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ABSTRACT
Server virtualization brings benefits in autonomic resource
management, but also leads to new challenges. The chal-
lenge the paper addresses is on profiling physical resource
utilization information of VMs when consolidated on a sin-
gle server. Profiling is very difficult due to dynamic map-
ping relationships of resource activities between the virtual
layer and the physical layer. The problem is further exac-
erbated by cross-resource utilization causality relationships
due to virtualization overhead and resource utilization mul-
tiplexing across different VMs. We formulate profiling as a
source separation problem as studied in digital signal pro-
cessing, and design a directed factor graph (DFG) to model
the multivariate dependence relationships among different
resources (CPU, memory, disk, network) across virtual and
physical layers. A benchmark based methodology is de-
signed to build a DFG based model for the VM information
calibration problem. A run-time calibration mechanism is
proposed based on the DFG based model and further en-
hanced with a robust remodeling method based on guided
regression. The proposed methodology outputs estimates of
physical resource utilization on individual VMs and physi-
cal server aggregate resource utilization. We present a case
study using the Xen-virtualization platform and evaluate the
methodology for different consolidation scenarios with di-
verse applications including RUBiS, IOzone, SysBench, and
Netperf. The results show that the DFG calibration sig-
nificantly improves the accuracy of the resource utilization
information collected within guest VMs as it reduces rela-
tive errors in CPU utilization from 44.8% down to 3.9% for
CPU-intensive applications and relative errors in disk write
rate from 391.5% down to 10.6% for IO-intensive applica-
tions, strongly arguing for the effectiveness of the proposed
DFG calibration methodology.
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1. INTRODUCTION
Autonomic resource management becomes increasingly de-

manded in large-scale computing systems for reducing ad-
ministrators’ burdens. Autonomic resource management and
system capacity planning often rely on analytic performance
models [10, 8, 24]. Correct parameterization of such mod-
els is critical for their effectiveness [24]. Server virtualiza-
tion clearly enhances flexibility in resource control, but in-
troduces new challenges in parameterization of performance
models. The relationship between application workload and
physical resource utilization can be greatly obscured by the
virtualization layer.

This paper addresses a fundamental problem in virtual
machine (VM) resource management: how to effectively pro-
file physical resource utilization of individual VMs. Our fo-
cus is not just on collecting usage statistics but on extract-
ing the utilization of physical resources by a VM across time,
where the resources include CPU (utilization in CPU cycles),
memory (utilization in memory size), network (utilization in
traffic volume), and disks (utilization in disk I/Os). Cor-
rect VM resource utilization information is tremendously
important in any autonomic resource management that is
model based. For example, in dynamic provisioning, correct
per-VM resource utilization information is the basis for the
right VM sizing decision; in application management, per-
formance modeling requires correct per-VM resource utiliza-
tion information to build the relationship between applica-
tion performance and resource demands.

Profiling is a hard problem because mapping virtual-to-
physical (V2P) resource activity mapping is not always one
to one and may depend on application workload character-
istics. The problem is further exacerbated by cross-resource
utilization causality among different resources due to vir-
tualization and multiplexing among VMs in a consolidated
environment.

Here, we formulate VM resource utilization profiling as a



source separation problem, which is originally studied in dig-
ital signal processing. The aggregate utilization information
of one physical resource is viewed as a mixed signal superim-
posed by the utilization signals of every individual VM. The
objective is to figure out what are the original per-VM “sig-
nals”. In this paper we extend the factor graph model [11]
with directionality and factoring generalization, and design
a directed factor graph (DFG) that models the multivari-
ate dependence relationships among different resources and
across virtual and physical layers.

To build the base DFG model, we first focus on build-
ing separately DFG sub-graphs using micro-benchmarks and
benchmark applications that are CPU-intensive (SPEC CPU
2006 [3]), memory-intensive (SPEC CPU2006), network- in-
tensive (Netperf [2]) and disk I/O-intensive (IOzone [1], Sys-
Bench [4]). We also design a run-time calibration mechanism
which outputs physical resource utilization estimation on in-
dividual VMs based on monitoring information and the DFG
based model. The run-time calibration mechanism also in-
cludes a robust remodeling process that can make a new
guided regression model to adapt to the temporal dynamics
in the modeled resource relationships.

