

Integrating COTS Search Engines into Eclipse: Google Desktop Case Study

Denys Poshyvanyk, Maksym Petrenko, Andrian Marcus

Department of Computer Science
Wayne State University

Detroit, Michigan USA 48202
denys, max, amarcus@wayne.edu

Abstract

The paper presents an integration of the Google
Desktop Search (GDS) engine into the Eclipse
development environment. The resulting tool, namely
Google Eclipse Search (GES), provides enhanced
searching in Eclipse software projects.

The paper advocates for a COTS component-based
approach to develop useful and reliable research
prototypes, which support various software maintenance
tasks. The development effort for such the tools is
reduced, while customization and flexibility, to fully
support the needs of developers, is maintained. The
proposed solution takes advantages of the power of GDS
for quick and accurate searching and of Eclipse for great
extensibility. The paper outlines our experiences of
integrating GDS engine into Eclipse as well as possible
extensions and applications of the proposed tool.

1. Introduction
Incorporating reliable commercial-off-the-shelf

(COTS) components into software systems is desirable
and not uncommon as there are many successful stories
attesting such practices. For example, a web designer
would rarely build a web-server from scratch, as there are
many COTS software components for building web-
based systems [6].

Using COTS software components to build research
prototypes in academia obviously has many benefits as
well. Software systems developed as research prototypes
or as proof-of-concept tools often suffer from problems
which prevent their wide-spread adoption among
researchers or practitioners from industry. However, such
tools have yet to make it in the mainstream of the
software development practice. As with most research
prototypes, some of these tools might suffer from limited
interaction with potential users or financial support to
maintain those tools, thus delaying their wide acceptance.

In order to mitigate some of the problems associated
with research prototypes, we advocate in this paper an
approach, which allows us developing useful and reliable
tools by leveraging the advantages of existing COTS

components. We present a particular case of
implementing such a tool. The tool combines an existing
off-the-shelf component for searching, namely Google
Desktop Search1, with the Eclipse2 development
environment. The tool is named Google Eclipse Search
(GES) and it leverages the strengths of GDS, the
extensibility of Eclipse, their popularity, and thus
promises a wide-spread use among developers. The
paper discusses some of the advantages of the solution,
which we did not anticipate at the moment of
incorporating GDS into Eclipse. The situation is not
unique, as it was observed before by others: “innovative
ways of integrating COTS into software systems usually
unimagined by their creators” [5].

The next section presents some background
information and our motivation for building GES using
an existing COTS component. In section 3, we provide
more details on the actual integration of GDS into
Eclipse. The section 4 discusses some of the possible
applications of GES.

2. Background and motivation
Recently, we have been working on developing a new

methodology to support searching and browsing activities
of software developers in the source code [8]. Since
searching has been recently redefined by the internet
search engines, most of them being based on information
retrieval (IR) techniques, we applied a similar approach
for searching in the source code of software projects and
proposed a new methodology based on indexing of the
source code using advanced IR techniques [8]. In order
to bring the technology to the fingertips of developers, we
interoperate our tools with MS Visual Studio [10] and
Eclipse [9]. However, our tools may still suffer from the
same problems as the majority of the research prototypes
do, especially in terms of computational efficiency and
the online re-indexing of the large-scale software as it
changes during maintenance and evolution. In order to
bring the technology closer to adoption among the

1 http://desktop.google.com/
2 http://www.eclipse.org/

software developers, we needed to solve the problems
highlighted above.

Lately, Google released its technologies for searching
desktops in Google Desktop Search (GDS) [3]. One of
the aspects that set GDS apart is its COTS-based
architecture, which allows incorporating GDS into other
applications via Google Desktop SDK3. Using this SDK,
Google Desktop can be configured to index various types
of applications and files, including the source code files.

In addition, GDS has many other features that were
missing in our previous efforts, such as efficiency and the
facility to unobtrusively index and re-index the source
code files as they change during maintenance and
evolution.

GDS can be used to search the files of a software
project as it is via an Internet browser. However, such a
use might be uncomfortable in some situations, since it
would break the work flow of the developers as they
would have to constantly switch between the IDE and the
browser.

