI negative values are irrelevant. Thus
the re-normalized SBP and LSI scores can be obtained
as follows: (rlsi(x) has the same domain as sbp(x))

() ()

() () ()
⎩
⎨
⎧ >

=

=

0
0

else

xlsiifxlsi
xr

xsbpxr

lsi

sbp

 (5)

For the former transformation of variable

standardization, we remap lsi(x) and sbp(x) in a
standard normal distribution with zero mean and
unitary variance via the transformation [22]:

() () ()
()

() () ()
())(

)(
)(

)(

xlsistdev
xlsimeanxlsixr

xsbpstdev
xsbpmeanxsbpxr

lsi

sbp

−
=

−
=

 (6)

This is equivalent to considering experts’ judgments
as being generated by Gaussian sources with different
means and variances. Thus, we bring the relevance
scores back to the tabulated N(0,1) before combining
them. In the case studies, we did not observe any
substantial difference on the rankings from the
transformations for renormalization used to compute
rlsi(x) and rsbp(x). Figure 1 shows the ranking for the
first case study (see Section 4.3) based on the equations
in (6), while the rest of the results in this paper are
reported only for the equations in (5).

The combination of the two experts leads us to
rewrite equation (4) as:

() () () ()xrxrxr lsisbpcombined λλ −+= 1 (7)

where λ expresses our confidence on the ability of the
SBP or LSI ranking experts to identify a feature
correctly using their particular techniques. Equation (7)
allows ranking methods based on the combined score.
However, we may be interested to further reduce such a
list. This can be done by retaining the k-top ranked
methods or by imposing a threshold on rcombined(x).

The combination of the techniques allows for some
changes in the existing methodologies. The SBP
ranking was originally done in combination with a
knowledge-based filtering [2], using the previous
experience of the user with the system under
investigation. LSI ranking is in fact a mechanism that
allows the user to gain knowledge on how elements of
the software relate to each other. Thus, LSI ranking
could replace the knowledge-based filtering in the
combined technique.

4. Case Studies
We performed two case studies to assess the

precision of the novel hybrid technique for feature
identification. The first case study is a replication of a
case study [2], which used the SBP ranking only. We
compare previous results with the LSI ranking and our
hybrid technique to assess their respective precisions.

The second case study focuses on bug location,
which we consider as an undesirable feature. We apply
the techniques (i.e., SBP ranking, LSI ranking, and the
novel hybrid ranking) independently and compare their
results.

These two case studies provide data to assess the
precision of the combination of the SBP and LSI
rankings and the help brought to the maintainer for
identifying features in the source code.

In addition, to the authors’ knowledge, these case
studies are the largest (in terms of the size of the subject
software) that were done on using LSI to index source
code. In fact, the size of the software and its

vocabulary is one order of magnitude larger than
natural language corpora used in previous experiments
with LSI. Given this situation, we use these case
studies to see how the LSI dimensionality reduction
factor influences the results.

Table 1. Mozilla v1.6 size related statistics

Item Count (MLOC) Item Count

Header files 8,055 (1.50) Classes 4,853
C files 1,762 (0.90) Methods 53,617

C++ files 4,204 (2.00) Specializations 5,314
IDL files 2,399 (0.20) Associations 17,362

XML files 283 (0.12) Aggregations 6,727
HTML files 2,231 (0.19)

Java files 56 (0.06)

4.1. Object of the Case Studies
We use Mozilla, a large object-oriented multi-

threaded web-browser [17], as the object of the case
studies. Mozilla is an open-source web browser ported
on almost all known software and hardware platforms. It
is large enough to represent an industrial size program.
It is developed mostly in C++ with C code (which
accounts only for a small fraction of the program). We
do not analyze parts of Mozilla written in other
programming languages, like C, Java, IDL, XML,
HTML, etc., to simplify the case studies.

The latest version of Mozilla includes more than
10,000 source files consisting of about 3.7 MLOC
(millions lines of code), which are decomposed in about
3,500 different subdirectories. Mozilla consists of 90
modules maintained by 50 different module owners. In
our case studies, we use version 1.6.

Table 1 shows some statistics for Mozilla v1.6.
The reported figures should be considered as orders of
magnitude rather than as exact values. Indeed, several
factors influence these figures, such as the reverse
engineering tools, the parsing techniques used [12]

and the way in which we consider certain
programming language features.