We use the Xen-virtualization environment and apply the
calibration mechanism on a set of consolidated VMs hosting
diverse applications including RUBiS (a 3-tier app), Netperf,
IOzone, and SysBench. The VM resource calibration output
is compared with the “baseline” case defined as the physical
resource utilization when that VM is hosted alone on the
same server and with the same application workload. The
results show that the calibration mechanism significantly im-
proves the accuracy of the resource utilization information
that are collected within guest VMs, reducing the relative
error in CPU utilization from 44.8% down to 3.9% for CPU-
intensive applications, the relative error in disk write rate
from 383% down to 16.7% for IO-intensive applications.

The rest of the paper is organized as follows. Section 2
presents the motivation and problem formulation. Section 3
describes the source separation problem in signal processing
and factor graphs. In Section 4, we describe the definition
of a directed factor graph model; in Section 5 we present the
benchmark based methodology to build the DFG base model
in Xen virtualization. Section 6 describes the run-time VM
calibration approach along with a guided regression method
for robust remodeling, and Section 7 presents the evalua-
tion results of the VM calibration methodology. Section 8
presents the related work and Section 9 concludes this paper
and outlines future work.

2. PROBLEM FORMULATION
In this section, we first present background to Xen vir-

tualization and then report a few cases of representative
VM measurement information mismatching that motivate
us for the development of a reliable information calibration
approach. Then, we present the problem formulation.

2.1 Xen Virtualization
Xen [5] is an open source x86 virtual machine monitor

which can create multiple virtual machines on a physical
server. Each virtual machine runs an instance of an operat-
ing system. A scheduler is running on the Xen hypervisor
to schedule virtual machines on the processors. Domain-0
in Xen is a privileged control domain used to manage other
domains and resource allocation policies.

Xen does not account for resource consumption in the
hypervisor on behalf of an individual VM, e.g., for I/O pro-
cessing. On Xen’s I/O model, a special privileged virtual
machine called driver domain (by default “Domain-0”) hosts
unmodified device drivers and directly controls physical de-
vices. Other virtual machines, called guest domains in Xen,
have to communicate through the driver domain to access
the devices (e.g., network cards or disks). This I/O model
results in a complex resource utilization model. For exam-
ple, an IO-intensive application has two components in its
CPU utilization: CPU consumed by the guest domain where
the application runs and CPU consumed by the driver do-
main which performs I/O processing on behalf of the guest
domain. When multiple VMs are co-hosted on a single phys-
ical server, a problem posed by the Xen I/O model is to
classify the driver domain’s CPU consumption across the
various guest domains. Similar problems arise for classify-
ing the resource consumption of network and disk activities.

2.2 Information Mismatching Paradox

Figure 1: Measurement information mismatching: a
disk I/O utilization example

Directly profiling VM’s resource utilization inside the VM
does not always give the correct information. For exam-
ple, on a Xen-virtualized physical server hosting a single
VM running IOzone [1] (a filesystem benchmark applica-
tion), Figure 1 shows the disk I/O activities (write requests
per second) measured inside the VM (called virtual I/Os)
and the I/O activities measured on the physical disk (called
physical I/Os). Both IO measurements are collected from
the /proc file system in the guest domain and Domain-0
separately. There is more than one order of magnitude dif-
ference between the two readings.1

Figure 2 shows another example on CPU utilization. On
a Xen-virtualized physical server hosting a single VM run-
ning an Apache web server, we use the VM monitoring tool
XenMon [9] to measure the VM’s CPU utilization and the
physical server’s CPU utilization. While only a single VM is
running, the server’s CPU utilization is more than twice of
the CPU utilization of the VM. This mismatching is mainly
caused by the CPU overhead of Domain-0 in network and
disk IO processing.

1Careful examination reveals that this is caused by write
coalescence at the cache subsystem in the disk I/O layer.



Figure 2: Measurement information mismatching: a
CPU utilization example

2.3 Problem Formulation
We define the problem as profiling physical resource uti-

lization for an individual VM. That is, we want to profile
how many physical resources have been utilized by each VM
across time, where resources include CPU, memory, net-
work, and disk.

2.3.1 Virtual Resource Monitored Information
Per-VM resource utilization information can be collected

within the VM (e.g., via the sar utility tool) or from the VM
Manager (e.g., Domain-0 of Xen). We implement the mon-
itoring system to track various VM resource usage without
modifying any virtual server:

• CPU: we monitor the consumed CPU by every indi-
vidual guest VM. In Xen’s Domain-0, CPU usage of
guest VMs and Domain-0 itself are provided by the
XenMon utility [9].