Incorporating GDS into Eclipse environment will
provide the following supplementary features for
searching in source code of software projects: on-the-fly
preprocessing and indexing of the context; developer-
friendly search methods; rapid indexing of specified
objects in specified locations; persistent indexing, which
maintains and updates content location changes for more
accurate results; background indexing, lenient to user’s
CPU usage; quick response to developer’s search queries;

3 http://desktop.google.com/developer.html

history of searches; and ranking of the results by
relevance or date.

Finally, incorporating GDS into Eclipse has other
advantages over existing solutions for searching software
projects:

 multiple term queries, which is a specific feature of
IR-base searching, as well as ranking of the results of
the search;

 robustness and reliability of search engine
component (i.e., GDS), which is important for large
file repositories such as large scale software systems;

 access to the results of the search within Eclipse’s
IDE using native interfaces that provide direct links
between the search results and their respective
positions in the source code editor.

3. Integrating Google Desktop into Eclipse
GES is implemented as a plug-in for the Eclipse

development environment (see Figure 1) to be used for
searching within projects or within a custom working set
of files using natural language (or multiple word) queries.

The GES search dialog is displayed in the standard
Eclipse search dialog panel and the search results are
presented through the standard search results presentation
view (see Figure 1).

The GES search experience is similar to Eclipse’s File
Search. In order to perform a search using GES, the user
has to type a query into the GES search dialog and
specify the scope of the search (i.e., workspace, selected
resources, enclosing projects, or working set). After the
execution of the query, the search results are displayed

Figure 1. The GES plug-in for Eclipse (left) showing the results for the query “animation preview”
(right) while searching in the source code of Art of Illusion software system

within the GES search results tab, similar to the one of
regular Eclipse search (see Figure 1). The results can be
easily explored by simply browsing the files in the editor.
When source code files are in the scope of the search, the
terms from the original query that are found in the java
file are highlighted with colors (see Figure 1). Note that
the terms from the query need not be in immediate
vicinity of each other in the source code.

Through GES, the user can take advantage of all the
intrinsic features of GDS, including searching using a set
of terms, exact phrases, queries with Boolean operators,
or restricting the search results to specific file types (i.e.,
by using the “filetype:” modifier).

3.1. Implementation details

To be generally accepted, GDS exposes its API
through HTTP communication and XML, which adds
some programming burden for the clients using GDS.
Fortunately enough, the interface, supplied by one of the
GDS plug-ins, the GDS Java API4, hides all the
implementation details so that clients can access GDS
from any java application. The implementation of the
GDS Java API is based on JAXB (Java architecture for
XML binding5 which maps semi-structural XML
elements for flat-structural objects), thus users can
formulate queries to GDS just by calling provided
functions and traverse search results as easy as traversing
elements in a simple Java list.

In order to maintain common look and feel of Eclipse
search tools, we decided to reuse Eclipse search
components. Being extremely extensible environment,
Eclipse provides means to extend virtually every possible
part of its GUI and search dialogs with no exception.
Therefore, we decided to use the extension points of
org.eclipse.seach group – searchPages to provide search
dialog GUI and searchResultViewPages to provide search
results GUI. There are also two additional extension
points in the search group - textSearchEngine and
textSearchQueryProvider, - which should ease creation of
the text-based search engines, but were of no help in our
project.

While extending searchPages were simple and
involved implementation of a simple dialog window,
searchResultViewPages demanded implementation of the
ISearchResultPage interface which, as a parameter,
accepts search results formatted accordingly to the
ISearchResult interface. In addition to implementation,
those two interfaces demanded implementation of chain
of auxiliary interface classes to be either passed as
function parameters or produced as function results.

As the search tools are not what developers typically
extend in Eclipse, we found no documentation on the

4 http://desktop.google.com/plugins/javaapi.html
5 http://java.sun.com/xml/jaxb/

suggested search framework besides basic API
documentation on the mentioned interfaces. Therefore,
we decided to reverse engineer available sources of
Eclipse search tools in org.eclipse.jdt.internal.ui.search
package.

After all, we were able to reuse 7 classes from this
package with only minor modifications and 2 with more
advanced changes. One class was modified to call GDS
and obtain search results, whilst another class was
modified to highlight occurrences of the search terms in
found java files. It is also worth mentioning that in
inspected framework, search engine was called in the
middle of the delegation chain, formed by Eclipse search
framework classes between search dialog and search
result classes, thus making it hard to find the actual place
GDS had to be called from.

