

IRiSS – A Source Code Exploration Tool

Denys Poshyvanyk, Andrian Marcus, Yubo Dong, Andrey Sergeyev
Department of Computer Science

Wayne State University
Detroit Michigan 48202

313 577 5408
{denys, amarcus, yubo, andrey}@wayne.edu

Abstract

IRiSS (Information Retrieval based Software
Search) is a software exploration tool that uses an
indexing engine based on an information retrieval
method. IRiSS is implemented as an add-in to the
Visual Studio .NET development environment and it
allows the user to search a C++ project for the
implementation of concepts formulated as natural
language queries. The results of the query are
presented as ranked list of software methods or classes,
ordered by the similarity to the user query.

A second component of IRiSS provides another
searching method based on regular expression
matching. This method is based on the existing “find”
feature form the Visual Studio environment and it has
an improved format for the display of the search
results.

1. Introduction

During software development and evolution most
activities involve changes to the existing source code.
To carry out such tasks, software engineers spend a lot
of time identifying the places where changes are to be
made. Source code searching and browsing are two of
the most common activities undertaken by developers
[5], especially during maintenance of existing large
software. These activities directly support tasks such as
concept location in source code, impact analysis,
change propagation, and comprehension in general.

Programmers use any knowledge available to
achieve good search results and perform effective
browsing. If the programmer knows and fully
understands the software, these tasks become very easy
and simple. In reality however, people get switched
from one project to another; people performing the
coding are not necessarily experts in the domain in
which the software will be used and as a result may use
questionable naming conventions and document code

improperly. Moreover, usually in large projects there is
no single person who has knowledge of the entire
system. Tool support is needed to help in these
frequently performed development and maintenance
activities.

2. Tools for source code searching and
browsing

Three types of tools define the state-of-the-art in the
field: searching tools based on the Unix shell program
grep, such as regular expression search tools
integrated in editors or development environments
(IDEs), browsing facilities in IDEs based on static
dependencies, and more general program understanding
tools that are based on a database of facts about the
software, extracted through analysis and represented in
some specific format that allows for queries to be
formulated and executed.

Regular expression search tools that are integrated in
editors or IDEs, return an unranked list of locations in
the source code where the query terms occur, the results
have no semantic information attached (e.g., function
name, class name, etc.) and the relationships among
results are not represented. On the other hand, they are
the most popular searching tools, easy to use, and quite
efficient.

The browsing facilities within IDEs are based on the
static analysis of the source code and help programmers
quickly locate software components of interest, usually
based on class and method/function names. The
Smalltalk browsers are among the oldest and best of
such tools. For other languages, IDEs often fall short in
flexibility and lack integration with the searching
features.

Finally, comprehension tools, while very powerful,
are often inefficient, complicated to use, and rarely
integrated with IDEs. Although today’s IDEs are much
more flexible and provide support for plug-in

technology (e.g., Visual Studio .NET, Eclipse), these
tools are still not widely adopted.

To overcome some of these shortcomings, we
introduce a new code exploration tool called IRiSS
(Information Retrieval based Software Search). IRiSS
is developed as an add-in into Microsoft Visual Studio
.NET. It is a research prototype, developed to support
concept location in source code. It has two distinct
components: one that uses an information retrieval (IR)
based search engine instead of the traditional pattern-
matching technique, and the other one that extends the
existing regular expression search by adding to the
search results the class and method names, where each
line of code in the results is located.

3. IRiSS components

While designing IRiSS we considered several
functional requirements [5]. In particular: advanced
search capabilities and capabilities to display all
relevant attributes of the items retrieved. IRiSS also
addresses the following non-functional requirements:
ability to handle large amount of code, respond to most
queries without perceptible delay, process source code
in a variety of programming languages, interoperate
with other software engineering tools, integrate
facilities that software engineers already use and
present the user with complete information.

The popularity of the existing search feature in
Visual Studio .NET and the replace feature motivated
the first component of the tool. IR based search
engines define the state-of-the-art in web and library
searches. They offer capabilities such as formulation of
natural language queries and return ranked results. All
these features motivated and are implemented in IRiSS.

3.1. Regular expression based searching

The first component of IRiSS allows the user to
search the source code much like the find feature in
Visual Studio. The difference comes in the
presentations of the search results. With IRiSS, the
results not only show the line of code and the file, but
also show the corresponding class and method and/or
any other structural unit relevant to the programming
paradigm. The user can sort the results of the search
based on this information. Using this feature of IRiSS
does not require any additional steps except having the
IRiSS add-on installed.

