Combining Probabilistic Ranking and Latent Semantic Indexing for Feature Identification

Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol, Václav Rajlich

> 14th IEEE International Conference on Program Comprehension (**ICPC'06**)

> > Athens, Greece

Motivation

- Feature/concept identification (location)
- Concept location identifying parts of the source code implementing domain concepts
- Reduces search space
- Uses static and/or dynamic analysis

Concept Location in Practice

- Static
 - Dependency based search [Rajlich'00]
 - IR methods [Marcus'04]
- Dynamic
 - Execution traces Reconnaissance [Wilde'92]
 - Scenario based probabilistic ranking [Antoniol'05]
- Combined
 - Profiling with concept analysis [Eisenbarth'03]
 - Feature dependencies [Salah'05]
 - Feature evolution [Greevy'05]

Shortcomings

- Static analysis:
 - sometimes does not identify all entities implementing a specific concept
 - **recall** is impacted
- Dynamic analysis:
 - sometimes unable to distinguish between overlapping features
 - **precision** is impacted

Our Combination

- Static
 - Dependency based search [Rajlich'00]
 - IR methods [Marcus'04]
- Dynamic
 - Execution traces Reconnaissance [Wilde'92]
 - Scenario based probabilistic ranking [Antoniol'05]
- Combined
 - Profiling with concept analysis [Eisenbarth'03]
 - Feature dependencies [Salah'05]
 - Feature evolution [Greevy'05]

Novel Hybrid Technique

- Feature identification decision making problem in presence of uncertainty
- Static (LSI) and dynamic (SBP) experts:
 - LSI queries static documents
 - SBP analyzes dynamic traces of execution scenarios
- Complementary results are combined via affine transformation

Scenario Based Probabilistic Ranking

- Building a model of a program architecture
- Identifying a feature of interest
 - Subset of a program architecture (microarchitectures -> variables, classes, functions, methods)
- Comparing features modeled as microarchitectures

SBP - Feature Identification

- Program model creation
 - static analysis, C++, AOL
- Trace collection
 - (ir) relevant scenarios are executed to collect traces
 - processor emulation (VALGRIND) to improve the precision of data collection
- Knowledge-based filtering
- Probabilistic ranking
 - events are re-weighted (Wilde's equation is renormalized)

GROUP

Evolution REsearch

on and

Latent Semantic Indexing

- Vector space model based IR method [Dumais'94, Berry'95, Deerwester'90]
- Applied to text retrieval, pattern recognition, natural language understanding
- Known application: Google

Concept Location with LSI

- User defined queries
 - Based on user experience and domain knowledge, little known about querying patterns
- Semi-automated query generation
 - Starts with a user defined query and adds synonyms from the source code, identified by LSI

Combining the Experts

- SBP and LSI our experts
- SBP constructing overlapping scenarios
- LSI formulate a query that captures semantic characteristics of the feature
- Combining judgments of experts :

$$r_{combined}(x) = \lambda r_{sbp}(x) + (1 - \lambda)r_{lsi}(x)$$

Evolution REsearch GROUP

Isualizati

Case Study Objectives

- Assess the precision of the novel hybrid technique
- Compare hybrid technique with standalone results for SBP and LSI
- Evaluate the influence of dimensionality reduction factor on the corpus size

Case Study – Mozilla Sizes

• Mozilla v1.6 size related statistics

Item	Count (MLOC)	Item	Count
Header files	8,055 (1.50)	Classes	4,853
C files	1,762 (0.90)	Methods	53,617
C++ files	4,204 (2.00)	Specializations	5,314
IDL files	2,399 (0.20)	Associations	17,362
XML files	283 (0.12)	Aggregations	6,727
HTML files	2,231 (0.19)		
Java files	56 (0.06)		

First Case Study

• Feature: "Add a bookmark in Mozilla"

• Find the methods and functions, which implement the feature in Mozilla

Replicated case study to compare with previous results

- Scenario 1: "A user visits an URL, opens Mozilla, clicks on bookmarked URL, loads page and closes Mozilla"
- Scenario 2: "The user acts like in Scenario 1, but once the page is loaded, she saves URL"
- SBP provides 274 methods ranked with probability of 1.0

LSI Results

MLOC	4.4
Vocabulary	85,439
Number of parsed documents	68,190
Number of methods	48,267
Number of functions	19,923

• LSI Query: "bookmark newbookmark bookmarkname bookmarkresource bookmarkadddate createbookmark insertbookmarkitem deletebookmark bookmarknode"

WAYNE STATE UNIVERSITY

Combined Results

R	300	500	750	1500
1	CreateB (3)	CreateB (6)	AddB (1)	AddB (1)
2	AddB (4)	AddB (2)	CreateB (14)	CreateB (8)
3	CreateBC (64)	Flush	Flush	CreateBC (19)
4	InsertResource	CreateBC (57)	CreateBC (36)	WriteBookmarks
5	ListenToEventQueue	InsertResource	WriteBookmarks	getFolderViaHint
6	Flush	WriteBookmarks	Observe	InsertResource

CreateB – CreateBookmark AddB – AddBookmarkImmediately CreateBC - CreateBookmarkInContainer

Evolution REsearch GROUF

A Bug / Unwanted Feature

- Bug # 182192 from BugZilla: "quotes (") are not removed from collected e-mail addresses"
- From: "First Last" <<u>first.last@example.org</u>>
 - First: "First
 - Last: Last"
 - Difficult to search the address book
- We use official Bugzilla reports to verify the results: CollectAddress and CollectUnicodeAddress are fixed

SBP Results

- Scenario 1: "A user replies to an e-mail"
- Scenario 2: "A user performs the same action as in Scenario 1 and, using the mouse, the user forces to collect e-mail address of the sender"
- SBP returned 206 methods with score of 1.0

SoftwarE Visualization and Evolution REsearch GROUP

Combined Results

• LSI query: "collect collected sender recipient email name names address addresses addressbook"

Rank	Method name	Rlsi
1	ParseHeadersWithArray	2
2	ParseHeaderAddresses	4
3	CollectAddress	37
4	OpenInternal	36
5	CollectUnicodeAddress	46

- Combination of SBP and LSI is better than SBP and LSI standalone
- The results tend to improve when increasing the dimensions of LSI space
- The case studies reveal great potential of this combination

Future Work

- Combine with other feature location techniques
 - dependency search
 - clustering
- Determine heuristics to identify the best $\boldsymbol{\lambda}$