We also had to copy 5 additional classes (like
Messages class that provides common search results
messages) from the same package without any
modifications as they had internal visibility scope (see the
package name) and were not available for the direct use.

Described approach saved us a lot of time in that we
did not have to learn the framework and implement set of
many unfamiliar interfaces, but rather modify several
classes to use GDS as the source of search results.
However, even with this strategy the effort was quite
substantial to identify those couple classes within the
available Eclipse packages. Final diagram with the
logical structure of GES tool is presented in Figure 2. We
made the source code of GES available to the research
community, so the interested reader may study integration

Eclipse

GDS

Eclipse search dialog API

Eclipse search framework

Eclipse search results API

GDS Java API

Figure 2. Logical structure of GES tool

in more details by downloading GES’s source code from
sourceforge6.

3.2. Formulating search queries and processing
search results.

As it was mentioned, we used GDS Java API to
communicate with GDS. However, in order to make
successful searches within Eclipse resources, we had to
solve several problems.

The major problem was restriction of the GDS search
results to the scope, selected by a user. In its basic
version, GDS searches for provided terms in the whole
hard drive of the user. However, as we need to search
only within projects, loaded into Eclipse environment, we
need the restrict GDS search results to the files of those
projects. Furthermore, user may want to restrict search
scope even more to the particular Eclipse entities as those
available in standard Eclipse’s search dialog.

As there is no direct way to restrict GDS search scope,
we investigated couple indirect “tweak” methods. The
simplest way is to allow GDS to search the whole hard
drive and then to filter the results; however, this method
is clearly inefficient as it involves processing a lot of
irrelevant information. Another possibility is to modify
undocumented Windows registry keys settings of GDS,
which can be used to set up GDS to index only those
folders that relate to the scope, chosen by the user. In this
case penalty is the time which GDS takes to re-index
folders after the registry keys are modified.

Finally, we discovered the method that solved the
problems of previously mentioned solutions: if the fully-
qualified file or folder name is added as a part of the
search request, the search will be limited to that file or
folder. Therefore, we used this fact to convert list of files
and folders within Eclipse search scope into the
appropriate GDS query. Also, in recent GDS releases,
Google introduces special tag words to specify a folder
(but not a file) to search within, which enabled us to
optimize our searches even further.

The other problem is that GDS provides only the list
of files with the search terms, but not the locations of
those terms within the files. As Eclipse search tools
typically highlight found terms in the code, we had to
implement the similar feature. Currently, we simply open
every file, returned by GDS, and perform a plain text
search within those files for the requested terms.
However, as current GDS has a capability of highlighting
search terms in the cached version of the files, we hope
that in future releases GDS API will include means for
determining position of search terms in the text of the
found files.

6 http://ges.sourceforge.net/

3.3. Additional issues

Since GDS is not an open-source application, the only
possible way to customize it currently is through the
available GDS SDK and undocumented Windows
registry keys. This issue raises several challenges in
building and using GES.

One of the major issues is the GDS’ background
indexing. By default, GDS indexes (and re-indexes) the
user files only when the user’s computer is idle; thus, to
be able to initially use it, the user typically needs to wait
until GDS completes the (re-)indexing of the files.
Unfortunately, currently this problem can not be
addressed using GDS preferences or GDS API calls.
Ideally, we would like to allow the user the option to
choose when and how the files to be (re-)indexed.

4. Applications of GES

Originally, the tool was presented in [11], however
after that GES has been applied and shown to be useful in
the set of case studies [12]. In addition, there are possible
applications of this tool which we discuss in this section.

For example, GES can be used in its current form to
index not only source code files, but also project-related
external documentation in various formats. Concept
location and program comprehension can be improved by
searching within the external documentation in addition
to the source code.

Also, GES can be extended with proxy server classes7
to be used as a server for indexing source code
repositories and handling queries from multiple clients,
which will allow searching remote machines. With such
an extension, GES could provide support for various
collaborative tools like [2] and [4]. In this context,
several versions of the software, extracted from
repositories could be indexed together or separately. This
requires some additional implementation effort, which we
are currently undertaking.

GES could be successfully used as an complementary
search feature within other source code exploration tools
like the Aspect Browser [13], Creole [7], or JRipples [1]
etc.

