
* Dissertation advisor

Using Information Retrieval to Support Design of
Incremental Change of Software

Denys Poshyvanyk, Andrian Marcus*

Department of Computer Science
Wayne State University

Detroit, MI 48202
1-313-577-5408

[denys, amarcus]@wayne.edu

ABSTRACT

The proposed research defines an approach to combine
Information Retrieval based analysis of the textual information
embedded in software artifacts with program static and dynamic
analysis techniques to support key activities of the incremental
change of software, such as concept and feature location.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – enhancement, restructuring, reverse engineering,
and reengineering

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Program understanding, feature identification, concept location,
impact analysis, change propagation, dynamic and static analyses,
information retrieval, coupling and cohesion measurement

1. PROBLEM DESCRIPTION
During the evolution of large scale software systems most
activities involve making changes to the existing source code.
Identifying the parts of the source code that correspond to a
specific functionality is a prerequisite to program comprehension
and is one of the most common activities undertaken by
developers. This process is called concept (or feature) location
and it is a part of the incremental change of software process [30].

Although incremental change ultimately needs to identify all
components to be changed, the programmer must find the location
in the code where the first change must be made. For that, the
programmer uses a search process where the search space is the
whole software and where diverse search techniques narrow down
the search space. The literature limits this step to finding a small
number of feature components. The full extent of the change is
then handled by impact analysis, which is used to identify the
remaining impacted components. In this research proposal, we
are specifically addressing the identification of methods in object-
oriented software that are part of the implementation of a feature

(i.e., they change when the feature is altered) and can be used as a
starting point in impact analysis.

While developers often perform feature location manually, tool
support is needed for large and complex programs. Existing tools
supporting feature location rely on data obtained via static and–or
dynamic analysis of the program. While dynamic analyses often
can not discriminate overlapping features, static analyses better
filter and organize data, but they can rarely identify precisely
elements of source code contributing to a specific execution
scenario. The research community has long recognized the need
to combine static and dynamic techniques [11] to improve the
effectiveness of feature location [3, 9, 32, 36]. All these
techniques are designed to be applied on the source code yet they
do not capture important textual (or lexical) information which is
embedded in identifiers and comments present in source code etc.
Artefacts, such as call graphs or execution traces, generated from
the source code provide in their structure information on how the
system works, whereas textual artifacts capture information on
what the system does, as well as important knowledge about the
software domain, design decisions, developer information,
communication, etc. We refer to these two types of information
as structural and semantic, respectively.

In order to locate features and change a software system,
developers must understand both what the system does and how it
works, hence they need to analyze the two types of information.
While these two types of information are complementary, there is
little support for their combination. In particular, many of the
existing tools do not provide explicit representation for the
semantic information, but rather assume the implicit
representation embedded in the textual software artifacts.

2. RESEARCH GOALS
 We propose the use of Information Retrieval (IR) techniques to
extract and represent the semantic information in large scale
software systems such that it can be automatically combined with
structural information to better support concept and feature
location in source code. Specifically, the research will focus on
combining IR-based analysis data with the analysis of program
dependencies, execution traces to define new techniques for
feature location.

We expect that these new techniques will contribute directly to
improvement of design of incremental change and thus increased
software quality and reduction of software maintenance costs.

Copyright is held by the author/owner(s).
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

3. RELATED WORK
Existing techniques for feature location broadly fall into three
categories, based on the type of information they use: dynamic,
static, and hybrid.

Software reconnaissance by Wilde et al. [38] was the early
dynamic technique to identify features by analyzing execution
traces of test cases. Two sets of test cases are used to obtain two
execution traces: an execution trace where the desired feature is
exercised and an execution trace where the feature is not
exercised. The two traces are compared to identify the entities of
the program that implement the feature. This technique was
recently extended to improve its accuracy by introducing new
criteria on selecting execution scenarios [10] and by analyzing the
execution traces differently [3]. Similarly, Wong et al. [39]
analyzed execution slices of test cases to identify features in the
source code. Eisenbarth et al. [9] combined both static (i.e.,
dependencies) and dynamic (i.e., execution traces) data to identify
features in programs and identify relations among them using
Formal Concept Analysis.

