A Simple Inventory System Section 1.3

Discrete-Event Simulation: A First Course

Section 1.3: A Simple Inventory System

- Distributes items from current inventory to customers
- Customer demand is discrete
- Simple \iff one type of item

Inventory Policy

- Transaction Reporting
 - Inventory review after each transaction
 - Significant labor may be required
 - Less likely to experience shortage
- Periodic Inventory Review
 - Inventory review is periodic
 - Items are ordered, if necessary, only at review times
 - (s, S) are the min,max inventory levels, $0 \le s < S$
- We assume periodic inventory review
- Search for (s, S) that minimize cost

Conceptual Model

Inventory System Costs

Holding cost: for items in inventory

• Shortage cost: for unmet demand

Setup cost: fixed cost when order is placed

Item cost: per-item order cost

Ordering cost: sum of setup and item costs

Additional Assumptions

- Back ordering is possible
- No delivery lag
- Initial inventory level is S
- Terminal inventory level is S

Specification Model

- Time begins at t = 0
- Review times are t = 0, 1, 2, ...
- l_{i-1} : inventory level at *beginning* of i^{th} interval
- o_{i-1} : amount ordered at time t = i 1, $(o_{i-1} \ge 0)$
- d_i : demand quantity during i^{th} interval, $(d_i \ge 0)$
- Inventory at end of interval can be negative

Inventory Level Considerations

- Inventory level is reviewed at t = i 1
- If at least s, no order is placed
 If less than s, inventory is replenished to S

$$o_{i-1} = \begin{cases} 0 & l_{i-1} \ge s \\ S - l_{i-1} & l_{i-1} < s \end{cases}$$

- Items are delivered immediately
- At end of i^{th} interval, inventory diminished by d_i

$$I_i = I_{i-1} + o_{i-1} - d_i$$

Time Evolution of Inventory Level

Algorithm 1.3.1

```
I_0 = S; /* the initial inventory level is S */
i = 0;
while (more demand to process ) {
    i++:
    if (l_{i-1} < s)
        o_{i-1} = S - I_{i-1};
    else
       o_{i-1} = 0;
    d_i = GetDemand();
    I_i = I_{i-1} + o_{i-1} - d_i;
n = i;
o_n = S - I_n;
I_n = S; /* the terminal inventory level is S */
return l_1, l_2, \ldots, l_n and o_1, o_2, \ldots, o_n;
```

Example 1.3.1: SIS with Sample Demands

Let (s, S) = (20, 60) and consider n = 12 time intervals

Output Statistics

- What statistics to compute?
- Average demand and average order

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i \qquad \qquad \bar{o} = \frac{1}{n} \sum_{i=1}^{n} o_i.$$

• For Example 1.3.1 data

 $\bar{d}=\bar{o}=305/12\simeq25.42$ items per time interval

Flow Balance

- Average demand and order must be equal
- Ending inventory level is S
- Over the simulated period, all demand is satisfied
- Average "flow" of items in equals average "flow" of items out

• The inventory system is flow balanced

Constant Demand Rate

- Holding and shortage costs are proportional to time-averaged inventory levels
- Must know inventory level for all t
- Assume the demand rate is constant between review times

Inventory Level as a Function of Time

• The inventory level at any time t in ith interval is

$$I(t) = I'_{i-1} - (t - i + 1)d_i$$

• $l'_{i-1} = l_{i-1} + o_{i-1}$ represents inventory level after review

Inventory Decrease Is Not Linear

- Inventory level at any time t is an integer
- I(t) should be rounded to an integer value
- I(t) is a stair-step, rather than linear, function

Time-Averaged Inventory Level

- I(t) is the basis for computing the time-averaged inventory level
- Case 1: If I(t) remains non-negative over i^{th} interval

$$\bar{l}_i^+ = \int_{i-1}^i l(t)dt$$

• Case 2: If I(t) becomes negative at some time τ

$$\overline{I}_i^+ = \int_{i-1}^{\tau} I(t)dt$$
 $\overline{I}_i^- = -\int_{\tau}^{i} I(t)dt$

• \bar{l}_{i}^{+} is the time-averaged holding level \bar{l}_{i}^{-} is the time-averaged shortage level

Case 1: No Back Ordering

ullet No shortage during $i^{
m th}$ time interval iff. $d_i \leq l'_{i-1}$

• Time-averaged holding level: area of a trapezoid

$$\bar{l}_{i}^{+} = \int_{i-1}^{i} l(t) dt = \frac{l'_{i-1} + (l'_{i-1} - d_{i})}{2} = l'_{i-1} - \frac{1}{2}d_{i}$$

Case 2: Back Ordering

ullet Inventory becomes negative iff. $d_i>l_{i-1}'$

Case 2: Back Ordering (Cont.)

