

Exemplar: A Search Engine For Finding Highly Relevant Applications

Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk and Chad Cumby

Support: NSF CCF-0916139, NSF CCF-0916260, Accenture, and United States AFOSR grant number FA9550-07-1-0030.

Code Reuse Is Difficult

Copyright 3 1996 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

What do we look for when reusing code?

Problem And Solution Spaces

Solution Space

Our Goal

Our Goal

Fundamental Problems

- Mismatch between the high-level intent reflected in the descriptions of applications and their lowlevel implementation details
- Concept assignment problem
 - to identify how high-level concepts are associated with their implementations in source code

Example Programming Task

Write an application to record musical instrument data to a file in the MIDI file format.

h performance

 Many application repositories are polluted with poorly functioning projects.

 Matches between keywords from the queries with words in the descriptions of the applications do not guarantee that these applications are relevant.

Executable Exercise International Internationa International Internation

How Does It Work Now?

- ➡ Download application.
- Locate and examine fragments of the code that implement the desired features.
- Observe the runtime behavior of this application to ensure that this behavior matches requirements.

→ This process is manual since programmers:

- ➡ study the source code of the retrieved applications
- Iocate various API calls
- ➡ read information about these calls in help documents

Still, it is difficult for programmers to link high-level concepts from requirements to their implementations in source code.

How Does Exemplar Work?

Exemplar uses help documents to produce the names of the API calls in return to user queries thereby expanding these queries. The richness of these vocabularies makes it more likely to find matches, and produce different API calls. If some help document does not contain a desired match, some other document may yield a match.

Exemplar uses help documents to produce the names of the API calls in return to user queries thereby expanding these queries. The richness of these vocabularies makes it more likely to find matches, and produce different API calls. If some help document does not contain a desired match, some other document may yield a match.

Exemplar uses help documents to produce the names of the API calls in return to user queries thereby expanding these queries. The richness of these vocabularies makes it more likely to find matches, and produce different API calls. If some help document does not contain a desired match, some other document may yield a match.

Search widely used library API documents. These documents contain rich vocabularies -> more likely to find right match

"record midi file"

ShortMessage.ShortMessage()

Tritonus

MidiDevice.getReceiver()

MidiEvent.MidiEvent()

... Appends a complete image stream containing a single image ...

java.awt.geom.AffineTransform.getScaleY()

... scaling element (m11) of the 3x3 affine transformation matrix ...

Query Expansion

- Reduce this query/document mismatch by expanding the query with keywords that have a similar meaning to the set of relevant documents
- New keywords come from help documents
- Initial query is expanded to include the names of the API calls whose semantics unequivocally reflects specific behavior of the matched applications

Solving An Instance of the Concept Assignment Problem

 API calls from help documents are linked to their locations in the applications source code.

 Programmers can navigate directly to these locations and see how high-level concepts from queries are implemented in the source code.

Intuition For Ranking

- More directly matched words -> higher ranking
- More API calls used -> higher ranking
 - Since API calls implement high-level concepts, more implemented concepts mean that the application is more relevant
- If API calls are connected using a dataflow -> higher ranking

Three Ranking Scores

Relevant API Calls Score (RAS)

Exemplar ranks applications higher when their descriptions contain keywords from the query. An application's RAS score is raised if it makes more calls to relevant methods in the API. Dataflow Connections Score (DCS)

"record midi file"

String dev = getDevice(); String buf[] = A.readMidi(msg); B.write(buf);

If two relevant API calls share data in an application, Exemplar ranks that application higher.

Hang In There, A Demo Is Coming

Experiment

To compare Exemplar and Sourceforge

 We need input from participants, there is no way to do it automatically

We follow a standard IR strategy for evaluation of search engine

• We use search engines that use equivalent large-scale code repositories

Executable Examples Area

Structure of The Experiment

Participants were given tasks

• A short description of an application or some feature

Participants choose keywords that describe this task best

Selecting keywords is their choice

Using search engine participants find and evaluate applications and rank them using their judgments

 Their evaluations are based on their confidence that they obtain by evaluating the source code of retrieved applications