• Memory: we collect the memory usage as the ratio
of used memory and the total memory allocated to the
guest VM. While memory utilization is only known to
the OS within each VM, tracking accesses to swap par-
titions from Domain-0 can infer such information [23].

• Disk: we collect the disk IOs issued from the guest
VM to the privileged Domain-0 in four metrics - wtps
(write requests per second), bwrtn/s (data written to
vbd block device in blocks per second), rtps (read re-
quests per second), bread/s (data read from vbd block
device in blocks per second). In Domain-0 of Xen,
such information for the guest VMs is available at
/sys/devices/xen-backend/vbd-<domid>-<devid> for vir-
tual block devices.

• Network: we collect the network traffic issued from
guest VMs to Domain-0 in four metrics - rxpck/s (pack-
ets received per second), txpck/s (packets transmit-
ted per second), rxbyt/s (bytes received per second),
txbyt/s (bytes transmitted per second). In Domain-0
of Xen, such information on guest VMs is available in
the proc filesystem at /proc/net/dev for virtual net-
work devices.

2.3.2 Physical Resource Monitored Information
The following resource utilization information is collected

at the privileged driver domain (e.g., Domain-0 of Xen):

• CPU: consumed CPU by the privileged domain.

• Memory: memory utilization as the ratio of used
memory to total allocated memory of the privileged
domain.

• Disk: four types of metrics are collected for aggregate
physical IO that are the same as those for virtual disks.

• Network: four metrics are collected for aggregate
traffic on physical network cards that are the same
as those for virtual network devices.

3. BACKGROUND INFORMATION
In this section, we describe the source separation problem

defined in signal processing and a solution framework called
factor graphs.

3.1 Source Separation
In digital signal processing, source separation problems [21]

are those in which several signals have been mixed together
and the objective is to find out what are the original signals.
In particular, blind source separation is the source sepa-
ration problem without any information about the source
signals or the mixing process. Several approaches have been
proposed for the solution of this problem type such as Singu-
lar Value Decomposition (SVD) and Principal Components
Analysis (PCA). These approaches typically rely on the as-
sumption that the source signals are mutually statistically
independent. Unfortunately, such assumption does not al-
ways hold in our application. For example, CPU overhead
and network traffic originated from multiple VMs may have
strong correlation when they belong to the same applica-
tion services. VM disk write requests can be accumulated
(delayed) and executed in batches on physical disks due to
the page cache mechanism at the OS layer. Therefore, we
focus on model based source separation approaches where
domain knowledge on the mixing process can be encoded in
the separation process.

3.2 Factor Graphs

2X 3X 4X 5X1X

f j f kf i

Figure 3: An example factor graph

Factor graphs [15] are graphical representations of com-
plex mathematical models. They allow a unified approach
to many source separation problems in signal processing and
beyond. A factor graph is a bipartite graph representing the
factorization of a global function of several variables. For ex-
ample, assume that some global function, f(x1, x2, x3, x4, x5)
can be factored as multiple local functions, e.g.,

f(x1, x2, x3, x4, x5) = fi(x1, x2)fj(x2, x3, x4)fk(x3, x4, x5)



This factorization is represented by the factor graph in Fig-
ure 3. In our application, we have to bring directionality
into a factor graph so as to model a general decomposition
of a global function into multiple local functions. We give
details on this extension in the following section.

4. DIRECTED FACTOR GRAPHS
In this section, we present the factor graph model that we

use in the VM resource calibration problem.

4.1 Graph Model
Formally, a directed factor graph (DFG) is a bipartite di-

graph G = (V, F, E). V and F are two disjoint node sets. V
represent the set of variables, F represents the set of func-
tions. One edge x → f in E connects a vertex x in V to one
vertex f in F when x is an input parameter of the function
represented by f . One edge f → y in E connects a vertex
f in F to one y in V when y is an output parameter of the
function represented by f .

1X

2X

3X

f a

f b

aY’

bY’

+ 0Y

Figure 4: A directed factor graph example

Figure 4 shows the directed factor graph for a global func-
tion Y0 = g(x1, x2, x3) with decomposition given as

g(x1, x2, x3) = fa(x1, x2) + fb(x2, x3)

in Figure 4. The new variable nodes Y ′

a, Y ′

b are two tempo-
rary variables recording the output of the functions fa and
fb.