We choose to use conservative reverse-engineering
techniques. We apply strict reverse-engineering rules
such that we classify as classes only entities declared as
such according to the C++ syntax. Moreover, we
consider structures and complex templates (e.g.,
templates mixed with structures) as outside of the
boundary of reverse-engineered models and do not
recover their attributes, methods, and locations in source
code files.

Table 2. LSI corpus vitals for Mozilla v1.6

MLOC 4.4
Vocabulary 85,439

Number of parsed documents 68,190
Number of methods 48,267
Number of functions 19,923

4.2. Design of the Case Studies
In each study, the use of the SBP ranking follows

the pattern described in Section 2.2. The SBP ranking
technique provides sets of ranked methods with
equation (1) using their frequencies in the execution
traces. Several methods may have the same frequencies
in the traces and thus, the same ranking. For example,
for the first case study, the SBP ranking provides a set
of 274 methods ranked first, rsbp(ei) = 1 in equation (1).
Thus, the recall of the SBP ranking is good but its
precision is low.

We follow the methodology for LSI ranking
described in Section 2.3. Creating the LSI search
space, however, deviates from our previous
experiences. We use the Mozilla source code to build
and to index a semantic space to allow query-based
searches for feature identification. LSI builds the
semantic space corresponding to Mozilla, by projecting
a 85,436×68,190 matrix (the vector space) onto a
smaller one (a subspace), see Table 2. When applying
LSI on natural language corpora, a space of 300
dimensionality is usually chosen [13]. On large
software such as Mozilla, the size of the vocabulary is

Table 3. Results for locating the methods related to the “bookmark” feature. The position of the methods in the table
(column 1) show the rank obtained by combining the two approaches. Numbers in parenthesis denote the ranks for
those methods obtained with LSI alone. Columns 2-5 correspond to the different dimensionality of the LSI subspace.

Pos. 300 500 750 1,500
1 CreateBookmark (3) CreateBookmark (6) AddBookmarkImmediately (1) AddBookmarkImmediately (1)
2 AddBookmarkImmediately (4) AddBookmarkImmediately (2) CreateBookmark (14) CreateBookmark (8)
3 CreateBookmarkInContainer(64) Flush Flush CreateBookmarkInContainer(19)
4 InsertResource CreateBookmarkInContainer(57) CreateBookmarkInContainer(36) WriteBookmarks
5 ListenToEventQueue InsertResource WriteBookmarks getFolderViaHint
6 Flush WriteBookmarks Observe InsertResource

one order of magnitude larger than in natural languages
(or in previously indexed source code). We adjust the
dimensionality reduction factor and perform each query
four times using as dimensionality reduction factors
300, 500, 750, and 1,500 respectively, to find the best
(approximate) dimensionality reduction value by
comparing the rankings. Any larger factor would
generate a too large search space to be practical from a
computational point of view on actual average
computers. Table 3 and Figure 1 show how results
improve in the first case study (see Section 4.3), as the
LSI dimensionality reduction factor increases.

LSI, on the contrary to the SBP ranking, ranks each
method differently and thus, has a good precision but
may have a low recall. Since LSI creates the vector
representation for each method based on its identifiers
and comments, methods with small bodies and very
few identifiers will not be ranked properly. Also,
inheritance is not dealt with specifically here, so
overridden methods in subclasses may also be miss-
ranked by LSI in some cases. The SBP ranking is not
perturbed in these situations.

4.3. The First Case Study
This first case study is partly a replication study of a
previous case study published in [2]. We perform the
same case study (same scenario, same feature
identification task) to compare previous results from

SBP ranking with new results from LSI and hybrid
rankings. Such a partial replication is important
because it allows comparing the three ranking
techniques against one another. It is a partial
replication study because we replicate the scenario and
the task only, we do not apply again the SBP ranking,
whose results are available elsewhere [2].

We consider two scenarios:
• Scenario 1: A user visits an URL. She opens

Mozilla, clicks on a previously bookmarked URL,
waits for the page to load, and closes the browser;

• Scenario 2: The user acts as before but, once the
page is loaded, she saves the URL using the mouse
right button and closes the web browser.

The feature identification task can be stated as:
“identify classes and methods in Mozilla that are part
of the feature activated when a URL is saved in
Scenario 1 with respect to Scenario 2”.

We apply the SBP ranking by running Mozilla
according to the two scenarios and by collecting
corresponding dynamic traces as detailed in [2]. We
then apply equation (1) to produce sets of relevant
methods to the feature of interest.

