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Abstract 
The paper presents two novel conceptual metrics for 

measuring coupling and cohesion in software systems. 
Our first metric, Conceptual Coupling between Object 
classes (CCBO), is based on the well-known CBO 
coupling metric, while the other metric, Conceptual 
Lack of Cohesion on Methods (CLCOM5), is based on 
the LCOM5 cohesion metric. One advantage of the 
proposed conceptual metrics is that they can be 
computed in a simpler (and in many cases, 
programming language independent) way as compared 
to some of the structural metrics. 

We empirically studied CCBO and CLCOM5 for 
predicting fault-proneness of classes in a large open-
source system and compared these metrics with a host 
of existing structural and conceptual metrics for the 
same task. As the result, we found that the proposed 
conceptual metrics, when used in conjunction, can 
predict bugs nearly as precisely as the 58 structural 
metrics available in the Columbus source code quality 
framework and can be effectively combined with these 
metrics to improve bug prediction. 

1.  Introduction 
Coupling and cohesion measures capture the degree 

of interaction and relationships among source code 
elements, such as classes, methods, and attributes in 
object-oriented (OO) software systems. One of the main 
goals behind OO analysis and design is to implement a 
software system where classes have high cohesion and 
low coupling among them. These class properties 
facilitate comprehension activities, testing efforts, reuse, 
and maintenance tasks. 

A vast majority of coupling and cohesion metrics 
abound in the literature relies on structural information, 
which captures relations, such as method calls or 
attributes usages. These metrics have been proved useful 
in different tasks, such as, assessment of design quality 
[4, 10], impact analysis [8, 36, 41], prediction of 
software quality [26], and faults [17, 22, 37], 
identification of design patterns [2] etc. However, these 
structural metrics lack the ability to identify conceptual 
links, which, for example, specify implicit relationships 
encoded in identifiers and comments in source code.  

In this paper we propose two new conceptual 
metrics, namely Conceptual Coupling between Object 
Classes (CCBO) and Conceptual Lack of Cohesion of 

Methods (CLCOM5) metrics. The proposed metrics are 
different from existing conceptual coupling metrics [35] 
and cohesion [31] metrics as they utilize different 
counting mechanisms inspired by peer structural 
cohesion and coupling metrics. 

In order to evaluate the proposed metrics, we 
compare CCBO and CLCOM5 against a large host of 
existing structural and conceptual coupling metrics for 
predicting faults in a large open-source software system. 
Furthermore, we perform a comprehensive empirical 
evaluation of other parameters, such as, impact of pre-
processing techniques. Such parameters also impact 
performance of other existing conceptual metrics, such 
as Conceptual Cohesion of Classes (C3) [31] and 
Conceptual Coupling among Classes (CoCC) [35]. The 
results of our empirical study indicate that CCBO and 
CLCOM5 not only can be used to build operational 
models for predicting fault-proneness of classes, but can 
also be effectively used in conjunction with other 
structural metrics to improve overall accuracy of bug 
prediction models. 

Our paper warrants the following contributions: 
 We define two new conceptual cohesion and 

coupling metrics, which are easier to compute than 
their structural protégé.  

 We carried out an extensive empirical study of 61 
software metrics, including newly proposed 
measures to build models for fault prediction using 
machine learning and logistic regression analyses. 

 We empirically studied a range of parameters that 
can impact performance of CCBO and CLCOM5 
metrics, such as, impact of corpus stemming and 
parameterized thresholds. 

 We developed an online appendix summarizing the 
results of our empirical study to facilitate 
development and comparison of conceptual metrics 
and ensure reproducibility of our results. 

2.  Conceptual Metrics 
Our approach to measuring coupling and cohesion 

relies on the assumption that the methods and classes of 
Object-Oriented systems are connected in more than one 
way. While the most explored and evaluated set of 
relations among methods and classes are based on data 
and control dependencies, in this work we rely on 
orthogonal type of relationships, known as conceptual 
dependencies to capture conceptual cohesion and 
coupling of classes.  



 

Conceptual coupling and cohesion metrics, such as, 
CoCC and C3 extract, encode, and analyze the semantic 
information embedded in the comments and identifiers 
in software. Software developers utilize the comments 
and identifiers to represent elements of the problem or 
solution domain [11, 15]. Whilst conceptual cohesion 
[31] and coupling [35] metrics capture this information 
and have been proposed elsewhere in the research 
literature, we augment a family of conceptual metrics 
with two new members, namely CCBO and CLOM5. 

Our metrics rely on the equivalent underlying 
mechanism to extract and analyze the conceptual 
information from the identifiers and comments in source 
code as previous conceptual metrics, which are based on 
Latent Semantic Indexing (LSI) [14]. LSI has been used 
before to support other source code analysis tasks such 
as concept location [34], identification of abstract data 
types [29], clone detection [40], traceability link 
recovery among software artifacts [1, 13, 30], software 
clustering [25], quality assessment [26] and software 
measurement [16, 31, 32, 35, 36]. For the sake of 
completeness we provide some of the details on the LSI 
in the next section. 

2.1   Latent Semantic Indexing in the Nutshell 
LSI is a machine-learning model that induces 

representations of the meaning of words by analyzing 
the relations among words and documents in textual 
corpus of data. LSI was initially developed in the 
context of information retrieval as a way of overcoming 
issues with polysemy and synonymy, which are inherent 
to the vector space model (VSM) [38]. The specific 
technique, which is used by LSI to capture vital 
conceptual information and tackle two aforementioned 
problems, is dimension reduction, which implies 
selecting the top dimensions from a co-occurrence term-
document matrix decomposed using singular value 
decomposition (SVD). Consequently, LSI provides an 
effective mechanism to assess and evaluate similarity 
amid any two documents in the text corpus (i.e., 
methods in software) in an unsupervised fashion. While 
the details behind SVD are rather complex and lengthy 
to be presented in this paper, we refer a reader to [14]. 