4.2 DFG in VM Information Calibration
We use the directed factor graph in Figure 5 as the base

for VM information calibration. From left to right, the vir-
tual resource activities are first transformed into the phys-
ical resource activities generated by each VM, and then
are aggregated to render the physical resource activities of
the hosting server. The left-most variable nodes represent
observable virtual resource activities, the right-most vari-
able nodes represent observable physical resource activities,
see Section 2.3. The intermediate variable nodes, such as
CPUp

V M−1 representing the physical CPU consumption by
VM-1, are the data we want to infer and we derive them
through statistical inference techniques on the function nodes
such as fV M−1

CPU .
We choose the DFG model in Figure 5 as it naturally de-

scribes the resource demand transformation and aggregation
processes in a virtualization environment. The edges in the
graph depict statistical causality relationships between re-
source utilization at different components/layers. The gen-
eralization of this graph model is possible thanks to the flex-
ibility in the identification of the function nodes, which may
be different for different hypervisor architectures. In the
following section, we show how to build a base model for
Xen by identifying the function nodes through benchmark
profiling and regression analysis.
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Figure 5: The directed factor graph in VM moni-
toring information calibration.

5. DFG BASED MODEL
In this section, we run different benchmark applications in

one guest domain to generate workload on each virtualized
resource separately and build a DFG based model for our
calibration mechanism.

5.1 Methodology
The modeling process consists of the following steps:

1. Host a single VM in a server.

2. Run a benchmark for a specific virtual resource (e.g.,
a CPU-intensive benchmark).

3. Apply statistics analysis to find out the set of phys-
ical resources on which the benchmark incurs non-
negligible utilization and learn the models for the func-
tion nodes such as fV M−1

CPU .

The benchmark based modeling process aims at captur-
ing the stable causality relationships between virtual and
physical resource demands. We carefully select a fixed set
of benchmark applications to cover all the four resources
(CPU, memory, disk, and network) at the virtual layer. If
the causality relationship changes across time, as for exam-
ple in the disk IO access patterns of an application, then we
resort to the guided regression method that is described in
Section 6.2.

5.2 Regression Analysis
In Step 3, stepwise regression [7] is applied to the collected

data to find out correlated measurement variables and to re-
move co-linearity that may exist between variables. Stepwise
regression uses the same analytical optimization procedure
as multiple regression but differs in that only a subset of
predictor variables is selected sequentially from a group of
predictors by means of statistical testing of hypotheses.



5.2.1 Source Node: Virtual CPU load
We first run a micro-benchmark in the guest VM that

alternates between sleeping and calculating Fibonacci num-
bers, the ratio of which determines the VM CPU utilization.
Figure 6 shows the CPU overhead in the privileged domain
while the micro-benchmark VM’s CPU utilization changes
from 5% to 50%. The Domain-0 CPU overhead is stable and
remains close to 0. Figure 6 also shows the Domain-0 over-
head when the guest VM runs gromacs, a CPU-bound SPEC
CPU2006 benchmark. The Domain-0 overhead is close to 0
while the guest VM uses up its allocated CPU capacity (one
core of the dual-core processor in the server).

We also observe (not shown on this graph) that the CPU-
intensive guest VM did not incur overhead on other server
resources (e.g., network or disk).
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Figure 6: Compute intensive workload has no im-
pact on privileged domain performance

5.2.2 Source Node: Virtual Memory load
We examine how memory-intensive applications on guest

domains impact the resource utilization in the privileged
domain. Figure 6 shows the Domain-0 CPU overhead when
running libquantum, a memory-bound SPEC CPU2006 bench-
mark, and the overhead is close to 0. We also observe (but
not include these results here) that the memory-intensive
guest VM did not impose overhead on other server resources
(e.g. network or disk).

5.2.3 Source Node: Virtual Network load
We use Netperf [2] to perform controlled network load

generation. Netperf allows both UDP and TCP stream
tests. Here, we measure the number of packets (bytes)
sent/received per second for both guest and privileged do-
mains.

For the UDP case, we change the packet sending rate from
1, 000 to 36, 000 pkts/sec, the packet payload size from 100
bytes to 1, 400 bytes, and measure server resource metrics
on both sender and receiver sides. Since the TCP protocol is
not allowed to specify the transfer speed, we can not change
the sending rate settings as in the UDP protocol.