A number of dynamic approaches exist, which use single scenario
per feature. They are different from the previous approaches as
they focus on identifying multiple features at a time or
relationships among them. In particular, these approaches focus
on feature interactions [8, 32], feature evolution [13], hidden
dependencies among features [12] as well as identifying a
canonical set of features for a given software system [16].

Biggerstaff et al. [4] introduced static feature location as the
“concept assignment problem” and designed a tool that utilizes
parsing, simple clustering, identifier names, and a browser, to
support the identification. The simplest and most used static
techniques are based on searching the source code using text
pattern matching tools, such as Unix grep [1]. A significant
improvement over the grep-based tools are the IR-based
approaches [22], which provide ranked results to the developer’s
queries. AspectBrowser [14] improves searching experiences by
searching for regular expressions and displaying the results
graphically in programs visualized using map metaphors. Chen
and Rajlich [5] proposed a technique for feature location based on
searching the Abstract System Dependence Graph (ASDG). This
process is improved in [31], where the search of the dependency
graph is guided based on the analysis of the topology of the
structural dependencies. Some methods combine different kinds
of static information (i.e., semantic and structural), such as the
one proposed by Zhao et al. [41], which uses Information
Retrieval and a branch-reserving call graph to search the source
code. The software reflexion model [23] is another technique that
can be used in the context of concept location (assignment) to
identify mappings between domain level concepts and their
implementations (reflexions) in source code. Recently, Natural
Language Processing (NLP) techniques were applied to support
concept location in source code [34].

A comparison of different approaches for feature location in
legacy systems is presented in [37]. A more up-to-date summary
of all existing approaches can be found in [21], whereas a
summary of industrial tools available for feature location is
available in [35].

4. PROPOSED WORK
In the proposed work we utilize an Information Retrieval method,
Latent Semantic Indexing (LSI) [7], as a text indexing and search
engine. LSI is based on a Singular Value Decomposition (SVD)
[33] of the co-occurrence matrix of identifiers and comments in
source code documents of a software system. SVD is a form of
factor analysis, which is used to reduce dimensionality of the
feature space to capture most essential semantic information.

Originally LSI has been mostly applied on natural language
corpora, however, the method has been shown to lend itself well
on other types of data, for example, textual information extracted
from source code and associated documentation. Some of the
software engineering problems, related to concept location, which
have been addressed using LSI are traceability link recovery
between source code and documentation [2, 6, 19], requirements
tracing [15], reverse engineering [17], high-level concept clones
identification [18], conceptual cohesion [20] and coupling [25]
measurement etc.

In order to index the source code with LSI and combine semantic
information with other structural artifacts, the following set of
steps is applied:

1. Generating a corpus of a software system. The source
code is parsed using a developer-specified granularity level
(that is, methods or classes) and documents are extracted
from the source code. A corpus is constructed, so that each
method (and/or class) will have a corresponding document in
the corpus. Only identifiers and comments are extracted
(and pre-processed) from the source code.

2. Indexing software. The corpus is indexed using LSI and a
representation of the corpus as a real-valued vector subspace
is obtained. Dimensionality reduction is performed in this
step, capturing essential semantic information about
identifiers, comments and their relationships in the source
code. In the resulting subspace, each document (method or
class) has a corresponding vector.

3. Formulating a query. A developer selects a set of terms
that describe the concept of interest (for example, ‘print page
both sides’). This set of words constitutes the initial query.
The tool spell-checks all the words from the query using the
vocabulary of the source code (produced by LSI). If any
word from the query is not present in the vocabulary, then
the tool suggests similar words based on editing distance (or
semantic similarities among words) and removes the term
from the search query.

4. Ranking documents. Similarities between the user query
and documents from the source code (for example, methods
or classes) are computed. The similarity between a query
reflecting a concept and a set of data about the source code
indexed via LSI allows generating a ranking of documents
relevant to the feature. All the documents are ranked by the
similarity measure in descending order.

5. Combining with static and dynamic analysis. The
developer formulates a scenario that captures the feature of
interest; she marks the intervals in this scenario for which the
trace should be collected and executes the program
according to this scenario. A set of executed methods is
obtained. If the user is uncertain on where to mark the
traces, complete scenarios can be executed. Based on the LSI

index, obtained in step 4, the set of executed methods are
sorted based on the similarity among the methods and the
user query. In addition to the representation as a ranked list,
the ranked executed methods can be presented with
dependencies among them (i.e., based on call-graph
relations).