LSI relies on VSM, which is an extensively used 
approach for encoding documents in the corpus as 
numerical vectors. More specifically, VSM encodes a 
corpus by a term-by-document matrix whose [i, j]th 
element indicates the association between the ith term 
and jth document. In case of our particular application, a 
term is an identifier or a comment, and a document is a 
body of the method extracted from a source code file. 
The foundation of VSM lies in the mechanism that 
represents documents by its association with terms 
where the association is measured by term co-
occurrences in the documents. There are several 
mechanisms to capture these associations based on term 
occurrences such as term frequencies (default case in 
our empirical evaluation) and term frequency – inverse 
document frequency (tf-idf). In a term-by-document 

matrix, a tf-idf value for [i, j]th element implies a 
statistical measure evaluating how important a word is 
to a document in a corpus. Formally,  

log /, ,w tf N dftt d t d   

where tft,d is the term frequency of a document d, and dft 
is the term frequency in all the documents in the corpus, 
whereas the N is the number of documents in the corpus. 
The importance of a word increases proportionally to the 
number of times a word appears in the document, but is 
offset by the number of times of that word appearing in 
the corpus [38].  

The conceptual similarity between documents is 
measured via the cosine or inner product between the 
corresponding vectors (i.e., methods), which increases if 
more words are shared. This underlying mechanism 
entirely supports the idea of measuring conceptual 
coupling and cohesion in software based on word 
matching from identifiers and comments in software. 

2.2  Conceptual Cohesion & Coupling Metrics 
The definitions of the new conceptual cohesion and 

coupling of classes builds on our previous work for 
measuring the conceptual cohesion [32] and coupling 
[36] of classes. The source code of the software system 
is parsed and transformed into a corpus of textual 
documents where each document corresponds to the 
implementation of a method. Aforementioned LSI 
technique takes the corpus as an input and creates a 
term-by-document matrix, which captures the dispersion 
and co-occurrence of terms in class methods. SVD is 
used next to construct a subspace, referred to as the LSI 
subspace. All methods from this matrix are represented 
as vectors in the LSI subspace. The cosine similarity 
between two vectors is used as a measure of conceptual 
similarity between two methods and is purported to 
determine shared conceptual information between two 
methods in the context of the entire software system. 
This mechanism to capture conceptual similarity among 
documents has been introduced before in Conceptual 
Coupling of Classes and Conceptual Cohesion of 
Classes measures and is also used here. 

Next we define the model, CCBO, and CLOM5 
measures. Some of the definitions have been presented 
elsewhere [35], however, we also include them for the 
sake of completeness. 

2.3  Principal Definitions  
Definition 1 (System, Classes, Methods).  We define 

an OO system as a set of classes C = {c1, c2…cn} with 
the number of classes in the system n = |C|. A class has a 
set of methods. For each class c  C, M(c) = {m1, …, 
mt} represent its set of methods, where t = |M(c)| is the 
number of methods in a class c. The set of all the 
methods in the system is denoted as M(C). 

An OO system C can be also viewed as a set of 
connected graphs GC = {G1,.., Gn} with Gi representing 
class ci. Each class ci  C is also represented by a graph  
Gi  GC such that Gi = (Vi, Ei), where Vi = M(ci) is a set 



 

of vertices corresponding to the methods in class ci and 
Ei  ViVi is a set of weighted edges that connect pairs 
of methods from the class. 

Definition 2 (Conceptual Similarity between 
Methods).  The conceptual similarity between methods 
(CSM) mk  M(C) and mj  M(C), CSM(mk, mj), is 
computed as the cosine amid two vectors vmk and vmj, 
representing mk and mj in the LSI semantic space: 

CSM(mk, mj) = 
22 |||| jk

j
T
k

vmvm

vmvm


 

As defined, the value of CSM(mk, mj)  [-1, 1], as 
CSM is a cosine similarity in the LSI space. In order to 
fulfill non-negativity property of software metrics [9], 
we refine CSM as the following: 
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CSM1 has been used as a base for defining C3 [31] 
and CoCC [35] measures before. 

Definition 3 (Parameterized Conceptual Similarity) 
In our work we define conceptual cohesion and 

coupling metrics utilizing counting mechanisms, 
stemming from existing structural metrics, which are 
sensitive to the input information such as nodes and 
edges (e.g., methods and attribute references). Thus, in 
this work we introduce a notion of a parameterized 
conceptual similarity, which distinguishes among 
significant and non-significant conceptual interactions 
among methods of classes. 

In particular, we conjecture that it is possible to 
empirically derive a threshold for a given software 
system to distinguish between strong and weak 
conceptual similarities. More formally, we define 
parameterized CSMP as: 

CSMP(mk, mj, t) = 
11 ( , )

0

k jif CSM m m t

else

 



 

Of course, the particular threshold t depends on the 
specific software system. In our previous experience, the 
absolute value of the cosine similarity can not be used as 
a reliable indicator of presence or absence of conceptual 
relationship among pairs of methods as more 
comprehensive analysis of similarity distributions is 
required. One of the main research questions in our 
empirical evaluation is centered on empirically deriving 
such a threshold and analysis of the impact on the choice 
of threshold values on the resulting metrics. 

2.4  Conceptual Lack of Cohesion in Classes  
In this paper we define our first metric, namely 

CLCOM5 using CSMP as the foundation for computing 
conceptual similarities among methods of classes, 
however, in terms of counting mechanism we rely on 
one of the ideas from previously defined structural 
metrics, namely LCOM5 [23], graph based cohesion 
metric. The main difference between our metric, 
CLCOM5 and C3, conceptual cohesion of classes 

metric, is that we define a parameterized version of 
cohesion metric using a different counting mechanism: 

),(),(5 GNoCCxcCLCOM   

where NoCC identifies the number of connected 
components in the graph GC= (M(c), E), c  C, E   
M(c) M(c), and (mk, mj)  E if CSMP(mk, mj, t)=1.  

