

Support for Static Concept Location with sv3D

Xinrong Xie, Denys Poshyvanyk, Andrian Marcus
Department of Computer Science

Wayne State University
Detroit Michigan 48202

{xxr, denys, amarcus}@wayne.edu

Abstract

The paper presents a new visualization approach to
support static concept location in source code. The
approach is realized through the combination of two
existing tools: IRiSS, which is an information retrieval
based tool that support source code searching and
browsing; and sv3D, which is a software visualization
front end. Both tools are integrated into MS Visual
Studio .NET.

The motivation behind the approach, the definition
of the visual mappings, and usage examples are also
presented in the paper, together with an outline of
future and related work.

1. Introduction

Searching and browsing the source code is one of
the most common activities in software engineering as
it directly supports concept location, a key step during
the analysis and comprehension of software. Concept
location techniques are mainly divided into static and
dynamic; most common static techniques [8] are based
on string matching, dependency search, and
information retrieval. There is little effort done in
trying to support these techniques with visualization.
Most existing efforts focus on the visualization of
dependency graphs. One of the difficulties in
visualizing the results of a string matching search, for
example, is the granularity and size of the results of a
given search.

This paper presents the combination of two
software comprehension tools to provide visualization
support for information retrieval (IR) and string
matching based concept location. One tool (i.e., IRiSS
– Information Retrieval based Software Search [11])
implements an IR based concept location method and
combines it with the existing regular expression based
search in MS Visual Studio .NET. The other tool (i.e.,
sv3D – source viewer 3D [7]) is a visualization front
end for software data.

2. Related work

Various visualization tools were developed to
support source code browsing through different
representations (e.g., FEAT [13], Aspect Browser [3],
SHriMP [14], etc). Some visualization tools use
graphs to represent the relationship between software
artifacts. In these graphs, nodes may represent the
system entities and edges may represent relations
between the entities. For example, Rigi [15] is used to
represent in a graph-like visualization, application
component relationships and dependencies. SHriMP
[14] shows inheritance relationships in an software
system through the use of nested graphs using the fish-
eye filtering technique. CodeCrawler [5] displays
classes and the relationships between them using
polymetric views, where the size and the color of
nodes are used to represent software metrics.

Some of the above visualization tools provide
searching functions. For example, SHriMP supports
three searching strategies: general, artifact, and
relation search. Others are integrated with existing
IDEs (i.e., CodeCrawler in Smaltalk and SHriMP in
Eclipse [6]).

3. Program comprehension using sv3D

Source Viewer 3D (sv3D) [7] is a software
visualization framework that uses a 3D visual
metaphor based on the Seesoft [1, 2] file and pixel
maps. In particular sv3D creates 3D renderings of the
software data based on user defined mappings. It uses
poly cylinders to represent software entities (e.g.,
characters, lines of code, methods, functions, classes,
etc.) and it uses containers to show aggregates of these
elements (see Figure 3). The height and color of the
poly cylinders can be used to represent various
software metrics or other data relevant to the software
system. sv3D is designed to interact easily with
analysis tools, as it has no analysis component. It
supports advanced user interactions and usage of the

3D space for visualization, such as: the overview
feature that can show large amounts of source code in
one view; zooming and panning at variable speeds;
two types of 3D manipulators (i.e., track ball and
handle box) are available to the users to interact with
the visualization; a number of filtering methods, such
as transparency; the user can take snapshots of the
current view, thus a sequence of the snapshots can be
used to keep a history of the visualization.

Sv3D can be used to support tasks such as: fault
localization, visualization of execution traces, source
code browsing, impact analysis, evolution, slicing, etc.

4. Concept location with IRiSS

Concept (or feature) location is one of the most
frequent activities that software developers perform
when there is a need to change something in a
software system. It is routinely done during
incremental change of software [12]. An overview of
different methods is available in [16] and [8]. In this
paper, we will concentrate only on the IR-based
concept location method [9]. We developed a tool
[11] (i.e., IRiSS) that implements the IR-based
concept location technique as a plug-in to MS Visual
Studio .NET.

In a nutshell, the concept location process using
IRiSS has the following steps:
1. Preprocessing the source code and

documentation;
2. Building a vector space representation of a

software system using Latent Semantic Indexing
(LSI) [4];

3. Executing queries formulated by the user;
4. Retrieving and analyzing the results, which are

returned as a ranked list of source code elements.
Steps 1 and 2 are done usually once, while steps 3

and 4 are performed repeatedly by the user during
concept location. IRiSS uses the Visual Studio
interface for the presentation of the search results in
text format (method or class prototypes).