6. Presenting search results as a ranked list. The programmer
inspects the methods ranked in step 5, starting with the
method on the top of the list. The developer may return to
step 3 or 5 at any moment to reformulate a query or refine
the execution scenario.

7. Clustering search results. This step aims at reducing
developer’s search effort by providing additional structure
among the search results, such that parts of source code and
documentation are automatically grouped and labeled based
on common topics, similarly as it is done in web searching
clustering engines such as Vivisimo1 and Clusty2.

5. EVALUATION STRATEGIES
One of the goals of the case studies is to allow for quantitative
evaluation of different techniques. This is a notoriously difficult
task as it is hard to define the entire extent of the implementation
of a feature in large systems. One feature may be implemented
by hundreds of methods and many of them may contribute
towards several features. In order to have a gold standard against
which we can define objective measures, we narrow the extent of
feature implementation to those methods relevant to a change
request.

Our techniques will be evaluated through case studies on large
scale open source software systems such as Mozilla3 and Eclipse4.
The case studies will be done on both historical and current data
of changes. Since the developers of these systems maintain
detailed bug reports5 and descriptions of respective modifications,
the bug descriptions can be considered as change requests. Each
documented bug can be used as a gold standard against which we
compare the results of the feature location techniques, since the
documentation of each bug specifies which methods were
changed to fix that bug. We will consider changed methods as
belonging to the feature associated with the bug. One method
may belong to more than one bug (that is, changed in different
bug fixes), but it is at least exercised in the associated feature.

6. PRELIMINARY RESULTS
Several publications resulted from this research [20, 24-29, 40].
In addition, the following prototype tools have been implemented
to support our techniques: Information Retrieval based Software
Search (IRiSS) [27], the Eclipse version of IRiSS [26] and
Google Eclipse Search6 (GES) [29]. Recently, we organized a
working session7 on IR-based approaches in software evolution to
identify the main research trends and practical issues in the filed.

1 http://vivisimo.com/
2 http://clusty.com/
3 http://www.mozilla.org/
4 http://www.eclipse.org/
5 https://bugzilla.mozilla.org/
6 http://ges.sourceforge.net
7 http://www.cs.wayne.edu/~amarcus/icsm2006/

In [24] we presented a novel feature location technique, namely
Probabilistic Ranking Of Methods based on Execution Scenarios
and Information Retrieval (PROMESIR), formulated as a
decision-making problem in the presence of uncertainty. The
solution to the problem is formulated as a combination of expert
opinions, whereas experts are represented by two existing
techniques – Scenario-based Probabilistic Ranking (SPR) of
events based on processor emulation [3] and IR-based techniques
that use LSI [22].

As both techniques provide rankings of source code elements in
response to user input (SPR provides a ranked list of methods
based on several execution scenarios containing/not containing
the feature of interest; LSI ranks all methods according to a user
query formulated as a set of terms present in the source code of a
software system), we combine them as judgments of two
independent experts, who provide expertise to solve the problem
of identifying a feature precisely. The LSI expert builds its
judgment based on the source code textual similarities, while SPR
expert grounds its judgment on the probabilistic ranking of
dynamic events observed in execution traces. However, both
experts reply to the same question: “What are the locations of a
feature of interest?”. For the technical details on the combination
of two methods refer to [24].

We empirically evaluated the combination of these techniques
through several case studies, where we used the source code of
several versions of Mozilla and Eclipse. We used PROMESIR to
identify several features associated with several bugs in the source
code of these systems. In response to every bug description
report, which is used as a change request, two experts formulated
a set of scenarios related to the bug and a set of queries containing
descriptions of those bugs. In order to compare the methods, we
computed accuracies for the PROMESIR, SPR and LSI. Overall,
the results of the case studies showed that LSI and SPR, based on
different analysis methods and data, complement each other, and
the results obtained with the PROMESIR are significantly better
than those of any of the techniques used independently [24].