The regression coefficients of different metrics from step-
wise regression algorithm is shown in Table 1, and only the
correlated variables are presented. Each row corresponds to
a Domain-0 resource metric and each column corresponds
to a guest domain variable. For example, the first row in
the figure means the privileged domain CPU overhead(%)
= 6.64×10−4×recv pkt rate+5.02×10−4×send pkt rate−
0.06. It shows that the Domain-0 CPU overhead has a clear

linear relationship with the packet sending and receiving
rates, but not with the network throughput in bytes. The
same observation is also reported by Wood et al. [22].

Table 1: Network regression model.
Domain-U

rxbyt/s rxpkt/s txbyt/s txpkt/s intercept

D CPU(%) 0 6.64e-04 0 5.02e-04 -0.06
o rxbyt/s 1.01 0 0 0 -49.51
m rxpkt/s 2.24e-06 1.00 0 0 2.56
- txbyt/s 0 0 1.00 20.38 1094.2
0 txpkt/s 0 0 -4.14e-06 1.01 4.26

5.2.4 Source Node: Virtual Disk IO load
Xen supports many different storage options for the guest

domain. These options can be divided into three categories:
file based, device based, and LVM-based. The file-based block
devices can be differentiated by how Xen accesses them: blk-
tap and loopback. Blktap replaces the common loopback
driver for file-based images because it allows for improved
performance and more versatile filesystem formats, such as
QCOW [16]. It also avoids problems related to flushing dirty
pages which are present in the Linux loopback driver.

We build our model for guest domains with file based
disk storage. For the other two storage options, the same
methodology can be also applied. Here, we perform con-
trolled IO-intensive experiments with SysBench [4]. Sys-
Bench is a multi-threaded benchmark tool for evaluating
database (e.g., MySQL) server performance under intensive
load. We exploit its file IO performance testing functionality
to generate different IO activities. To control the write/read
operation rate, we add different sleeping time between each
write/read operation in the source code. The SysBench IO
testing module supports six IO operations: sequential write,
sequential rewrite, sequential read, random read, random
write, and combined random read/write. We take samples
of each IO operation and create a dataset based on all the
samples. The block size is set to 16K bytes. The total size
of testing files is set to 4G bytes. We choose “default” for
other option settings.

Tables 2 and 3 show the regression models extracted by
blktap based and loopback based devices. We note that be-
sides the difference on CPU overhead, the relationship func-
tions from virtual disk IOs to physical IOs are also different
for blktap based and loopback based devices. For example,
the coefficient of virtual rtps to physical rtps is 1.29 for blk-
tap based devices, while the coefficient is 0.34 for loopback
based devices. We observe (but not include the results here)
that the regression models for disk IOs are dynamic and de-
pendent on workload patterns (e.g., sequential vs random
access, high vs low access locality). The coefficients in the
regression models of Tables 2 and 3 represent the resource
relationships under the standard SysBench workload. Later,
we present a model relearning scheme for online information
calibration that adapts to inevitable workload dynamics, see
Section 6.

5.2.5 System Overhead
When multiple VMs are consolidated in one physical ma-

chine and lead to heavy IO utilization, possible system over-
head needs to be considered . One example of the source of
such overhead is the ksoftirqd daemon process. ksoftirqd is a
per-CPU kernel thread that runs when the machine is under



Table 2: Blktap based device regression model
Domain-U

rtps bread/s wtps bwrtn/s intercept

D CPU(%) 0 2.02e-04 0 2.21e-04 0.47
o rtps 1.29 0 0 0 10.57
m bread/s 0 1.00 0 0 1.59
- wtps 0 0 0.11 0.0018 1.6
0 bwrtn/s 0 0 0.07 0.998 15.3

Table 3: Loopback based device regression model
Domain-U

rtps bread/s wtps bwrtn/s intercept

D CPU (%) 0 8.27e-05 0 1.11e-04 0.23
o rtps 0.34 0 0 0 0.14
m bread/s 0 1.0 0 0 -0.53
- wtps 0 0 0.10 0 1.52
0 bwrtn/s 0 0 0 0.997 22.1

heavy soft-interrupt load. If a soft interrupt is triggered for
a second time while soft interrupts are being handled, the
ksoftirq daemon is triggered to handle the soft interrupts
in process context. The sudden run of ksoftirqd daemon
process under heavy network workload could lead to unex-
pected CPU utilization bursts. In our solution, this type of
overhead is taken as system noise and is excluded from the
aggregate resource utilization contributed to guest VMs.

