
Huzefa Kagdi, Missouri University of Science &Tech

Denys Poshyvanyk, William and Mary

Motivation

•  Given a new developer with a maintenance task
who should they ask for assistance?

•  Who is the expert for a given piece of code?

•  Open source environment:
–  Distributed with no central management
–  Possibly hundreds of volunteers/developers
–  Developers/managers change over time

Overview of the Approach

Overview of the Approach

•  Recommend a ranked list of developers to assist
in performing changes to a given source code file

•  Based on textual analysis of bug reports and
similar source code files
•  LSI-based concept location [Marcus’04]

•  Based on mining past change records in software
repositories (i.e., commits)
•  xFinder [Kagdi’08]

Our Approach

Related Work

•  McDonald & Ackerman – use most recent
modification date along with user profile
information collected separately

•  Anvik & Murphy – mine the source and bug
repositories

•  Minto & Murphy – compute coordination between
developers and how files have changed together

•  Mockus & Herbsleb – use experience atoms to
measure expertise.

•  German – studied MR of CVS logs
•  Canfora & Cerulo – mine previous change requests

for impact analysis

Parsing Source Code Snapshot
and Extracting Documents with LSI

•  Corpus is a collection of documents (e.g.,
 methods, classes, files)

Removing non-literals

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if m_iFlag
processCorpus monitor checkUpdate else if m_iFlag
processCorpus monitor UD_UPDATECORPUS else
processQueryString monitor if monitor isCancelled throw
new InterruptedException the long running

Removing Stop Words

•  Common words in English, programming
 language keywords

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if
m_iFlag the processCorpus monitor checkUpdate else
if m_iFlag processCorpus monitor UD_UPDATECORPUS
else a processQueryString monitor if monitor
isCancelled throw new InterruptedException the
long running

Splitting Identifiers
public void run IProgressMonitor monitor throws InvocationTargetException
InterruptedException if m_iFlag the processCorpus monitor checkUpdate else if
m_iFlag processCorpus monitor UD_UPDATECORPUS else a processQueryString
monitor if monitor isCancelled throw new InterruptedException the long
running

•  IProgressMonitor = i progress monitor

•  InvocationTargetException = invocation target
 exception

•  m_IFlag = m i flag

•  UD_UPDATECORPUS = ud updatecorpus

Indexing Current Snapshot of the
 Software with Latent Semantic Indexing

process flag monitor

file1 3 2 6

file2 x x x

file3 x x x

… x x x

Singular Value Decomposition
(SVD)

Similarity Measure:
Cosine of the contained angle

 between the vectors

Identifying Similar Files to Change
 Requests with LSI

xFinder

•  Basic premise:
•  Developers who contributed substantial changes to

a specific part of source code in the past are likely
to best assist in future changes

•  Levels of expertise:
•  File expert: highest contribution to a specific file
•  Package expert: updated the largest number of

unique files to a specific package
•  System expert: updated the largest number of

unique files to the project

xFinder Internals

•  Each change is archived via a commit
•  These commits are examined to infer

the expertise
•  Examined data:

–  Committer's ID
–  Date of the commit
–  Files’ names and their full paths

xFinder: Contribution Measures

• Number of commits
• Number of workdays
• Most recent workday
• Number of changed files

Determining Expertise using xFinder

•  The commit contribution, activity and
most recent workday are used to derive
a developer-to-code mapping

• Developers are ranked according to this
mapping

•  If this mapping can't be derived, the
number of changed files is used

Example: determining experts for
 KOffice bug# 173881

•  “splitting views duplicates the tool options docker”

Concept Location in Source
code with Information Retrieval

xFinder

Preliminary Evaluation

•  KOffice
•  911 KLOC
•  4,756 classes
•  19,900 unique words

•  Sampled 22 bugs out of 128 total between
soft-freeze and Beta 04.

Evaluation Methodology

1  Select a “fixed” change request
2  Select a snapshot of software on or before a day on

which change request was reported, but not fixed
3  Apply concept location to identify similar files to the

change request
4  Use xFinder to collect a ranked list of developers
5  The developers, who contributed patches are

“ground truth”
6  Compare 4 and 5
7  Repeat above steps for N change requests

Measuring Accuracy of
Recommendation for bug# 167009

•  “Kword crashes after deleting non existing page”

Results for KOffice Bugs

Conclusions

•  Proposed and implemented novel combination
 of MSR and IR techniques for identifying expert
 programmers to incoming change requests

•  The proposed approach can recommend
 relevant developers with relatively high
 accuracy