The major change here over the find feature is the
presentation of the search results in a new format and at
a new granularity level. With the regular find feature,
the user gets the line of text and file where the searched
pattern occurs. In IRiSS the user can get the method or

class that has most occurrences, in addition to the line
of text and file.

3.2. IR based searching

The most important feature of IRiSS is its IR based
search engine. It allows users to search opened projects
by writing natural language queries. It returns a ranked
list of related software documents (see Figure 1). The
user can define the granularity of a returned document
(e.g., class, method, etc).

In order to use IRiSS, a text corpus, based on the
source code, is created from the open project. This is a
one time step, which allows for any number of fast
subsequent searches on the entire software system.

The user has an option of exploring the results with
a different level of granularity: class or method. For
example, if the user chooses class level granularity, the
tool will compute the similarity between the user query
and all the classes in the selected search space and it
will produce a list of classes ranked by their relevance
to the query. The results are returned in the standard
.NET output view (see Figure 1) and are formatted in a
meaningful manner to the software developer:
namespace, class name, method name (if method
granularity was selected), degree of confidence, and file
name. The user can navigate to the definition or the
implementation of the class or method by simply
clicking on the provided links in the result list.

Figure 1. The format of the ranked results returned

by IRiSS: "class::method name" | “confidence”

The search engine used by IRiSS is somewhat
similar to what some web search tools employ; it is
based on our implementation of Latent Semantic
Indexing [4]. In addition, IRiSS uses a set of tools that
transform the software into a corpus [6], which is then
indexed by the IR method. Figure 2 shows how IRiSS
works and how it is used. Informally, the search
methodology based on IRiSS consists of the following
steps:
1. The software system is decomposed into text

documents, creating a corpus. Comments and
identifiers are extracted from the source code, as
well as structural information. The user has an

option to choose the desired granularity (e.g., class
or method level) for documents.

2. A vector space is built using this corpus. Each
document (class or method) is projected onto this
space that we call the semantic search space. Steps
1 and 2 are performed once; subsequent searches
start at step 3.

3. The user formulates a query, which can be in
natural language. Multiple words can be used. A
separate document for this user-formulated query is
created and mapped onto the semantic search
space. The user can run any number of queries.

4. A similarity measure is computed between each
document in the semantic search space and the
projected user-formulated query. IRiSS returns a
set of documents, ranked by the similarity measure
according to the user’s query.

5. The user can refine and rerun queries, based on the
returned results.

6. Documents related to a specific entry from the list
of results (i.e., method or class) can be also
retrieved.

Figure 2. The searching process using IRiSS

The major contribution of this source code

exploration tool is the underlying IR based technology,
used during the identification of software system
components most relevant to the query provided by the
user. Since the results returned by the tool are ranked
(see step 4 of the search methodology), this helps the
user during concept location to make a decision about
the concept under investigation, about the correctness
and effectiveness of the formulated query, and about
the overall searching procedure, after considering only
a few high ranked documents.

3.3. Additional features

IRiSS also has a set of additional features that can
help developers to fine tune the corpus creation. Using
these features, developers can customize the corpus
being indexed to include/exclude numerical values,
preserve the original identifier names, split identifiers,
index *.h files. The user can also use an external
vocabulary for “stop words”, that is words that will not
be included into the corpus. The corpus can be
exported to XML or plain text so it could be used by
other external IR engines.

4. Related tools

There are several tools to support software searching
and browsing.

The semantic grep (sgrep) [1] extends lexical pattern
matching by light weight relational queries. The tool
allows two types of queries: syntactic and semantic.
Sgrep translates queries in a mixed algebraic and
lexical language into a combination of grok queries
and grep commands.

FEAT [7], an Eclipse plug-in, captures knowledge
about the implementation of a concern in source code.
Moreover, FEAT, supports locating, describing, and
analysing the code implementing concerns in Java.

AspectBrowser [3] allows users to visualize
programs using the map metaphor by searching for
regular expressions and displaying the results
graphically. It has features that help navigating through
search results and handling a potentially large sets of
regular expressions. Originally developed for Fortran
and C, it has an Eclipse plug-in version today.

SNiFF+ [8] is a corporate “heavy weight” for
browsing and searching for semantic information in
source code. It has a set of integrated tools like smart
searching, class browsing, symbol cross-referencing,
etc.

Zhao et al. introduce the tool to support static non-
interactive approach to feature location by using
information retrieval (IR) to compute similarities
between features in source code along with static
representation of the source code using branch-
reserving call graph [9].

Lethbridge and Anquetil [5] provide an overview of
earlier related tools and technologies.

5. Current and future work

As changes to the software system occur, the
semantic space needs to be reconstructed. Currently,
the user initiates this process of re-indexing. We are
working on an automated re-indexing method that will
account for user changes when the user is in idle mode.