Moreover, the experience of integrating GDS into the
Eclipse environment allows us to repeat the effort with
other IDEs and/or search engines. In other words, the
search engine may be seen as a service provider while the
IDE may be the service consumer. For example, we
could extend GES to manage several other external search
engines that provide extensions via SDK, like Copernic,
and implement the same plug-in for MS Visual Studio or
CodeWarrior.

One important issue we are working on is to modify
the storage of the source code, such that GES could index

7 http://www.projectcomputing.com/resources/desktopProxy/

and return results at different granularity levels than files
(e.g., classes, methods, etc.). GES is available as open-
source application and other researchers modified it for
their purposes [12].

In future versions, GES will give users more direct
control over additional advanced features of GDS. In
addition, we will investigate the benefits of integrating
GES with other Eclipse software browsing plug-ins.

5. Conclusions and future work
Incorporating GDS into Eclipse is a COTS-based

solution to improve source code searching and produce an
easier to adopt approach to this problem. GES allows
Eclipse software developers to perform searches in the
source code and associated documentation of a software
system, using most features offered by GDS.

In addition, this COTS-based combination has one
important advantage – whenever a new version of Google
Desktop is released, the programmer does not have to
implement any changes to the tool, but rather install new
version of GDS and use new features available in that
version without extra work.

6. Availability
GES is registered as official Google gadget, available

at http://desktop.google.com/plugins/i/eclipse_search.html. The
source code is also available at http://ges.sourceforge.net/

7. Acknowledgements
This research was supported in part by grants from the

National Science Foundation (CCF-0438970 and a 2006
IBM Eclipse Innovation Award).

8. References

[1] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V.,
"JRipples: A Tool for Program Comprehension during
Incremental Change", in Proceedings of 13th IEEE International
Workshop on Program Comprehension (IWPC'05), May 15-16
2005, pp. 149-152.

[2] Cheng, L.-T., Hupfer, S., Ross, S., and Patterson, J.,
"Jazzing up Eclipse with collaborative tools", in Proceedings of
OOPSLA workshop on eclipse technology eXchange, 2003, pp.
45-49.

[3] Cole, B., "Search engines tackle the desktop", in IEEE
Computer, vol. 38, 2005, pp. 14-17.

[4] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S.,
"Hipikat: A Project Memory for Software Development", IEEE
Transactions on Software Engineering, vol. 31, no. 6, June
2005, pp. 446-465.

[5] Egyed, A., Müller, H., and Perry, D., "Integrating COTS into
the Development Process", in IEEE Software, vol. July/August,
2005, pp. 16-19.

[6] Johann, S. and Egyed, A., "State Consistency Strategies for
COTS Integration", in Proceedings of 1st International
Workshop on Incorporating COTS Software into Software
Systems (IWICSS'04), Redondo Beach, CA, 2004, pp. 33-38.

[7] Lintern, R., Michaud, J., Storey, M. A., and Wu, X.,
"Plugging-in Visualization: Experiences Integrating a
Visualization Tool with Eclipse", in Proceedings of ACM
Symposium on Software Visualization (SoftViz'03), 2003, pp.
47 - 57.

[8] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source
Code", in Proceedings of 11th IEEE Working Conference on
Reverse Engineering (WCRE'04), Delft, The Netherlands,
November 9-12 2004, pp. 214-223.

[9] Poshyvanyk, D., Marcus, A., and Dong, Y., "JIRiSS - an
Eclipse plug-in for Source Code Exploration", in Proceedings of
14th IEEE International Conference on Program
Comprehension (ICPC'06), Athens, Greece, June 14-17 2006,
pp. 252-255.

[10] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev, A.,
"IRiSS - A Source Code Exploration Tool", in Proceedings of
21st IEEE International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, September 25-30 2005, pp. 69-
72.

[11] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and
Liu, D., "Source Code Exploration with Google ", in
Proceedings of 22nd IEEE International Conference on
Software Maintenance (ICSM'06), Philadelphia, PA, 2006, pp.
334 - 338.

[12] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-
Shanker, K., "Using Natural Language Program Analysis to
Locate and Understand Action-Oriented Concerns", in
Proceedings of International Conference on Aspect Oriented
Software Development (AOSD'07), 2007, to appear.

[13] Shonle, M., Neddenriep, J., and Griswold, W.,
"AspectBrowser for Eclipse: a case-study in plug-in
retargeting", in Proceedings of OOPSLA workshop on eclipse
technology eXchange, 2004, pp. 78-82.