We apply the LSI ranking by formulating a query on
the terms related to “bookmark” in the vocabulary of
Mozilla generated during indexing of the corpus by
LSI. We use our judgment to assess whether the terms

0

5

10

15

20

25

30

35

40

45

300 500 750 1500

LSI Dimension

R
el

ev
an

ce
 fa

ct
or

 w
hi

ch
 c

on
ve

rt
s t

o
ra

nk AddBookmarkImmediately
CopyToNative
CreateBookmark
CreateBookmarkInContainer
Flush
getFolderViaHint
GetURI
InsertResource
ListenToEventQueue
Observe
Spindown
WriteBookmarks

Figure 1. Rankings of relevant methods as the LSI dimensionality reduction factor increases for the

first case study. The three relevant methods are highlighted with red color.

relate to the feature of creating a new bookmark. We
create the following query: “bookmark newbookmark
bookmarkname bookmarkresource bookmarkadddate
createbookmark insertbookmarkitem deletebookmark
bookmarknode”. We do not have to spell-check the
query terms because they are directly taken from the
Mozilla vocabulary.

Table 3 summarizes the results obtained in
identifying the feature in the first case study. The first
column indicates the rank of the methods obtained
when combining the SBP and LSI rankings with λ =
0.5. The methods in bold (i.e., CreateBookmark,
AddBookmarkImmediately, and
CreateBookmarkInContainer) are the methods realizing
the functionality of interest, that we checked manually.
The numbers in parenthesis show the LSI ranking of
the methods obtained using rlsi alone. Columns 2–5
correspond to the different dimensionality of the LSI
subspace. Each of these three methods was ranked in
the set of 274 methods with a relevance index (rsbp) of 1
by the SBP ranking alone.

We obtain a better ranking of the relevant methods
when combining the judgments of the two experts. The
results also tend to improve overall when increasing the
dimensions of the LSI space (see Figure 1), which
supports our hypothesis that larger vocabularies warrant
the usage of larger subspaces. The weight λ, for a given
dimension, does not impact the ranking significantly.
Different values for λ only re-order relevant methods.

Figure 1 shows that increasing the dimensionality
reduction factor improves the ranking of the three
relevant methods with respect to the top ten high-
ranked methods, thus increasing the precision of our
novel technique.

4.4. The Second Case Study
In the second case study, we locate a bug in Mozilla

using our novel technique. We choose bug #1821923,
described as “quotes (“) are not removed from
collected e-mail addresses”. Among possible bugs, the
rationale to select this one was threefold. First, we
were interested in a well known, documented, and
reproducible bug. Second, to minimize the probability
of obtaining good results by chance, we were interested
in a bug that has no interaction with methods and
classes involved in the first case study. Finally, we
were looking for a bug with available and approved
patch that was also actually fixed in recent Mozilla
releases. Indeed, bug #182192 has all these
characteristics; it was well known since early Mozilla
releases; a patch was available; it was officially fixed in
release 1.7. In this case, we also eliminate any potential

3 https://bugzilla.mozilla.org/long_list.cgi?buglist=182192

bias given that none of the authors determine what part
of the system corresponds to the feature of interest.

To apply SBP, we performed two scenarios:
• Scenario1: A user replies to an e-mail;
• Scenario2: A user performs the same action of

Scenario 1, and on the same e-mail and, using
the mouse, the user forces to collect the e-mail
address of the sender.

The subsequent steps in obtaining the SBP ranking

are the same as in the first case study. By comparing
the two scenarios, methods and classes highly relevant
to the process of e-mail address collection are spotted.

To obtain the LSI ranking, based on the bug
description, we formulate the following query to
retrieve related methods in Mozilla: “collect collected
sender recipient email name names address addresses
addressbook”. We used the same technique as in the
previous case study for the query formulation. LSI
provides four lists of ranked methods for the four
different dimensions.

The Bugzilla reports4 contain the description of the
bug fixes, including the methods CollectAddress and
CollectUnicodeAddress (from nsAbAddressCollecter)
responsible for the “unwanted” functionality that we are
looking for in this case study.

Table 4. The top five methods related to the Mozilla
bug after merging dynamic and LSI results with the
corpus indexed using 1,500 dimensions; λ= 0.5;
rlsi is the rank of these methods obtained using LSI
alone; methods highlighted in bold contain the fixes
for the bug done by the developers.