6. INFORMATION CALIBRATION
In this section, we present the run-time calibration mech-

anism. The mechanism takes as input the VM monitoring
information as described in Section 2.3 and outputs per VM
physical resource utilization information based on the DFG
model in Section 4.

6.1 Run-time Calibration Mechanism

run−time calibration process

DFG model

calibrated VM resource 
utilization information

VM VM

Server

utilization information
physical server resource

utilization information
VM resource 

Figure 7: The run-time calibration mechanism

Figure 7 shows the overview of our run-time calibration
mechanism. The inputs to the mechanism are the resource
utilization monitoring information within the guest VMs
and the privileged domain (for aggregate physical server
load information). The mechanism uses the DFG model
to decode the input information and outputs per-VM phys-
ical resource utilization information. In the run time, the
calibration process may also update the DFG model if the
existing one incurs non-trivial estimation errors.

We exemplify the algorithmic steps in the context of CPU
utilization, but the same steps apply for all four resources.
The run-time process on per-VM CPU utilization informa-
tion calibration is given in Algorithm 1.

In Step 0, the initial model parameters are obtained from
benchmark based profiling, see Section 5, or from offline
application-specific profiling for calibrated VMs. While the
latter method is expected to give a more accurate model

0 Initialize the model parameters of DFG function
nodes;

1 Feed the DFG model with per-VM virtual resource
utilization information;

2 Calculate the value of DFG latent variables on
per-VM CPU utilization information;

3 Calculate the value of server CPU utilization variable;
4 while CPU err > thresh do
5 Re-learn the DFG function models;
6 Re-calculate the value of the DFG latent variables

for per-VM CPU utilization information;

end
7 Output per-VM CPU utilization information;

Algorithm 1: per-VM CPU utilization information cal-
ibration algorithm

than the former one, it comes with an extra profiling over-
head. In the evaluation, we use the benchmark based pro-
filing results for this step.

Step 4 brings a feedback loop to make our calibration pro-
cess adaptive to inevitable model dynamics, typically caused
by the change of workload patterns. As shown in Section 5,
the relationship between a virtual resource activity and its
overhead on physical resources can vary and depend on the
workload contents. The mapping of virtual I/O to physical
I/O activities is one such example. To be robust to tran-
sient workload changes or monitoring noise, the discrepancy
is calculated on the average of the estimation errors during
a sliding window including the past K time points. The
threshold is chosen as (ǫ+Zα ∗σ), where (ǫ, σ2) is the mean
and variance of the regression model estimation error from
the last remodeling process (or those learned from the bench-
mark based profiling at the beginning of the process). Zα

is the standard score in statistics [13], and here measures
how unlikely an estimation error is if the current model is
correct. If Zα = 3, α = 99.75%, then an estimation error
larger than (ǫ+3∗σ) is unlikely (with probability < 0.25%)
to appear if the virtualization environment were the same
as during the last remodeling process. Therefore, if several
large estimation errors in a row indicate the change of some
factors in the virtualization environment, then a remodeling
process is triggered. This process is presented in the next
subsection.

6.2 Robust Remodeling: Guided Regression
While we use linear regression models in Section 5 for sin-

gle VM based benchmark profiling, a new problem arises in
the calibration process when multiple VMs are co-hosted in
a single server: now y represents a physical resource utiliza-
tion which is the summation of physical resource utilization
of multiple VMs. Since the physical resource utilization of
each individual VM is a latent variable, a straightforward
regression model is as follows, assuming m co-hosted VMs:

y(i) = (βV M−1
1 x

V M−1(i)
1 + · · · + βV M−1

p xV M−1(i)
p ) +

. . . + (βV M−m
1 x

V M−m(i)
1 + · · · + βV M−m

p xV M−m(i)
p )

where yV M−j(i) = βV M−j
1 x

V M−j(i)
1 + · · ·+βV M−j

p x
V M−j(i)
p

is the latent variable for the jth VM.
If we directly solve the above problem with the least square



solution

β̂ = (xT x)−1xT y , (1)

it could lead to re-learning the models of all the VMs in the
server. We seek to enhance the original regression modeling
method for remodeling robustness due to three reasons. The
first comes from common run-time monitoring data error
and noise (e.g., system noise, transient VM migration over-
head) that might add transient perturbation onto otherwise
stable resource relationships. The second is due to the factor
that some relationships (such as virtual disk I/Os and its re-
source overhead) are naturally dynamic due to their content
dependence. Re-learning those models should not affect the
model of other stable relationships. The third reason is due
to the fact that since the co-located VMs are all involved in
the regression model, the number of unknown parameters in
β is large. In order to obtain accurate estimation of those
parameters, a significant amount of measurements [x,y] is
usually required. However, in the model relearning process,
sometimes we do not have so many observations due to the
quick dynamics of the system. The lack of (enough) data
may lead to large variances of the final solution β.