2.5 Conceptual Coupling between Object Classes  
The definition of CCBO relies on previous 

definitions for CoCC metric. We provide these 
definitions and explain how we adjusted them in the 
current work. 

Let ck  C and cj  C be two distinct (ck  cj) classes 
in the system. Each class has a set of methods M(ck) = 
{mk1, …, mkr}, where r = |M(ck)| and M(cj) = {mj1, …, 
mjt}, where t = |M(cj)|. Between every pair of methods 
(mk, mj) there is a similarity measure CSMP(mk, mj). We 
can similarly define the conceptual similarity between 
two classes cj and ck, that is CSCP , as follows: 

CSCP(ck, cj, t) = 
11 ( , )

0

k jif CSC c c t

else

 



 

The definition ensures that the conceptual similarity 
between two classes is symmetrical, as CSC(ck, cj) = 
CSC(cj, ck). In this case we use class granularity to build 
the corpus. This is the main difference between 
computing CLCOM5 and CCBO metrics.  We refine the 
conceptual similarity for a class c as the following: 

CCBO(c, t) = 
 kk ccCc

k
P tccCSC

,

),,( , 

which is the sum of the parameterized conceptual 
similarities between a class c and all the other classes in 
the system.  

3.  Empirical Case Study 
In this section we present the design of the empirical 

case study aimed at comparing CLCOM5 and CCBO 
with other structural and conceptual coupling metrics for 
the task of predicting bugs in open-source software as 
well as identifying and analyzing various factors 
impacting performance of the proposed measures. The 
description of the study follows the Goal-Question-
Metrics design presented in [6]. The data, which has 
been used to generate the results in this paper, was 
previously used in [36]. 

3.1  Definition and the Context 
Our primary goals include comparing new 

conceptual metrics against existing coupling and 
cohesion metrics and determining whether combining 
the metrics can support the task of predicting bugs in 
large open-source software. In this empirical study the 
quality focus was on establishing orthogonality among 
CCBO, CLCOM5 and existing coupling and cohesion 
metrics and improving on accuracy of bug prediction, 
while the perspective was of a software developer 
analyzing a release of a software system for possible 



 

faults. The context of this case study consists of a large 
open-source software system, that is, Mozilla, which is 
implemented in a mix of programming languages 
spanning from C/C++, Java, IDL, XML, HTML, to 
JavaScript. It should be noted that we analyzed only 
C++ classes from the source code and computed CCBO, 
CLCOM5 and other structural and conceptual metrics 
among object-oriented classes implemented in C++ 
only. 
3.1.1. Cohesion and coupling metrics. In order to 
determine whether the newly proposed metrics capture 
new dimensions in coupling measurement, we selected 
61 exiting structural and conceptual metrics for 
comparison, including coupling metrics (e.g., CBO, 
RFC), cohesion metrics (e.g., Coh, Coh, LCOM1, 
LCOM2, LCOM3), CK [12] metrics suite as well as 
other metrics implemented in our metrics collection 
tool, namely Columbus [20]. In addition to these 
structural metrics we also considered a conceptual 
cohesion metric, that is, C3 [31]. Other guiding criteria 
that we used to choose the metrics is availability of the 
results reported for these metrics elsewhere in the 
literature [10, 22] to facilitate systematic comparison 
and evaluation of the results. 
3.1.2. Subject software system. For our case study we 
have chosen one large real-world software system. 
Mozilla 1  is an open-source Web browser ported to 
almost all identified software and hardware platforms. 
It is as large as many industrial size programs and is 
developed mostly in C++. We do not analyze the parts 
of Mozilla written in other programming languages, 
such as, C, Java, IDL, XML, HTML, etc. In our case 
studies, we use the source code of version 1.6 of 
Mozilla. It should be noted that we opted to work with 
such a system to emulate real-world settings where 
analyzing the source code written in such a detailed 
programming language as C++ introduces difficulties in 
addition to compiling such systems on different 
platforms. 
3.1.3. Building and indexing text corpora. In order to 
compute CCBO and CLCOM5 metrics we first need to 
generate a corresponding corpus for the software 
system. To build such a corpus for Mozilla we extracted 
the textual information, i.e., identifiers and comments, 
from the source code using method level granularity, 
where each document in the corpus represents a method 
from the software system (that is, a sequence of 
identifiers and comments implementing corresponding 
method). More specifically we extracted the following 
textual information: (1) comments, (2) local and 
attribute variable names, (3) user defined types, (4) 
methods names, (5) parameter lists and (6) names of the 
called methods. It should be noted that the comments 
preceding or proceeding the code have been extracted 
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using similar heuristics to [21], which have been 
implemented in our Columbus reverse engineering 
framework. Finally, we opted for not including the 
names of the primitive types in the corpus and we 
considered those to be a part of our stop word list.  

Once a corpus is built, we index it through Latent 
Semantic Indexing using the term-by-document co-
occurrence matrix corresponding to the corpus. LSI 
captures important conceptual relationships (i.e., 
couplings) among methods and classes within the 
corpus. After modeling the corpus using LSI, conceptual 
coupling and cohesion metrics can be computed (for the 
details on how CCBO and CLCOM5 are computed 
using underlying textual information refer to Section 2). 
The next section describes all the necessary settings for 
other researchers who are willing to reproduce the 
results of our empirical study. 
3.1.4. Settings of the case study. All the structural 
coupling measures were computed using Columbus 
[20]. Columbus is a reverse engineering framework that 
contains the components for analyzing arbitrary C/C++ 
source code and presenting the extracted information in 
any desired form. In this case study, we used the 
compiler wrapper technology of Columbus to extract 
the facts from Mozilla’s source code. For more details 
on how compiler wrapping is done in Columbus refer to 
our previous work [19, 22].  