5. Motivation for merging sv3D and IRiSS

There are several reasons to merge sv3D with
IRiSS. The IRiSS interface, as most searching tools
and the Visual Studio find feature, is text-based. One
problem with such an interface is that it does not
provide the user with an overview of the results of a
search and the relationships between the source code
elements. Visualization can solve this problem by
providing a visual map of the source code elements
related to a query and the relationship between each
other. Their distribution in the system is important
and may be lost in the textual representation. Filtering

the results, presented in a visual format, is also more
natural for users.

In addition, during concept location, the user needs
to keep in mind more than the results of the most
recent query. It is important, for example, to see if a
certain method or class was returned as a result to
several previous queries in this process. Textual
representations may present difficulty in showing this
type of information. Once again, visualization would
help in representing such information.

As methods and classes in the software system are
investigated, it is often more useful to have additional
information about these classes than just the source
code. sv3D can display this information together with
the result of a search.

Finally, integrating sv3D with one or more
development environments is one of our original
goals. Since IRiSS is integrated in the Visual Studio
.NET, it provides a good communication mechanism
between the IDE and sv3D.

In the typical envisioned usage scenario, after
IRiSS generates results for a user query, the results are
transferred to sv3D for visualization based on the user
preferred mapping. Then, the user can explore the
results either in the IDE or in sv3D. While navigating
in sv3D, the user is able to double-click on a poly
cylinder, which represents a method and navigate
directed to the corresponding source code in the IDE’s
text editor.

6. Visualization for concept location

Based on the user needs during the concept location
process, the following information lends itself well for
visual representation with sv3D:
1. similarities between a user query and the

methods or classes in the system;
2. similarities between a given method and the

other methods or classes in the system;
3. similarities between a class and other classes in

the system;
4. process information such as: the number of hits

on a particular method or class during successive
searches; historical data that shows the sequence
of classes and methods that are investigated
while searching.

We can define a simple visualization in sv3D to
represent this information by using mappings to the
color and height of the poly cylinders. Through the
use of transparency, the user can easily filter the
results of interest.

6.1. Using color to represent similarities

In this early version of the tool integration, we use
color in sv3D to represent the similarities between the

types of source code elements mentioned earlier,
based on a pre-defined (or user defined) color scheme.
The similarity measure between two source code
documents, or a query and a source document in IRiSS
is defined as the cosine between their corresponding
vectors in the LSI space [9], with a [-1, 1] range. The
pre-defined mapping for color used to visualize the
similarities is described in Table 1.

Table 1. Color scheme for similarity representation

Similarity range Color
0.5 – 1 Red

0.4 – 0.5 Orange
0.2 – 0.4 Light green
0 – 0.2 Dark green
-1 – 0 Grey

Poly cylinders can be mapped to methods or classes

in the source code, and the color of the poly cylinder
will show the similarity value to a given user query
(see Figure 1). Users can define their own preferred
mapping if they choose so (e.g., use green or yellow
for high similarity values), with a different granularity
and/or number of colors. Intensity could also be used
instead of hue.

Figure 1. Using colors to represent similarities.
Each poly cylinder represents a method here.

6.2. Using height to represent the browsing
history

The power of sv3D is using the third dimension to
represent data through the height of poly cylinders. In
this application, we use the height of the poly
cylinders to represent information about the history of
the browsing in a sequence of related searches, during
concept location. For example, the height of a poly
cylinder corresponding to a method is mapped to the
number of visits by the user to that method, during the
search (see Figure 2).

Figure 2. Using the height of the poly cylinders to
represent the number of visits. Each poly cylinder
represents a method here. Transparency may be

used to focus on relevant information.

Height can also be used to show the sequence of
the explorations as in Figure 3. Every time the user

explores the method by clicking the corresponding
poly cylinder, the height of the poly cylinder will
increase by one unit and the number of steps in the
exploration sequence will be shown on the poly
cylinder. We consider this information as a useful
addition for source code browsing and exploration
since programmers can easily find out how many
times they have explored each method and they can
see the map of their exploration process.

While using sv3D it is possible to focus on the
specific parts of the results by filtering the output
using transparency. For example, this may be useful
when the user wants to visualize similarities only in a
specific range or keep methods with similarities that
have been visited at least once (see Figure 2).

7. Example of using IRiSS and sv3D for
concept location

To show how sv3D can be used in conjunction with
IRiSS, we describe an example. Concept location is
performed on an open-source software system
WinMerge 2.0.2 (www.sourceforge.net/projects/winmerge).
The system had been chosen because we have
previous experience and knowledge about the source
code.

WinMerge is a Win32 tool for visual difference
display and merging, for both files and directories.
One of the most important features of WinMerge is the
side-by-side line differencing and visualization. The
system supports a unicode and a flexible syntax
coloring editor. More advanced features include
windows shell integration and regular expression
filtering.

The WinMerge version we used here consists of 69
classes with 624 methods. The system size totals in
about 64,000 lines of source code (comments and lines
of code, excluding blank lines).