- I(t) becomes negative at time $t = \tau = i 1 + (I'_{i-1}/d_i)$
- ullet Time-averaged holding and shortage levels for $i^{
 m th}$ interval computed as the areas of triangles

$$\bar{l}_i^+ = \int_{i-1}^{\tau} l(t) dt = \dots = \frac{(l_{i-1}')^2}{2d_i}$$

$$\bar{l}_i^- = -\int_{\tau}^i l(t) dt = \cdots = \frac{(d_i - l'_{i-1})^2}{2d_i}$$

Time-Averaged Inventory Level

Time-averaged holding level and time-averaged shortage level

$$\bar{I}^{+} = \frac{1}{n} \sum_{i=1}^{n} \bar{I}_{i}^{+}$$
 $\bar{I}^{-} = \frac{1}{n} \sum_{i=1}^{n} \bar{I}_{i}^{-}$

- Note that time-averaged shortage level is positive
- The time-averaged inventory level is

$$\overline{I} = \frac{1}{n} \int_0^n I(t) dt = \overline{I}^+ - \overline{I}^-$$

Computational Model

- sis1 is a trace-driven computational model of the SIS
- Computes the statistics

$$\bar{d}$$
, \bar{o} , \bar{I}^+ , \bar{I}^-

and the order frequency \bar{u}

$$\bar{u} = \frac{\text{number of orders}}{n}$$

ullet Consistency check: compute $ar{o}$ and $ar{d}$ separately, then compare

Example 1.3.4: Executing sis1

- Trace file sis1.dat contains data for n = 100 time intervals
- With (s, S) = (20, 80)

$$\bar{o} = \bar{d} = 29.29$$
 $\bar{u} = 0.39$ $\bar{l}^+ = 42.40$ $\bar{l}^- = 0.25$

• After Chapter 2, we will generate data randomly (no trace file)

Operating Costs

A facility's cost of operation is determined by:

• c_{item} : unit cost of new item

• C_{setup} : fixed cost for placing an order

• $c_{
m hold}$: cost to hold one item for one time interval

ullet $oldsymbol{\mathsf{c}}_{\mathrm{short}}$: cost of being short one item for one time interval

Case Study

- Automobile dealership that uses weekly periodic inventory review
- The facility is the showroom and surrounding areas
- The items are new cars
- The supplier is the car manufacturer
- "...customers are people convinced by clever advertising that their lives will be improved significantly if they purchase a new car from this dealer." (S. Park)
- Simple (one type of car) inventory system

Example 1.3.5: Case Study Materialized

- Limited to a maximum of S = 80 cars
- Inventory reviewed every Monday
- If inventory falls below s = 20, order cars sufficient to restore to S
- For now, ignore delivery lag
- Costs:

• Shortage cost is $c_{hold} = 700 per week

Per-Interval Average Operating Costs

• The average operating costs per time interval are

```
 \begin{array}{lll} \bullet & \textit{item cost}: & c_{\text{item}} \cdot \bar{\texttt{o}} \\ \bullet & \textit{setup cost}: & c_{\text{setup}} \cdot \bar{\textit{u}} \\ \bullet & \textit{holding cost}: & c_{\text{hold}} \cdot \bar{\textit{I}}^+ \\ \bullet & \textit{shortage cost}: & c_{\text{short}} \cdot \bar{\textit{I}}^- \\ \end{array}
```

- The average total operating cost per time interval is their sum
- For the stats and costs of the hypothetical dealership:

```
• item \ cost: $8000 · 29.29 = $234,320 per week

• setup \ cost: $1000 · 0.39 = $390 per week

• holding \ cost: $25 · 42.40 = $1,060 per week

• shortage \ cost: $700 · 0.25 = $175 per week
```

Cost Minimization

- By varying s (and possibly S), an optimal policy can be determined
- Optimal ←⇒ minimum average cost
- Note that $\bar{o} = \bar{d}$, and \bar{d} depends only on the demands
- Hence, item cost is independent of (s, S)
- Average dependent cost is
 - avg setup cost + avg holding cost + avg shortage cost

Experimentation

- Let S be fixed, and let the demand sequence be fixed
- If s is systematically increased, we expect:
 - average setup cost and holding cost will increase as s increases
 - average shortage cost will decrease as s increases
 - average dependent cost will have 'U' shape, yielding an optimum
- From results (next slide), minimum cost is \$1550 at s=22

Example 1.3.7: Simulation Results