 The textual information needed to compute CCBO 
and CLCOM5 has been also extracted using the 
Columbus framework. We used a cross-platform 
numerical analysis and data processing library ALGLIB2 
to compute the Singular Value Decomposition, which is 
needed for the LSI algorithm.  

Since we used method level granularity to construct 
the corpus for Mozilla we extracted all types of methods 
from classes in the source code, including constructors, 
destructors, and accessors. Comments and identifiers 
were extracted from the body of each method as well 
before and after given Columbus’ heuristics. The 
resulting text from the source code was pre-processed 
using the following parameters: some of the tokens were 
eliminated (e.g., operators, special symbols, numbers, 
reserved keywords of the C++ programming language, 
primitive data types standard library function names 
including standard template library); the identifier 
names in the source code were split into original words 
based on observed coding standards and naming 
conventions, e.g., Google’s C++ coding standard3. For 
instance, the following identifiers are split into words 
‘lack’, ‘of’ and ‘cohesion’: ‘LackOfCohesion’, 
‘Lack_of_cohesion’, etc. During this indexing process, 
LSI does not utilize a predefined vocabulary, or a 
predefined grammar, hence no morphological analysis 
or transformations were performed, such as abbreviation 
expansion. However, we build various corpora with and 
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without stemming to study its impact on the metrics in 
our empirical study.  
3.1.5. Predicting faults using machine learning 
algorithms and software metrics. In order to evaluate 
the usefulness of our metrics we conducted a number of 
analyses to discover possible relationships between the 
values of the metrics and the number of bugs found in 
Mozilla’s classes. We employed regression analysis 
methods along with machine learning techniques, 
which are widely used to predict an unknown variable 
based on one or more a priori known variables. We 
opted to use these statistical techniques to study 
relationship between the metrics and faults in classes.  

The logistic regression method predicts if a class is 
faulty or not, but does not infer a probable number of 
bugs in classes. We used univariate logistic regression 
analysis to examine each metric separately and 
multivariate analysis to study common effectiveness of 
the combinations of various metrics. In addition to 
regression analyses we exploited machine learning 
methods to predict the fault-proneness of classes. While 
similar studies have been done in the past on the CK 
metrics [22], in this paper we apply machine learning 
techniques on 61 conceptual and structural metrics to 
predict fault-proneness in software. We utilize a suite of 
machine learning techniques implemented in Weka4, an 
open-source collection of machine learning algorithms 
for data mining tasks. The usage of this toolset 
simplifies the validation part, since these algorithms are 
well-documented and easy to use.  In particular we use 
Naïve Bayes, Bayesian Logistical Regression, Bayes 
Net, Logistic Regression, RBF Network, Simple 
Logistic Regression, SMO, IB-k, Conjunctive Rule, 
Decision Table, ADTree and REP Tree. The Naïve 
Bayes is a statistical based algorithm based on 
probabilistic models. IB-s is a k-means clustering 
algorithm combined with a simple classifier. The 
difference between the logistic and simple logistic 
regression analyses are that logistic regression makes 
multi-nominal regression by using all of the given 
predictors, however, simple logistic regression may 
eliminate some of those. SMO is a sequential minimal 
optimization algorithm for training a support vector 
classifier. RBF network is a Gaussian radial basis 
function network, which is akin to artificial neural 
network, which uses radial basis functions as activation 
functions in the neurons. Some of these algorithms are 
rule/tree based algorithms. For instance, Conjunction 
Rule is rule based and it provides conjunction rules for 
classifying labels. Decision Table generates complex 
logical rules from the given learning examples and it 
generates rules to classify incoming labels. ADTree is 
an alternative decision tree algorithm, which generates 
rules for the cases of metric values. Finally, REPTree is 
a fast decision tree learner, which builds a 
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decision/regression tree via information gain/variance 
and prunes it using reduced-error with back-fitting. 

All the models were trained to provide binary 
predictions which imply that they predict if a class is 
prone to be faulty or not based on the values or 
combination of values of particular metrics. In order to 
estimate the performance of generated predictive models 
we utilized the ten-fold cross-validation technique. As 
for the training bug data we utilized the bug data that 
was gleaned and used in our previous work elsewhere 
[22].  

3.2  Research Questions 
We address the following research questions (RQ) 

within the context of this empirical study. 
 RQ1: Are the new metrics, CCBO and CLCOM5, 

orthogonal as compared to existing structural and 
conceptual coupling and cohesion metrics? 

 RQ2: How does stemming impact accuracy of 
CCBO and CLCOM5 for predicting fault-
proneness of classes? 

 RQ3: What is the optimal threshold for CCBO and 
CLCOM5 for predicting fault-prone classes? 

 RQ4: Does combining CCBO and CLCOM5 with 
existing structural and conceptual cohesion and 
coupling metrics improve accuracy of predicting 
fault-prone classes?  

To respond to our research questions we compare 
CCBO and CLCOM5 with other coupling and cohesion 
metrics as well as explore the impact of combining 
coupling metrics.  

3.3  Evaluation of Metrics and Analysis 
Precision, recall and accuracy are three widely used 

information retrieval metrics that were employed to 
measure performance of software metrics for various 
maintenance tasks including predicting fault-prone 
classes. We explain these measures in the context of true 
positives (TP), true negatives (TN), false positives (FP) 
and false negatives (FN) in the context of fault-
proneness prediction. 