In order to enhance the robustness of model estimation,
we propose a guided regression process to solve the model
of Eq. (1). We add some constraints to describe the range
of possible β values and embed those constraints into the
estimation process. The constraints can come from various
sources, such as the prior model knowledge based on the
benchmark profiling or the model learned during the previ-
ous time period. By including such knowledge to guide the
estimation, we can obtain a more reliable solution β for the
regression model.

The prior constraints on β are represented by a Gaussian
distribution with the mean β̄ and covariance Σ

P (β|σ2) = (σ2)−Kexp



−
1

2σ2
(β − β̄)T Σ−1(β − β̄)

ff

(2)

The mean β̄ represents the prior expectation on the val-
ues of β, and is determined from the β values learned in
Section 5. The covariance Σ represents the confidence of
our prior “knowledge”. We choose Σ as a diagonal matrix
Σ = diag(c1, c2, · · · , cp), in which the element ci determines
the level of variances of βi in the prior distribution. If we
are confident that the value of βi is located closely around
β̄, the corresponding ci value is small. Otherwise we choose
large ci values to describe the uncertainty of βi values. Note
that the least squares method in Eq (1) solves the regression
without any prior knowledge, i.e., the values of ci’s are infi-
nite, which may be inaccurate when the number of collected
measurements is insufficient.

There is also an unknown parameter σ2 in Eq (2), which
represents the variance of the data distributions. Here, we
use the inverse-gamma function [13] to represent the distri-
bution of σ2:

P (σ2) =
ba

Γ(a)
(σ2)−(a+1)exp



−
b

σ2

ff

(3)

where a, b are two parameters to control the shape and scale
of the distribution, Γ(a) is the gamma function of a. We
choose the inverse-gamma function because: 1) it is one of
the common distributions for non-negative variables such as
the variance studied here; 2) it is easy to tune its shape by
setting (a, b) parameters. 3) By using the inverse-gamma

function as the prior of Gaussian variance, we can obtain a
closed-form solution for optimizing the posterior distribution
estimation.

Given the prior distribution P (β), the guided regression
finds the solution by maximizing the following posterior dis-
tribution

P (β|x,y, σ2) ∝ P (y|β,x)P (β|σ2)P (σ2) (4)

which leads to the following solution

β∗ = (xT x + Σ−1)−1(Σ−1β̄ + xT xβ̂). (5)

Due to the space limit, we do not present the detail of the
above derivations.

To summarize, the robust remodeling process takes the
following steps: 1) decides the prior coefficients β̄ and their
weight metric Σ (e.g., learned through the benchmark pro-
filing in Section 5); 2) solves Eq.(1) based on the run-time
monitoring data for the standard least square solution; 3)
calculates the final solution β∗, which is a weighted average
of the two components from 1) and 2).

7. EVALUATION
As discussed in the previous sections, the proposed DFG

based model and run-time calibration mechanism constitute
the two building blocks for VM resource utilization infor-
mation calibration process. These building blocks can be
directly applied to existing applications. In this section, we
demonstrate three case studies that clearly show the effec-
tiveness of the calibration methodology.

7.1 Experimental Methodology
We evaluate the effectiveness and accuracy of our cali-

bration technique with different applications. The testbed
runs the Fedora release 8 operating system with Linux ker-
nel 2.6.18-8. The evaluation is based on the Xen virtualiza-
tion platform version 3.3.1. Our testbed platform uses Su-
permicro 1U Superservers with Intel Core 2Duo E4300 1.86
GHz processors, 2MB L2 cache. All servers have a RAM of
2GB and 250GB 5400RPM disk. The servers are connected
through D-LINK DES-3226L 10/100Mbps switches. The
testbed is managed by Usher [17], an open source VM man-
agement middleware with a centralized monitoring database.
The run-time calibration process is co-located with the mon-
itoring DB and it calibrates the raw monitoring data in
batches with fixed time window size.