Ranking

- 1. Completely irrelevant there is absolutely nothing that you can use from this retrieved project, nothing in it is related to your keywords. The project may not even be uploaded to Sourceforge, only its description exists
- 2. Mostly irrelevant only few remotely relevant code snippets or API calls in the project
- 3. Mostly relevant a somewhat large number of relevant code snippets or API calls in the project
- 4. Highly relevant you are confident that you can reuse code snippets or API calls in the project

Experimental Design and Results

Exper iment	Group	Search Engine
1	Magenta	Exemplar with connectivity
	Green	Sourceforge
	Yellow	Exemplar with API calls, no connectivity
2	Magenta	Exemplar with API calls, no connectivity
	Green	Exemplar with connectivity
	Yellow	Sourceforge
3	Magenta	Sourceforge
	Green	Exemplar with API calls, no connectivity
	Yellow	Exemplar with connectivity

Executable Exercises Annual Annua

Thirty Nine Participants

- 26 participants are Accenture employees who work on consulting engagements as professional Java programmers for different client companies
- Remaining 13 participants are graduate students from the University of Illinois at Chicago who have at least six months of Java experience.
- 17 had programming experience with Java ranging from 1 to 3 years
- 22 participants have more than 3 years of Java experience
- 11 participants reported prior experience with Sourceforge
- 18 participants reported prior experience with other search engines
- 11 said that they never used code search engines
- 26 participants have bachelor degrees and 13 have master degrees in different technical disciplines.

Interesting Fact – The Cost of This Study

- Professional experienced programmers are very expensive, they charge more than \$50 per hour
- Accenture rate is \$150 per hour
 26 * 150 * 8 = \$31,200
- Additional costs run for close to \$10K
 - Renting laptops with preinstalled images
 - Conference room with internet access
 - Various expenses
- Total cost is around \$40,000

Rejected Null Hypothesis

 An alternative hypothesis to H₀ is that there is statistically significant difference in the numbers of Cs and Ps between participants who ranked results for Sourceforge versus Exemplar search engines.

Rankings

Precision

Conclusions

- Exemplar is effective in the solution domain where it helps developers to find applications that contain relevant code fragments with API calls.
- Exemplar is available at <u>www.xemplar.org</u>
- Exemplar is currently used by different programmers from all over the world.

Thank you! Questions?

Support: NSF CCF-0916139, NSF CCF-0916260, Accenture, and United States AFOSR grant number FA9550-07-1-0030.

The user enters a high-level query.

EXEMP	LAR					
Executable Examples Archive						
record midi file						
10 Results Per Page						
Exemplar Search	I am feeling lucky					

http://www.xemplar.org/

The search returns a list of projects, their descriptions, and their scores.

Project Name	Relevance Score	Description	
MidiQuickFix	100%::45.59%	MidiQuickFix allows you to directly edit the events in a Midi file. It is intended to make it easy to find and fix problems, such as setting volume and pan values for a track, without the need for a complex Midi sequencing program.	
Saiph	100%::30.71%	Java-based (multiplatform) tool for algorithmic musical composition. Saiph generates sequences made of tracks made of segments with musical events, currently notes and MIDI controllers. It supports MIDI and MusicXML file output.	
<u>PJLMidiParser</u>	100%::0%	PJLMidiParser provides efficient parsers, written in Java, for MIDI files. It is like XML SAX parsers in that it is event-driven; the parsing is initiated and then triggers callback handlers in response to events in the MIDI file.	
Tritonus	0%::100%	Tritonus is an independent implementation of the Java Sound API (http://www.javasoft.com /products/java-media/sound/index.html).\r\n	
TuxGuitar	0%::82.8%	TuxGuitar is a multitrack guitar tablature editor and player written in Java-SWT, It can open GuitarPro, PowerTab and TablEdit files.	

The programmer can view a list of API calls and their locations within projects.

File		API Used
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/MetaMessage.java		javax::sound::midi::MetaMessage::MetaMessage
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/Track.java		javax::sound::midi::MidiEvent::getTick
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/Track.java		javax::sound::midi::MidiEvent::MidiEvent
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/Track.java		javax::sound::midi::MidiEvent::getTick
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/Sequence.java		javax::sound::midi::Sequence::createTrack
0.3.0/tritonus-0.3.0.tar.gz/tritonus- 0.3.0/src/javaz/sound /midi/MidiSystem.java		javax::sound::midi::MidiSystem::getMidiDeviceProviders