True Positive is a candidate class, which was 
predicted as faulty and contained a bug, whereas a True 
Negative is a candidate class predicted as non-faulty and 
containing no bugs. The False Positive is class that was 
marked as faulty by the model, but actually did not 
contain a fault, whereas a False Negative is a class 
where the model marked a class as non-faulty and it did 
contain a bug.  Accuracy, Precision and Recall are 
defined as the following:   
Accuracy=

FNTNFPTP

TNTP


 , Prec=

FPTP

TP


, Recall =

FNTP

TP


 

While reporting the results we also used F-measure, 
which is a harmonic mean of precision and recall. 

In order to explore the principal, orthogonal 
dimensions captured by the coupling and cohesion 
measures (both conceptual and structural) we performed 
Principal Component Analysis (PCA) on the metrics. 
Applying PCA to metrics data consists of the following 



 

steps: collecting the metrics data, identifying outliers, 
and performing PCA. We applied PCA in the similar 
manner as in our previous work [31, 35], including 
procedures for identifying outliers and rotating principal 
components. In general, via PCA we can recognize 
groups of variables (i.e., metrics), which are likely to 
measure the same underlying dimension (i.e., specific 
mechanism that defines, for instance, coupling or 
cohesion) of the object to be measured (e.g., cohesion of 
a classes).  

3.4  Case Study Results 
3.4.1. RQ1 – Results of the principal component 
analysis. PCA was performed on 3,625 classes from 
Mozilla (that is, classes for which we could compute all 
the metrics) with 61 structural and conceptual metrics. 
While the complete results are quite lengthy to be 
presented in this paper, we summarize some of the 
results and provide the link to the complete results in 
the online appendix 5 , which also contains the brief 
explanations of the metrics mentioned in the following. 

The PCA resulted in 11 Principal Components (PCs) 
that describe 87.6% of the variance in our data set. We 
provide top four PCs with their interpretations: 

PC1 (27%): There are several metrics which were 
included in this component: cohesion metrics LCOM-
LCOM5, NLMA, NLMAni and our CLCOM5, size 
metrics NML, NMLD, NAML, NAL, NMLDpub, 
NMLpub, LOC, lLOC, coupling metrics NFMA, NOI 
and RFC, and the WMC complexity metric. These 
clusters of the results are consistent with previous work 
with some changes in the rankings of the PCs [10]. 

PC2 (21%): This component was comprised of 
several coupling metrics RFC1, RFC2 and RFC3, 
inheritance-based metrics AID, DIT, NOA, NMI and 
various size metrics, such as, NM, NMpub, NMprot, 
NMD, NMDpub, NMDprot, NAM. 

PC3 (7.2%): This component was described mostly 
by NMLDpriv, NMDpriv, NMLpriv and NMpriv 
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metrics. As it can be seen in the results for the other 
RQs, these metrics’ prediction performance were quite 
offset from the other variants of these metrics, such as, 
NMLDpub, NMLDprot. 

PC4 (6%): This component consisted of the 
structural cohesion Co1, Co2, Coh metrics, CCBO and 
C3 conceptual metrics. 

In addition to PCA we also analyzed correlations 
among the metrics. While we pinpoint a few interesting 
observations in this paper, we refer the interested reader 
to the online appendix for the complete analysis results.  

CCBO correlated with CLCOM5 with a coefficient 
of 0.41 and a few other structural metrics, such as Coh, 
CBO, RFC with a coefficient between 0.4 and 0.5. On 
the other hand, CLCOM5 was highly correlated with 
many other structural metrics such as LOC, LLOC, 
NOI, CBO, RFC and WMC with a correlation 
coefficient above 0.7. These results indicate that the new 
conceptual cohesion and coupling metrics are closer to 
structural metrics as previously defined conceptual 
metrics, such as C3. This result can be interpreted as a 
positive result as conceptual metrics are less expensive 
to compute compared to many structural metrics and do 
not depend on the specific programming language at 
hand as well as building specialized parsers for those 
languages and systems to derive the metrics.  
3.4.2. RQ2 – identifying impact of stemming on 
CCBO and CLCOM5 metrics for predicting fault-
prone classes. The conceptual metrics rely on the 
quality of the underlying comments and identifiers in 
source code as well as specific pre-processing strategies 
used to transform the corpus before indexing. While 
previous work did not look closely into this important 
factor, we perform close investigation of the impact of 
stemming on the performance of conceptual metrics 
and their combinations with structural metrics to 
identify fault-prone classes. The goal of this 
investigation is to identify whether stemming helps in 
building better models for predicting faults, which 
utilize conceptual metrics. 

Table I. Ten-fold cross validation of conceptual & structural metrics with & w/o stemming for predicting faults 
 Conceptual-no-stem All-metrics-no-stem Conceptual-with-stem All-metrics-with-stem 

ML Algorithm A P R F A P R F A P R F A P R F 

Bayesian Log. Reg. 68.3 70.5 69.1 69.8 71.8 76.7 67.3 71.7 68.8 70.4 71.2 70.8 71.5 71.5 74.7 72.3

Bayes Net 67.0 64.7 83.4 72.8 70.5 72.5 71.5 72.0 67.3 65.0 83.1 73.0 70.5 72.4 71.8 72.1

Naïve Bayes 68.1 67.9 75.9 71.7 69.2 73.1 66.3 69.6 68.5 67.9 77.2 72.3 69.1 73.1 66.3 69.5

Logistic Regression 67.6 73.6 61.0 66.7 72.5 76.6 69.5 72.8 67.9 72.6 63.4 67.7 72.4 77.0 68.4 72.4

RBF Network 67.1 70.1 66.4 68.2 69.3 70.7 71.9 71.3 68.7 68.8 75.1 71.8 69.7 71.9 70.5 71.2

Simple Logistic 67.6 73.5 60.9 66.6 72.1 75.9 69.6 72.6 67.8 72.6 63.4 67.7 71.8 75.6 69.2 72.3

