
Combining Probabilistic Ranking and
Latent Semantic Indexing for Feature

Identification

Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus,
Giuliano Antoniol, Václav Rajlich

14th IEEE International Conference on
Program Comprehension (ICPC’06)

Athens, Greece

Motivation

• Feature/concept identification (location)

• Concept location – identifying parts of the
source code implementing domain concepts

• Reduces search space

• Uses static and/or dynamic analysis

Concept Location in Practice

• Static
– Dependency based search [Rajlich’00]

– IR methods [Marcus’04]

• Dynamic
– Execution traces - Reconnaissance [Wilde’92]

– Scenario based probabilistic ranking [Antoniol’05]

• Combined
– Profiling with concept analysis [Eisenbarth’03]

– Feature dependencies [Salah’05]

– Feature evolution [Greevy’05]

Shortcomings

• Static analysis:
– sometimes does not identify all entities

implementing a specific concept

– recall is impacted

• Dynamic analysis:
– sometimes unable to distinguish between

overlapping features

– precision is impacted

Our Combination

• Static
– Dependency based search [Rajlich’00]

– IR methods [Marcus’04]

• Dynamic
– Execution traces - Reconnaissance [Wilde’92]

– Scenario based probabilistic ranking [Antoniol’05]

• Combined
– Profiling with concept analysis [Eisenbarth’03]

– Feature dependencies [Salah’05]

– Feature evolution [Greevy’05]

Novel Hybrid Technique

• Feature identification – decision making
problem in presence of uncertainty

• Static (LSI) and dynamic (SBP) experts:
– LSI queries static documents

– SBP analyzes dynamic traces of execution scenarios

• Complementary results are combined via
affine transformation

Scenario Based Probabilistic Ranking

• Building a model of a program architecture

• Identifying a feature of interest
– Subset of a program architecture (micro-

architectures -> variables, classes, functions,
methods)

• Comparing features modeled as micro-
architectures

SBP - Feature Identification

• Program model creation
– static analysis, C++, AOL

• Trace collection
– (ir) relevant scenarios are executed to collect traces

– processor emulation (VALGRIND) to improve the
precision of data collection

• Knowledge-based filtering

• Probabilistic ranking
– events are re-weighted (Wilde’s equation is

renormalized)

Latent Semantic Indexing

• Vector space model based IR method

[Dumais’94, Berry’95, Deerwester’90]

• Applied to text retrieval, pattern recognition,
natural language understanding

• Known application: Google

Concept Location with LSI

• User defined queries
– Based on user experience and domain knowledge,

little known about querying patterns

• Semi-automated query generation
– Starts with a user defined query and adds synonyms

from the source code, identified by LSI

Combining the Experts

• SBP and LSI – our experts

• SBP – constructing overlapping scenarios

• LSI – formulate a query that captures
semantic characteristics of the feature

• Combining judgments of experts :

() () () ()xrxrxr lsisbpcombined λλ −+= 1

Case Study Objectives

• Assess the precision of the novel hybrid
technique

• Compare hybrid technique with standalone
results for SBP and LSI

• Evaluate the influence of dimensionality
reduction factor on the corpus size

Case Study – Mozilla Sizes

56 (0.06)Java files

2,231 (0.19)HTML files

6,727Aggregations283 (0.12)XML files

17,362Associations2,399 (0.20)IDL files

5,314Specializations4,204 (2.00)C++ files

53,617Methods1,762 (0.90)C files

4,853Classes8,055 (1.50)Header files

CountItem
Count

(MLOC)Item

• Mozilla v1.6 size related statistics

First Case Study

• Feature: “Add a bookmark in Mozilla”

• Find the methods and functions, which
implement the feature in Mozilla

• Replicated case study to compare with previous
results

SBP Results

• Scenario 1: “A user visits an URL, opens
Mozilla, clicks on bookmarked URL, loads page
and closes Mozilla”

• Scenario 2: “The user acts like in Scenario 1, but
once the page is loaded, she saves URL”

• SBP provides 274 methods ranked with
probability of 1.0

• LSI Query: “bookmark newbookmark bookmarkname
bookmarkresource bookmarkadddate createbookmark
insertbookmarkitem deletebookmark bookmarknode”

LSI Results

19,923Number of functions

48,267Number of methods

68,190Number of parsed
documents

85,439Vocabulary

4.4MLOC

Combined Results

InsertResourceObserveWriteBookmarksFlush6

getFolderViaHintWriteBookmarksInsertResourceListenToEventQueue5

WriteBookmarksCreateBC (36)CreateBC (57)InsertResource4

CreateBC (19)FlushFlushCreateBC (64)3

CreateB (8)CreateB (14)AddB (2)AddB (4)2

AddB (1)AddB (1)CreateB (6)CreateB (3)1

1500750500300R

CreateB – CreateBookmark
AddB – AddBookmarkImmediately

CreateBC - CreateBookmarkInContainer

A Bug / Unwanted Feature

• Bug # 182192 from BugZilla: “quotes (“) are not
removed from collected e-mail addresses”

• From: "First Last" <first.last@example.org>
– First: "First

– Last: Last“

– Difficult to search the address book

• We use official Bugzilla reports to verify the
results: CollectAddress and
CollectUnicodeAddress are fixed

SBP Results

• Scenario 1: “A user replies to an e-mail”

• Scenario 2: “A user performs the same action as
in Scenario 1 and, using the mouse, the user
forces to collect e-mail address of the sender”

• SBP returned 206 methods with score of 1.0

Combined Results

46CollectUnicodeAddress5

36OpenInternal4

37CollectAddress3

4ParseHeaderAddresses2

2ParseHeadersWithArray1

RlsiMethod nameRank

• LSI query: “collect collected sender recipient
email name names address addresses
addressbook ”

Discussion

• Combination of SBP and LSI is better than SBP
and LSI standalone

• The results tend to improve when increasing
the dimensions of LSI space

• The case studies reveal great potential of this
combination

Future Work

• Combine with other feature location techniques
– dependency search

– clustering

• Determine heuristics to identify the best λ