Rank Class name Method name rlsi
1 nsMsgHeaderParser ParseHeadersWithArray 2

2 nsMsgHeaderParser ParseHeaderAddresses 4

3 nsAbAddressCollecter CollectAddress 37
4 nsAddrDatabase OpenInternal 36

5 nsAbAddressCollecter CollectUnicodeAddress 46

Table 4 shows the ranking obtained with the

combined methodologies (column 1) and the ranking
obtained by using LSI alone (column 4). When using
the SBP ranking 8,695 methods are retained and
ranked; out of these, 206, including the CollectAddress,
and CollectUnicodeAddress methods, obtain a score of
1.0. As in the previous case study, the SBP ranking
provided high recall but low precision.

4.5. Discussion
The two case studies support our claim that

combining expert judgments is effective in increasing

4 https://bugzilla.mozilla.org/attachment.cgi?id=147661&action=diff

the precision of feature identification in the large
software systems. Our novel combination technique
performs better than any one of the two techniques
alone.

The case studies were carried out with the two
different normalizations proposed in Section 3: the
variable standardizations in equation (6) and the simple
transformations in equation (5). We did not observe
any substantial difference in ranking for the various LSI
space dimensions. Ranking of relevant methods were
exactly the same. Only in one experiment, for LSI
using 1,500 dimensions, in the second case study, the
rank of the CollectAddress method was exchanged with
ParseHeaderAddresses (i.e., CollectAddress was ranked
in position 2 and ParseHeaderAddresses in position 3).
However, we do not have any empirical evidence to
prefer one normalization technique over the other.
More data and more experiments are needed to verify if
there is really a significant difference between the two
normalization techniques.

On our data set, we did not observe any major
changes while ranging λ between 10% and 90%.
Extreme values below 1% or above 99% obviously tend
to perform more close to either the LSI or the SBP
ranking.

5. Conclusions and Future Work
The main contributions of the paper can be

identified as the followings:
• We proposed and defined a novel hybrid technique

to combine an information retrieval based concept
location technique with a dynamic technique for
feature identification.

• We applied the proposed combination of
techniques in a new case study for bug location in
Mozilla. We also compared the results of the
combined technique with our previous results on
applying the dynamic technique only, through a
replicated case study.

• The combined technique allows the elimination of
the knowledge-based filtering, present in the
previous SBP ranking technique. This has the
advantage that the user does not need to acquire
extensive knowledge of the target system a-priori.

The case studies showed that the two combined
techniques, based on different analysis methods and
data, are not only expressing different judgments in
trying to identify features, but that these judgments are
complementary. This is proved by the fact that the
results obtained with the combined techniques betters
any one of them used independently.

The work presented here also opens the door to
future efforts in the area. More experiments are
planned to compare results with other techniques.

Also, a deeper investigation to determine heuristics that
would identify the best value for the λ coefficient is
under way. Last but not least, we are working on
extending this approach such that it would combine
several techniques for feature location.

6. Acknowledgements
This research was supported in part by grants from

the National Science Foundation (CCF-0438970) and
the National Institute for Health (NHGRI
1R01HG003491). G. Antoniol was partially supported
from the Canada Research Chair program grant #950-
202658. Václav Rajlich was partially supported from
2005 IBM Faculty Award.

7. References
[1] Antoniol, G., Fiutem, R., and Cristoforetti, L., "Using
Metrics to Identify Design Patterns in Object-Oriented
Software", in Proceedings of 5th IEEE International
Symposium on Software Metrics (METRICS'98), Bethesda,
MD, November 20-21 1998, pp. 23 - 34.

[2] Antoniol, G. and Gueheneuc, Y., "Feature Identification:
A Novel Approach and a Case Study", in Proceedings of 21st
IEEE International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, September 25 2005, pp. 357-
366.

[3] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E.,
"Program Understanding and the Concept Assignment
Problem", CACM, vol. 37, no. 5, May 1994, pp. 72-82.

[4] Chen, K. and Rajlich, V., "Case Study of Feature Location
Using Dependence Graph", in Proceedings of 8th IEEE
International Workshop on Program Comprehension
(IWPC'00), Limerick, Ireland, June 2000 2000, pp. 241-249.

[5] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., "Indexing by Latent Semantic
Analysis", Journal of the American Society for Information
Science, vol. 41, 1990, pp. 391-407.

[6] Edwards, D., Simmons, S., and Wilde, N., "An approach
to feature location in distributed systems", Software
Engineering Research Center 2004.