In order to show how IRiSS and sv3D can be
effectively combined for concept location we
formulated the following change request: “Implement
a new feature to swap the context of the currently
opened text files in the WinMerge system”.

The feature that needs to be located to carry out the
change in this case is the implementation of displaying
two separate files in windows within the WinMerge
application. The concept most likely includes the
classes that wrap the textual representation of files and
classes that link files to the particular textual
representation on the screen.

The following subsections describe the process
step-by-step, with certain details omitted and show
how sv3D will display relevant information during
concept location.

7.1. Query formulation

The graphical user interface of WinMerge is based
on the Multiple Document Interface (MDI) of the
MFC framework. Taking into account properties of
GUI applications [10] that have the structure
predefined by the GUI framework and text messages
describing the functionality of the GUI elements (that
can be successfully used during the concept/feature
location), we formulated the following initial query:
“left right file”. We extracted these terms during
analysis of the menu items in WinMerge application
since we thought they are relevant to the concept
related to the change request.

IRiSS was configured using default settings.
Description of those setting can be found in [11]. By
default, the granularity used by IRiSS to build the LSI
space is at method level. In other words, at each
search, IRiSS will return as results a list of methods
from the system under investigation.

IRiSS checks first the user queries to see if the
words composing it are present in the source code.
Every term in this query was present in the dictionary
of the software system, also built by IRiSS. We
decided to start the concept location with this query
because the change request primarily deals with
opened files in the left and right hand side panels.

The query was submitted to IRiSS, which returned
a list ranked methods in descending order, based on
the similarity measure to the query. As it was
mentioned earlier, for the purpose of this example, we
did not use IRiSS’s interface to browse the results, but

sv3D to represent them. Figure 3 shows the results of
this first query. Information about any poly cylinder
may be obtained by a double click. The red poly
cylinder in the figure corresponds to the DoFileOpen
method in the CMainFrame class and it has a 0.500104
similarity measure with the first query. It is the most
similar method to the query and it was easy to spot.
Of course, it would have been just as easy to get this
method in the textual representation, where it would
be on the top of the list. Where the visualization pays
off at this stage is in assessing which class has most
methods that are similar to the query. Such
information is helpful in deciding what part of the
source code will be investigated next.

Figure 4. Examining the DoFileOpen and

ShowMergeDoc methods from the CMainFrame
class

7.2. Browsing similar methods

Using sv3D, we identified the following methods
that appeared most similar to the original query:
CMainFrame::DoFileOpen (see Figure 3, Figure 4, and
Figure 5) and CMainFrame::ShowMergeDoc (see
Figure 3, Figure 4, and Figure 5) and
CDiffContext::UpdateTimes (see Figure 6).

Figure 3. The results of the first query run on WinMerge. Each poly cylinder represents a method and
containers represent classes. Color is mapped to the similarity measure based on the default mapping

defined in Table 1.

By clicking on the respective poly cylinders the
focus is transferred to the text editor in Visual Studio.

Analysis of these methods revealed that only
CMainFrame::DoFileOpen was the part of the concept.
However, it does not represent the whole concept
since it delegates this process to other objects which
are to be identified during the concept location.

Figure 6. Examining the UpdateTimes method

from the CDiffContext class.

7.3. Query refinement

Taking into account the knowledge obtained during
examination of these three methods, the query was
refined as described in [9]. The resulting query was:
“file left right files open merge edit selected top”.

As a result of running this query, a set of other
methods was investigated. In this round, we
investigated the CMergeDoc::SetMergeViews (see
Figure 7) and the CMainFrame::OnDropFiles methods.

The CMergeDoc::SetMergeViews method revealed
the final details about the implementation of the
concept. This method sets particular views for the
files being displayed and the class CMergeDoc, which
wraps all the necessary “document/view” details
needed to store and display a document on the screen.

7.4. Using the browsing history to identify
relevant documents

In this example we skipped some of the details
about visiting other methods using sv3D. For complex
concepts, multiple queries may need to be run and
several methods to be investigated. In this process,
sv3D can help represent the browsing history. In other
words, whenever the user requests to compute pair
similarities for every method in the system with a
selected method, the browsing activities in the search
space of related methods may be recorded by counting
the clicks on the respective methods. This number
may be represented by the height of the poly cylinders
(see Figure 5 and Figure 8).

Figure 7. Examining the SetMergeViews method in

CMergeDoc class.

This representation allows the identification of
“interesting spots” during the process of concept
location. At every moment of time, the user is able to
consider additional information to the similarity
measures. All the methods visited during this location
process will stand out. This means that those methods
were similar to several of the previous queries and
deemed important at different stages of the process.