SMO 67.8 73.8 61.1 66.9 72.4 76.2 69.8 72.8 68.0 72.5 64.1 68.0 72.2 76 69.7 72.7

IB-k 66.6 67.9 70.3 69.1 71.2 73.1 72.5 72.8 68.8 70.5 70.9 70.7 72.7 74.5 73.8 74.2

Conjunctive Rule 65.8 79.9 47.6 59.6 69.6 81.8 55.0 65.8 64.5 73.1 52.6 61.2 69.5 82.1 54.3 65.4

Decision Table 67.8 65.8 81.9 73.0 70.3 73.6 68.5 71.0 68.1 66.5 80.7 72.9 70.5 74.3 67.9 71.0

AD Tree 68.4 65.9 84.2 73.9 70.9 72.8 72.3 72.5 68.3 65.7 84.6 74.0 71.0 74.4 69.3 71.7

REP Tree 67.3 67.8 73.2 70.4 71.2 72.6 73.6 73.1 67.6 68.5 72.3 70.3 70.6 72.2 72.6 72.4



 

The results of the ten-fold cross-validation of various 
configurations of the models using and not using 
stemming are presented in Table I. The first part of the 
table presents the results of applying several machine 
learning techniques for predicting bugs in Mozilla on the 
models built using three conceptual metrics (i.e., CCBO, 
CLCOM5 and C3) without stemming. As it can be seen, 
the performance of these models in terms of precision 
(P), recall (R), accuracy (A) and F-measure (F) are quite 
high as compared, for instance to random classifiers. 
While the performance of the metrics are rather 
consistent across various machine leaning algorithms, 
we identify that the AD Tree algorithm produces the 
highest accuracy, recall and F-measure values (i.e., 
68.4%, 84.2% and 73.9% respectively), while 
Conjunctive rule achieves the highest precision.  

It should also be noted that the results of combining 
new conceptual metrics (without stemming) for 
predicting fault-proneness is comparable to the 
combination of structural metrics (see Table II). 
Furthermore, the models based on conceptual metrics 
are able to outperform the models based on structural 
metrics in terms of recall and f-measure (i.e., 84.2 vs. 
73% and 73.9% vs. 72.4 respectively). 

When we compare the results of combining all the 
structural metrics (i.e., all-metrics-no-stem in Table I) 
against conceptual metrics without stemming (i.e., 
conceptual-no-stem in Table I), we can observe slight 
improvement in the accuracy (that is, 72.5% vs. 68.4%) 
and precision (that is, 81.8% vs. 79.9%), while the best 
recall and F-measure are obtained with conceptual 
metrics (that is, 84.2% and 73.9%, respectively). 

Table II. Ten-fold cross validation of the structural 
metrics for predicting fault-proneness 

ML Algorithm A P R F 
Bayesian Log. Reg. 70,5 71.8 73.0 72.4 

Bayes Net 69.9 72.1 70.6 71.4 
Naïve Bayes 69.1 73.2 66.1 69.5 

Logistic Regression 72.1 76.6 68.5 72.3 
RBF Network 68.9 75.0 62.1 67.9 

Simple Logistic 71.7 75.2 69.9 72.3 
SMO 71.4 74.7 69.9 72.2 
IB-k 70.2 72.3 71.0 71.6 

Conjunctive Rule 70.1 81.7 56.4 66.7 
Decision Table 70.6 75.3 66.5 70.7 

AD Tree 70.9 75.2 67.5 71.1 
REP Tree 70.5 72.9 70.5 71.7 

 
According to the results while applying stemming 

(see conceptual-with-stem in Table I), we have positive 
improvements in case of accuracy, recall and F-measure. 
Moreover, we can observe that this improvement is 
consistent for these parameters across different machine 
learning algorithms utilized. We can also observe a 
noticeable improvement in recall and F-measures for 
conceptual metrics with stemming over structural 
metrics.  

Finally, the results for combining conceptual metrics 
with stemming (all-metrics-with-stem in Table I) and all 
the structural metrics leads to the conclusion that this 
combination produces the best values across all the 
parameters, such as, accuracy, precision, recall and F-
measure (i.e., 72.7%, 82.1%, 74.7% and 74.2% 
respectively). Likewise, the models with all the metrics 
and stemming outperforms the model, which is based on 
a combination of pure structural metrics (see all-metrics-
with-stem in Table I and Table II ).  

Based on these results we conclude that stemming 
does improve the results for predicting fault-prone 
classes. According to our best knowledge, this is the 
first research result in the literature, which empirically 
confirms the positive impact of stemming on conceptual 
metrics given positive impact on the external software 
quality attribute, such as fault-proneness of classes. 
Assuming this result we apply stemming from now on to 
answer the remaining research questions. 
3.4.3. RQ3 – Identifying optimal thresholds for 
CCBO and CLCOM5 metrics for predicting fault-
proneness of classes. CCBO and CLCOM5 are 
parameterized metrics, which depends on the threshold 
t to identify conceptual similarities among class 
methods. While we used a default threshold of 0.7 to 
answer RQ2, it is necessary to identify acceptable 
values of this parameter for the given task. We 
acknowledge that the process of identifying an optimal 
threshold could be software system specific, thus, we 
present the results for Mozilla only.  

In order to search for the optimal thresholds for 
CCBO and CLCOM5 metrics on our dataset we 
computed accuracy values of the metrics across various 
thresholds starting from 0.05 until 0.95 with a step of 
0.05. It should be noted that we used a reduced set of 
machine learning algorithms in this case, which 
corresponded to the subset of algorithms indicating a 
superior performance in RQ2. According to our results 
(see Figure 1) it can be seen that the thresholds for 
CLCOM5 resulting in the accuracy of at least 64% 
reside in the interval [0.3, 0.95], whereas the peak 
performance of 68.5% in accuracy is observed in the 
interval of [0.7, 0.8]. These results are consistent across 
all the machine learning algorithms used in this 
situation. 