Also we improved the existing IR-based technique for concept
location [22] with automatic clustering of the search results using
Formal Concept Analysis (FCA). The IR based concept location
technique uses a search engine based on LSI, which allows the
user to search source code and related textual documentation by
writing natural language queries and retrieving a list of source
code elements (for example, classes, methods, functions, files),
ranked based on their similarity to the query. Based on the
ranked results of the search the proposed approach will
automatically generate a labeled concept lattice with search
results prearranged into topics and categories. Developers can
determine whether a node from the concept lattice (that is, topic
or category) is relevant or not to their query by simply examining
its label; they can then explore only relevant nodes in the lattice
and ignore the other ones, thus reducing their search effort. We
evaluated the novel approach in a case study on concept location
in the source code of Eclipse. The results of the case study
showed that the proposed approach is effective in organizing
different concepts and their relationships present in the search
results. The proposed concept location method outperforms the
simple ranking of the search results, reducing the programmer’s
effort.

7. EXPECTED CONTRIBUTIONS
The proposed research will help obtain new insights into the
design and implementation of incremental change of software via
improved techniques for feature and concept location. It is
expected that the resulting techniques, based on the combination
of semantic (textual), structural and dynamic information, not
only reduce programmers’ effort for searching and changing
software but also help improve software quality.

The set of tools that support the designed methods will be
released to the research community and improved based on the
feedback from various users.

8. REFERENCES
[1] Aho, A. V., "Pattern matching in strings", in Formal Language

Theory: Perspectives and Open Problems, New York Academic Press,
1980, pp. 325-347.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.,
"Recovering Traceability Links between Code and Documentation",
IEEE Trans. on Soft. Engineering, vol.28,no. 10,Oct. 2002,pp.970-983.

[3] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An
Epidemiological Metaphor", IEEE Transactions on Software
Engineering, vol. 32, no. 9, 2006, pp. 627-641.

[4] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The Concept
Assignment Problem in Program Understanding", in Proc. of ICSE'94,
pp. 482-498.

[5] Chen, K. and Rajlich, V., "Case Study of Feature Location Using
Dependence Graph", in Proc. ICPC'00, pp. 241-249.

[6] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., "Recovering
Traceability Links in Software Artefact Management Systems", ACM
Transactions on Software Engineering and Methodology, 2007.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, 1990, pp. 391-407.

[8] Egyed, A., Binder, G., and Grunbacher, P., "STRADA: A Tool for
Scenario-Based Feature-to-Code Trace Detection and Analysis", in
Proc. of International Conf. on Software Engineering, 2007, pp. 41-42.

[9] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in
Source Code", IEEE Transactions on Software Engineering, vol. 29,
no. 3, March 2003, pp. 210 - 224.

[10] Eisenberg, A. D. and De Volder, K., "Dynamic Feature Traces:
Finding Features in Unfamiliar Code", in Proc. of 21st IEEE
International Conf. on Software Maintenance, 2005, pp. 337-346.

[11] Ernst, M., "Static and Dynamic Analysis: Synergy and Duality", in
Proc. of ICSE Workshop on Dynamic Analysis, 2003, pp. 24-27.

[12] Fischer, M., Pinzger, M., and Gall, H., "Analyzing and Relating Bug
Report Data for Feature Tracking." in Proc. of 10th IEEE Working
Conference on Reverse Engineering, 2003, pp. 90-101.

[13] Greevy, O., Ducasse, S., and Girba, T., "Analyzing Feature Traces to
Incorporate the Semantics of Change in Software Evolution Analysis",
in Proc. of 21st IEEE International Conference on Software
Maintenance, 2005, pp. 347-356.

[14] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting the Map
Metaphor in a Tool for Software Evolution", in Proc. of 23rd IEEE
International Conference on Software Engineering, 2001, pp. 265-274.

[15] Hayes, J. H., Dekhtyar, A., Sundaram, S. K., "Advancing candidate
link generation for requirements tracing: the study of methods", IEEE
Transaction on Software Engineering, vol. 32, no.1, January, pp.4-19.

[16] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A., "On
Computing the Canonical Features of Software Systems", in 13th IEEE
Working Conference on Reverse Engineering, Benevento, Italy, 2006.

[17] Maletic, J. I. and Marcus, A., "Supporting Program Comprehension
Using Semantic and Structural Information", in Proc. of 23rd
IEEE/ACM Int. Conf. on Software Engineering, 2001, pp. 103-112.

[18] Marcus, A. and Maletic, J. I., "Identification of High-Level Concept
Clones in Source Code", in Proc. of ASE'01, pp. 107-114.