Figure 5. Representation of the WinMerge system with a focus on the classes that have browsing history
information represented using the height of the poly cylinders. Color is mapped to the similarity measure
to the query. Each poly cylinders shows and method and each container represent a class. The numbers

on the poly cylinders indicate the visitation order of the corresponding methods.

For example in Figure 5 the method with the highest
similarity (colored with red) has been visited 3 times
during the concept location. Visiting sequences
(numbers on the bars) can also be recorded and
visualized and are shown in the figures.

Figure 8. Examining the history of visits along with

similarities for CMainFrame

8. Conclusions and future work

Enriching source code searching and browsing with
visualization support will improve concept location
and other similar activities. The experience of
merging two technologies and tools, IRiSS and sv3D,
to achieve this showed promising results.

Recording and visualizing historical data of such
searching activities may also prove to be useful to the
software engineers.

As future work, we plan to experiment with
different mappings and also to include dependency
and other information in the visualization to improve
the location process. Evaluations are needed and
planned as well.

The same representation can also be used to show
clusters of software elements, which would support
other comprehension and analysis activities.

Finally, IRiSS and sv3D need to be more tightly
coupled, such that one could use sv3D to select a
method in the system and use it as a query in IRiSS.

9. Acknowledgement

We are grateful to Louis Feng, Jonathan Maletic,
Andrey Sergeyev and Yubo Dong, who contributed to
the development of sv3D and IRiSS.

10. References
[1] Ball, T. and Eick, S., "Software Visualization in the
Large", Computer, vol. 29, no. 4, April 1996, pp. 33-43.
[2] Eick, S. G., Steffen, J. L., and Sumner, E. E., "Seesoft -
A Tool For Visualizing Line Oriented Software Statistics",
IEEE Transactions on Software Engineering, vol. 18, no. 11,
1992, pp. 957-968.
[3] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting
the Map Metaphor in a Tool for Software Evolution", in
Proceedings of 23rd International Conference on Software
Engineering (ICSE'01), Toronto, Ontario, May 12-19 2001,
pp. 265-274.

[4] Landauer, T. K., Foltz, P. W., and Laham, D., "An
Introduction to Latent Semantic Analysis", Discourse
Processes, vol. 25, no. 2&3, 1998, pp. 259-284.
[5] Lanza, M. and Ducasse, S., "Polymetric Views—A
Lightweight Visual Approach to Reverse Engineering",
IEEE Transactions On Software Engineering, vol. 29, no. 9,
September 2003, pp. 782-795.
[6] Lintern, R., Michaud, J., Storey, M. A., and Wu, X.,
"Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse", in Proceedings of 1st
ACM Symposium on Software Visualization, June 11-13
2003, pp. 47-56.
[7] Marcus, A., Feng, L., and Maletic, J. I., "3D
Representations for Software Visualization", in Proceedings
of 1st ACM Symposium on Software Visualization
(SoftVis'03), San Diego, CA, June 11-13 2003, pp. 27-36.
[8] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A., "Static Techniques for Concept Location in
Object-Oriented Code", in Proceedings of International
Workshop on Program Comprehension, 2005, pp. 33-42.
[9] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.,
"An Information Retrieval Approach to Concpet Location in
Source Code", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE2004), Delft,
The Netherlands, November 9-12 2004, pp. 214-223.
[10] Michail, A., "Browsing and searching source code of
applications written using a GUI framework", in
Proceedings of 24th International Conference on Software
Engineering, May 19-25 2002, pp. 327-337.
[11] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev,
A., "IRiSS - A Source Code Exploration Tool", in
Proceedings of IEEE International Conference on Software
Maintenance, September 25-30 2005, pp. to appear.
[12] Rajlich, V., "A Methodology for Incremental Change",
in Extreme Programming Perspectives, Marchesi, M., Succi,
G., Wells, D., and Williams, L., Eds., Reading, MA Addison
Wesley, 2002, pp. 201-214.
[13] Robillard, M. P. and Murphy, G. C., "FEAT a tool for
locating, describing, and analyzing concerns in source code",
in Proceedings of 25th International Conference on Software
Engineering (ICSE03), Portland, OR, May 3-10 2003, pp.
822-823.
[14] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of Ninth International Workshop
on Program Comprehension (IWPC'01), Toronto, Ontario,
Canada, May 12-13 2001, pp. 111-112.
[15] Storey, M.-A. D., Wong, K., and Müller, H. A., "Rigi: a
visualization environment for reverse engineering", in
Proceedings of IEEE International Conference on Software
Engineering (ICSE'97), Boston, MA, May 17 - 23 1997, pp.
606-607.
[16] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and
Pounds, L., "A Comparison of Methods for Locating
Features in Legacy Software", Journal of Systems and
Software, vol. 65, no. 2, 15 February 2003, pp. 105-114.