On the other hand, the accuracy of CCBO is more 
sensitive to threshold values as compared to CLCOM5 
metric. Here we observe that the accuracies of the 
algorithms slowly decline from 0.05 threshold. This 
finding is quite interesting suggesting that we should 
assign higher thresholds for CLCOM5 cohesion metric 
and lower thresholds for CCBO coupling metrics to 
warrant better prediction accuracy of fault-proneness. 



 

While using the best thresholds (see Table V) for 
CLCOM5 and CCBO we observed some improvement 
in CLCOM5 over LCOM5 while predicting fault-prone 
classes in terms or accuracy (that is, 68.8% vs. 64.6%), 
recall (that is, 72.2% vs. 71.3%) and F-measure (that is, 
70.8% vs. 68.1%). CCBO measure appears to be better 
at recall (that is 74.6% vs. 72.8%). Finally both 
conceptual measures, CLCOM5 and CCBO, outperform 
existing C3 measure in terms of accuracy, precision and 
F-measure.  
3.4.4. RQ4 – Results of combining CCBO and 
CLCOM5 with structural and conceptual metrics 
for fault-proneness. Lastly, we tested if combining 
CCBO, CLCOM5 and structural metrics improves the 
performance of models for fault prediction as compared 
to combinations of C3 & structural metrics.  

Based on the results we conclude that combining 
CCBO and CLCOM5 with structural metrics prediction 
models are more robust than combinations of existing 
conceptual metric C3 and structural metrics. We derive 
these conclusions based on the analysis of the average 
results of accuracy, precision and recall measures. 

Table III. Combining CCBO and CLCOM5 with 
structural (left) and C3 and structural metrics (right) 

 CCBO,CLCOM5+struct C3+struct 
Algorithm A P R A P R 

Bayes. Log. Reg. 71.6 74.8 70.1 71.7 73.1 73.9 
Bayes Net 70.7 72.6 72.0 70.3 72.3 71.6 
Naïve Bayes 69.2 73 66.5 68.9 73 65.9 
Logistic Reg. 72.0 75.8 69.6 71.8 76.3 68.1 
RBF Network 69.8 72.4 69.8 69.8 72.4 69.5 
Simple Logistic 71.6 75.5 69.0 71.9 75.6 69.5 
SMO 72.0 74 72.7 72.1 75.6 70.1 
IB-k 73.0 75.4 72.9 72.3 74.7 72.2 
Conjunctive Rule 69.7 81.1 56.0 69.9 80.9 56.7 
Decision Table 70.4 74.1 67.9 70.4 74.1 67.9 
AD Tree 71.0 72.9 72.3 70.5 74.3 67.9 
REP Tree 71.1 73.4 71.3 70.6 72.6 71.6 

 3.4.5. Analyzing metric intervals. In addition to 
answering the research questions we examined the 
proposed metrics more closely. In particular we 
analyzed histograms of distributions of faulty classes 
across metric intervals, where x-axis represents metric 

intervals and y-axis shows faulty (dark grey) and non-
faulty (light gray) classes (see Figure 2).  

Interestingly enough, all the three conceptual 
metrics, existing C3 and proposed CCBO and CLCOM5 
reflect our underlying hypotheses. In other words, C3 
captures more faulty classes while the metrics values are 
low, likewise the CLCOM5 metric; whereas CCBO 
captures more faulty classes when the metrics values are 
getting higher.  

3.4.6. Results for the logistic regression analysis. We 
also decided to examine individual performance of the 
metrics using univariate logistic regression. The set-up 
of this study was similar to our previous work [22, 32]. 

According to the results, which present top 12 
performing metrics (out of 61 metrics) according to 
accuracy values, CCBO and CLCOM5 were not the best 
measures. However, CLCOM5 appears to be the best 
measure in the family of cohesion metrics and CCBO 
appears to be one of the best coupling structural metrics 
besides CBO, RFC and RFC3. This result further 
supports the usefulness of proposed metrics.  

Table IV. Results of regression analysis 
Metric Acc. Prec. Rec. Metric Acc. Prec. Rec.
CBO 71.9 74.1 72.4 lLOC 68.9 76.4 59.8
NOI 71.4 76.8 66.1 RFC3 68.9 77.7 58.1

WMC 70.3 77.7 61.8 LOC 68.7 76.9 58.6
RFC 69.8 75.9 63.2 CLCOM5 67.5 73.5 60.9

NFMAni 69.8 75.5 63.7 CCBO 66.7 66.7 74.6
NFMA 69.3 72.9 67.2 NAML 66.7 74.7 56.4

3.5  Threats to validity 
We recognize some issues that could have affected 

the results of the case study and may have limited our 
interpretations. We have demonstrated that our metrics 
are more similar to some of the structural metrics than to 
existing conceptual metrics; however, we obtained these 
results by analyzing classes from only one large C++ 
open-source system. In order to generalize the results, 
large-scale assessment is needed taking into account 
software from diverse domains, implemented in 
different programming languages and environments. 

The conceptual measures (that is, CCBO and 
CLCOM5) depend on consistent and concise naming 
conventions for identifiers and comments. When these 

 
Figure 1.  CLCOM5 (left) and CCBO (right) accuracies across different thresholds 



 

are missing, the emphasis for capturing coupling or 
cohesion should be placed on static or dynamic metrics. 

CCBO and CLCOM5 measures, as currently 
defined, do not take into account polymorphism and 
inheritance. The measures only consider methods of a 
class that are implemented or overloaded in the class.  

In our case study for predicting fault-proneness we 
used one large (i.e., Mozilla) software system, however, 
to permit for generalization of the results, yet again, 
large-scale evaluation is needed, which should take into 
account several releases of software systems 
implemented in multiple languages (that is, not only 
C++ as covered in our case study). 