When the user uses words in the query that do not
exist in the software, they are ignored by IRiSS. In the
future, IRiSS will spell check the query with respect to
the vocabulary of the software and suggest changes.

Advanced search features will also be added to
IRiSS such as return results without specific words.
The .NET find feature and IRiSS will be integrated.

The parsing to create the corpus is kept simple for
scalability and efficiency reasons. While efficient, it
may produce slightly inaccurate results in some
extreme cases. IRiSS is built such that the user can
choose to use other, more powerful parsers. In fact, we
also have a version that uses Columbus [2] to parse the
source code, which allows flexible customization of
initial corpus.

IRiSS is implemented in C++ as an add-in
component to MS Visual Studio .NET. While the
underlying IR technology of IRiSS is essentially
language independent (natural and programming), it
currently works only with solutions implemented in
C/C++. The corpus creation part is the one that
depends on the programming language. We plan to add
parsers for C#, Java, and VB so that we could work
with solutions that contain C# and VB source code as
well. We also implemented a beta-version of the parser
for Java source code. We plan to release a version of
IRiSS as Eclipse plug-in as well.

Finally, we also plan to add a feature to IRiSS,
which will cluster the results of a search based on the
semantic similarity measure or program dependencies.

6. Demonstration of IRiSS

To demonstrate the features and the technology of
IRiSS we will perform several searches during the
demo. Two software tools will be used to perform
source code exploration tasks: IRiSS and the standard
“Find in Files” Visual Studio feature. This will allow
easy comparison of the results.

Source code exploration will be done on two open-
source projects and several queries will be tested:
WinMerge (http://sourceforge.net/projects/winmerge/) and
Doxygen (http://www.stack.nl/~dimitri/doxygen/).

The differences in the processes for each tool (IRiSS
and “Find in Files”) will be emphasized and discussed
during the demo. Advantages and disadvantages of
each tool will be presented. The results of source code
exploration will be examined, discussed and compared.
Explanation on how the tool generated the results will
be given.

The demo will be held in an interactive fashion
where the process of query formulation and code
exploration will require participation of the audience.

People in the audience will be able to suggest queries
that will be executed on the spot and the results will be
discussed.

7. Availability

IRiSS is available free of charge upon request.
Please contact the authors for a copy.

8. Acknowledgements

This work was supported in part by a grant from the
National Science Foundation (CCF-0438970).

9. References
[1] Bull, R. I., Trevors, A., Malton, A. J., and Godfrey, M.
W., "Semantic grep: regular expressions + relational
abstraction", in Proceedings of Ninth Working Conference on
Reverse Engineering (WCRE'02), Richmond, VA, October 29
- November 1 2002, pp. 267-276.
[2] Ferenc, R., Siket, I., and Gyimóthy, T., "Extracting Facts
from Open Source Software", in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04), Chicago, IL, September 11 - 14 2004, pp. 60-69.
[3] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting the
Map Metaphor in a Tool for Software Evolution", in
Proceedings of 23rd IEEE International Conference on
Software Engineering, Toronto, May 12, 2001, pp. 265-274.
[4] Landauer, T. K., Foltz, P. W., and Laham, D., "An
Introduction to Latent Semantic Analysis", Discourse
Processes, vol. 25, no. 2&3, 1998, pp. 259-284.
[5] Lethbridge, T. C. and Nicholas, A., "Architecture of a
Source Code Exploration Tool: A Software Engineering Case
Study." Department of Computer Science, University of
Ottawa, Technical Report TR-97-07, 1997.
[6] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concpet Location in
Source Code", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE2004), Delft, The
Netherlands, November 9-12, 2004, pp. 214-223.
[7] Robillard, M. P. and Murphy, G. C., "FEAT a tool for
locating, describing, and analyzing concerns in source code",
in Proceedings of 25th International Conference on Software
Engineering, Portland, OR, May 3-10, 2003, pp. 822-823.
[8] SnNiFF+, "SNiFF+", Windriver, Web page, Date
Accessed: 11/01/2004,
http://www.windriver.com/products/html/sniff.html, 2001.
[9] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F.,
"SNIAFL: towards a static non-interactive approach to feature
location", in Proceedings of 26th International Conference on
Software Engineering (ICSE'04), Edinburgh, Scotland, May
2004, pp. 293-303.

http://www.windriver.com/products/html/sniff.html

	Introduction
	Tools for source code searching and browsing
	IRiSS components
	Regular expression based searching
	IR based searching
	Additional features

	Related tools
	Current and future work
	Demonstration of IRiSS
	Availability
	Acknowledgements
	References