[7] Eisenbarth, T., Koschke, R., and Simon, D., "Locating
Features in Source Code", IEEE Transactions on Software
Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.

[8] Eisenberg, A. D. and De Volder, K., "Dynamic Feature
Traces: Finding Features in Unfamiliar Code", in Proceedings
of 21st IEEE International Conference on Software
Maintenance (ICSM'05), Budapest, Hungary, September 25-
30 2005, pp. 337-346.

[9] Eng, D., "Combining static and dynamic data in code
visualization", in Proceedings of ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and
Engineering (PASTE'02), Charleston, South Carolina, 2002,
pp. 43-50.

[10] Greevy, O., Ducasse, S., and Girba, T., "Analyzing
Feature Traces to Incorporate the Semantics of Change in
Software Evolution Analysis", in Proceedings of 21st IEEE
International Conference on Software Maintenance
(ICSM'05), 2005, pp. 347-356.

[11] Jacobs, R., "Methods for combining experts' probability
assessments", Neural Computation, vol. 7, no. 5, September
1995, pp. 867-888.

[12] Kollmann, R., Selonen, P., Stroulia, E., Systa, T., and
Zundorf, A., "A study on the current state of the art in tool-
supported UML-based static reverse engineering", in
Proceedings of IEEE Working Conference on Reverse
Engineering, Richmond, Virginia, October 29 - November 1
2002, pp. 22-33.

[13] Landauer, T. K., Foltz, P. W., and Laham, D., "An
Introduction to Latent Semantic Analysis", Discourse
Processes, vol. 25, no. 2&3, 1998, pp. 259-284.

[14] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information",
in Proceedings of 23rd International Conference on Software
Engineering (ICSE'01), Toronto, Ontario, Canada, May 12-19
2001, pp. 103-112.

[15] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A., "Static Techniques for Concept Location in
Object-Oriented Code", in Proceedings of 13th IEEE
International Workshop on Program Comprehension
(IWPC'05), 2005, pp. 33-42.

[16] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.,
"An Information Retrieval Approach to Concept Location in
Source Code", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE'04), Delft, The
Netherlands, November 9-12 2004, pp. 214-223.

[17] Mozilla, "Mozilla 1.6", URL, Date Accessed: October,
http://www.mozilla.org, 2004.

[18] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev,
A., "IRiSS - A Source Code Exploration Tool", in Industrial
and Tool Proceedings of 21st IEEE International Conference

on Software Maintenance (ICSM'05), Budapest, Hungary,
September 25-30 2005, pp. 69-72.

[19] Rajlich, V. and Wilde, N., "The Role of Concepts in
Program Comprehension", in Proceedings of IEEE
International Workshop on Program Comprehension
(IWPC'02), 2002, pp. 271-278.

[20] Salah, M. and Mancoridis, S., "A hierarchy of dynamic
software views: from object-interactions to feature-
interactions", in Proceedings of 20th IEEE International
Conference on Software Maintenance (ICSM'04), Chicago,
IL, September 11-14 2004, pp. 72-81.

[21] Salah, M., Mancoridis, S., Antoniol, G., and Di Penta,
M., "Towards Employing Use-Cases and Dynamic Analysis
to Comprehend Mozilla", in Proceedings of 21st IEEE
International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, September 2005, pp. 639-
642.

[22] Snedcor, G. W. and Cochran, W. G., Statistical Methods,
Iowa State University Press, 1989.

[23] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and
Pounds, L., "A Comparison of Methods for Locating Features
in Legacy Software", Journal of Systems and Software, vol.
65, no. 2, February 15 2003, pp. 105-114.

[24] Wilde, N. and Gust, T., "Locating User Functionality in
Old Code", in Proceedings of IEEE International Conference
on Software Maintenance, Orlando, FL, November 1992, pp.
200-205.

[25] Wilde, N. and Scully, M., "Software Reconnaissance:
Mapping Program Features to Code", Software Maintenance:
Research and Practice, vol. 7, 1995, pp. 49-62.

[26] Winkler, R. and Clemen, R., "Multiple Experts vs.
Multiple Methods: Combining Correlation Assessments",
Decision Analysis, vol. 1, no. 3, September 2004, pp. 167-
176.

[27] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F.,
"SNIAFL: towards a static non-interactive approach to feature
location", in Proceedings of 26th International Conference on
Software Engineering (ICSE'04), May 2004, pp. 293-303.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