We also observed that the machine learning 
algorithms did not generate the best models in every 
case. In other words, we did not investigate collinearity 
among the metrics to identify similar groups of metrics 
to improve the predictive power for the models. Instead, 
we utilized all the software metrics generated by 
Columbus. We will redirect our future research efforts 
to study this phenomenon. 

Our metrics rely on parameterized conceptual 
similarities among methods, which assume specifying a 
threshold for operational measures. While we used near-
optimal threshold values (as indicated via analysis of all 
other possible threshold values), these threshold values 
may vary for other software systems. Our future work 
will target not only identifying ranges of acceptable 
threshold values, but also guidelines to users of the 
metrics on how to identify these thresholds. 

4.  Related Work 
Our related work can be broadly classified into two 

areas – conceptual cohesion and coupling metrics and 
predicting fault-proneness of classes. 

Conceptual cohesion of classes or C3 [31] is one of 
the first conceptual metrics proposed in the research 
literature. C3, similarly to CLCOM5 and CCBO is 
based on the analysis of the semantic information 

embedded in the source code, such as identifiers and 
comments. C3 has been recently used in conjunction 
with structural cohesion metrics to predict faults in 
object-oriented classes [32]. CoCC [35] is a conceptual 
coupling metric, also based on LSI, stems from C3, 
however, it was defined to capture coupling among 
classes based on conceptual similarities among methods 
in different classes. CoCC has been shown to 
outperform structural coupling metrics for the task of 
impact analysis on a large open-source system [36]. 
Finally, WME is a conceptual cohesion metric based on 
Latent Dirichlet Allocation and information theory 
approaches [28]. This cohesion metric has been shown 
to capture different aspects of class cohesion and 
improved fault prediction for most existing cohesion 
metrics. While building comprehensive models for fault 
prediction was not at the focus of papers presenting 
conceptual metrics, this paper not only introduces new 
metrics, but also explores their role in building complete 
models for fault prediction. 

Existing research showed that software metrics can 
be used as good indicators for the fault proneness of 
classes in OO systems [3, 5, 7, 10, 17, 22, 33, 37, 39]. 
More specifically, some of the existing approaches also 
utilized machine learning [22] and logistic regression 
analyses [3, 5, 7, 10, 22, 33, 39] to build metric-based 
models for fault prediction. Our paper is different from 
the previous work as it defines new conceptual metrics 
for class cohesion and coupling, which appear to be an 
improvement over the state-of-the-art. Finally, this work 
explores a set of machine learning techniques and 
regression analyses to test a number of models based on 
the combinations of structural and conceptual metrics 
along with the detailed investigation into principal 
factors impacting the performance of the conceptual 
metrics. Finally, prediction of fault-prone classes or 
simply bug prediction is an active area of research, 
which produced a number of research publications in the 
last decade. Besides conference and journal publications 

Table V. Ten-fold cross validation of CLCOM5, LCOM5, CCBO and C3 for predicting faults in classes 
 CLCOM5; t=0.75 LCOM5 CCBO; t=0.1 CBO C3 

Algorithm A P R F A P R F A P R F A P R F A P R F 

Naïve Bayes 68.8 71.0 69.8 70.4 62.8 66.8 59.3 62.8 67.3 68.8 70.3 69.5 71.9 73.9 72.8 73.3 65.4 63.3 83.2 71.9

Bayesian Log. Reg. 68.7 70.2 71.4 70.8 61.0 69.7 46.9 56.1 67.3 68.4 71.5 69.9 71.9 74.1 72.4 73.2 55.3 54.4 97.0 69.8

Simple Logistic 67.6 73.5 61.0 66.6 64.6 65.2 71.3 68.1 66.8 66.7 74.6 70.5 71.9 74.1 72.4 73.2 55.4 54.5 97.0 69.8

IB-k 68.3 69.4 72.2 70.8 64.6 65.4 70.9 68.0 64.9 64.8 74.2 69.2 71.9 74.1 72.4 73.2 65.6 63.0 85.3 72.5

Conjunctive Rule 66.5 73.4 57.9 64.7 64.6 65.2 71.3 68.1 67.4 68.9 70.5 69.7 70.5 77.7 62.3 69.2 61.8 58.5 96.5 72.8

AD Tree 68.7 70.2 71.4 70.8 64.6 65.2 71.3 68.1 67.1 68.6 70.3 69.4 71.9 74.1 72.4 73.2 65.5 63.3 83.1 71.9

 
Figure 2. Distribution of (non) faulty across C3 (left), CCBO (center) and CLCOM5 (right) metric intervals 



 

on the topic, specialized conferences were organized 
such as PROMISE6 and MSR7  with their specialized 
data sets for predicting fault-prone classes in software. 

5.  Conclusion 
The paper defines novel operational measures for 

conceptual class cohesion and coupling measurement, 
which have been empirically validated. An extensive 
case study using machine learning techniques on metrics 
data indicates that the proposed measures have 
comparable accuracy with those defined suing structural 
information. Moreover, combinations of novel metrics 
with existing host of measures attests statistically 
significant improvement in the results across multiple 
evaluation criteria.  

The paper lays the basis for the future work that 
makes use of conceptual information for coupling and 
cohesion measurement. The proposed metrics could be 
further extended and refined, for instance, by taking into 
account inheritance. Another direction is to improve the 
quality of the underlying textual information by 
applying advanced source code pre-processing 
techniques for splitting [18] and expanding [24, 27] 
compound identifiers and comments in software. Since 
both CCBO and CLCOM5 rely on textual (unstructured) 
information, we are considering including external 
documentation in the corpus, which should extend the 
context in which words are used in software to capture 
underlying conceptual similarities. 
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