[19] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery of
Traceability Links Between Software Documentation and Source
Code", International Journal of Software Engineering and Knowledge
Engineering, vol. 15, no. 4, October 2005, pp. 811-836.

[20] Marcus, A. and Poshyvanyk, D., "The Conceptual Cohesion of
Classes", in Proc. of ICSM'05, pp. 133-142.

[21] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and Sergeyev, A.,
"Static Techniques for Concept Location in Object-Oriented Code", in
Proc. of 13th IWPC'05, pp. 33-42.

[22] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source Code",
in Proc. of 11th WCRE'04, pp. 214-223.

[23] Murphy, G. C., Notkin, D., and Sullivan, K. J., "Software Reflexion
Models: Bridging the Gap between Design and Implementation", IEEE
Trans. on Software Engineering vol. 27, no. 4, 2001, pp. 364-380.

[24] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., "Feature Location using Probabilistic Ranking of Methods
based on Execution Scenarios and Information Retrieval", IEEE Trans.
on Software Engineering, vol. 33, no. 6, June 2007, pp. 420-432.

[25] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling Metrics
for Object-Oriented Systems", in Proc. of ICSM'06, pp. 469 - 478.

[26] Poshyvanyk, D., Marcus, A., and Dong, Y., "JIRiSS - an Eclipse
plug-in for Source Code Exploration", in Proc.of ICPC'06, pp. 252-255.

[27] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev, A., "IRiSS - A
Source Code Exploration Tool", in Proc. of 21st IEEE International
Conference on Software Maintenance, 2005, pp. 69-72.

[28] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept
Analysis with Information Retrieval for Concept Location in Source
Code", in Proc. of ICPC'07, pp. 37-48.

[29] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and Liu, D.,
"Source Code Exploration with Google ", in Proc. of 22nd IEEE
International Conf. on Software Maintenance, 2006, pp. 334 - 338.

[30] Rajlich, V. and Gosavi, P., "Incremental Change in Object-Oriented
Programming", in IEEE Software, 2004, pp. 2-9.

[31] Robillard, M., "Automatic Generation of Suggestions for Program
Investigation", in Proc. of ACM SIGSOFT ESEC/FSE'05, pp. 11 - 20.

[32] Salah, M., Mancoridis, S., Antoniol, G., and Di Penta, M., "Scenario-
driven dynamic analysis for comprehending large software systems", in
Proc. of 10th IEEE European Conference on Software Maintenance and
Reengineering, 2006, pp. 71-80.

[33] Salton, G. and McGill, M., Introduction to Modern Information
Retrieval, McGraw-Hill, 1983.

[34] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K.,
"Using Natural Language Program Analysis to Locate and Understand
Action-Oriented Concerns", in AOSD'07, pp. 212-224.

[35] Simmons, S., Edwards, D., Wilde, N., Homan, J., and Groble, M.,
"Industrial tools for the feature location problem: an exploratory study",
Journal of Software Maintenance: Research and Practice, vol. 18, no.
6, 2006, pp. 457-474.

[36] Tonella, P. and Ceccato, M., "Aspect Mining through the Formal
Concept Analysis of Execution Traces", in Proc. of 11th IEEE Working
Conference on Reverse Engineering, 2004, pp. 112 - 121

[37] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and Pounds, L., "A
Comparison of Methods for Locating Features in Legacy Software",
Journal of Systems and Software, vol. 65, no. 2, Feb.2003, pp.105-114.

[38] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D., "Locating User
Functionality in Old Code", in Proc. of ICSM'92, pp. 200-205.

[39] Wong, W. E., Gokhale, S. S., Horgan, J. R., and Trivedi, K. S.,
"Locating program features using execution slices", in Proc. of IEEE
Symposium on Application-Specific Systems and Software Engineering
and Technology, 1999, pp. 194-203.

[40] Xie, X., Poshyvanyk, D., and Marcus, A., "3D Visualization for
Concept Location in Source Code", in Proc. of ICSE'06, pp. 839-842.

[41] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL:
Towards a Static Non-interactive Approach to Feature Location", ACM
Trans. on Software Engineering and Methodologies, vol. 15, no. 2,
2006, pp. 195-226.