The following applications are used in our evaluation:

• RUBiS is an auction site prototype modeled after eBay.
A client workload generator emulates the behavior of
users browsing and bidding on items. We use the
Apache/EJB implementation of RUBiS version 1.4.3
with a MySQL database server version 5.0.77.

• IOzone is used for filesystem benchmarking. It is used
to generate and measure various disk I/O activities.

• SysBench is a multi-threaded benchmark tool for eval-
uating database (e.g., MySQL) server performance un-
der intensive load. We use SysBench to generate MySQL
workloads which lead to various I/O activities.

• Netperf is tool for network benchmarking (see Sec-
tion 5.2.3). We use Netperf to generate different net-
work traffic workloads.
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Figure 8: Relative error of in-VM monitoring method and DFG based model in RUBiS app

Using these applications as components, we present three
scenarios to test the accuracy of the DFG based model. In
scenario 1, we consider the RUBiS application. We collect
baseline information from every component server i.e., web
server, application server, and database server. We demon-
strate substantial improvements in resource information es-
timation with the DFG based model for two different server
consolidation environments. In scenario 2, we illustrate how
guided regression can be used to improve on the DFG based
model. The estimation after the remodeling process shows
dramatic improvements. In scenario 3, we illustrate how the
DFG model is used to separate a mixed disk IO stream into
its component streams.

7.2 Results

7.2.1 Scenario 1: RUBiS, a 3-tier App
RUBiS is a multi-tier web service application composed by

open-source software, i.e., Apache Web Server, JBoss EJB
Server, and MySQL relational database. For all servers, we
use blktap based virtual block devices. The resource usage
baseline of each server is collected when it is virtualized and
run in the same physical machine alone. Here, RUBiS is
initialized with 700 simultaneous clients with the browsing
workload. For the baseline comparison, we run RUBiS for
30 minutes and collect usage statistics.

We setup the following server consolidation environment
(two physical machines): on Machine #1, the virtualized
App server and DB server are consolidated together; the
web server VM is placed on Machine #2. We collect each
virtual and physical machine run-time information using the
techniques described in Section 2.3. The calibrated usage in-
formation is calculated with the DFG based model described
in Section 5.

Figure 8 illustrates the relative errors1 of both in-VM
monitoring and DFG based model. The figure shows results
for all three component servers. We observe that RUBiS is
mainly a compute and network IO intensive application with
very low disk activities. In the figure, we only show metrics
with significant values and ignore those close to zero. One
can easily see that the DFG based model significantly re-
duces the relative error, e.g., the error in web server CPU
utilization drops from 44.8% down to 3.9%.

The substantial improvements in CPU utilization estima-
tion is due to the fact that DFG based model takes the in-
tensive network activity overhead into consideration. In the
web server example, on the average, the server transmits

1Relative error is defined as the ratio of absolute error to its
corresponding baseline value.

about 12, 500 packets per second to the clients and applica-
tion server. Meanwhile, it also receives about 13, 400 pack-
ets per second. According to the DFG based model, this
amount of network traffic leads to 13% privileged domain
CPU overhead that is not reported by in-VM monitoring.

7.2.2 Scenario 2: Co-hosting network- and IO-intensive
Apps

For this experiment we consolidate two virtualized servers
on one physical machine. Both VMs are configured with
loopback based virtual block devices. The first VM runs
Netperf that sends out UDP packets at the rate of 25Mbps
and the second VM runs SysBench. SysBench is set to run
in the “oltp” test mode, to emulate a real database. For
our testbed, we choose the MySQL implementation and set
the number of rows in the testing table to 5, 000, 000. To
make the testing more real, we select the execution mode to
be “advanced transactional” in which each thread performs
transactions.

In the experiment, we set a sliding window length to 15
minutes. At the beginning of the first window, the parame-
ters of DFG are initialized according to Tables 1 and 3. The
system is set to take monitoring samples every 10 seconds
and report to the center database. According to the run time
calibration mechanism in section 6, at the end of each win-
dow, the program calculates the estimation error between
the current DFG model and physical server measurement as
shown in step 4 of Algorithm 1.

Table 4 shows the in-VM monitoring information, the
DFG model result, and the resource usage of the physical
server which is hosting the two VMs. We only report the
metrics with significant values.

Table 4: Example of DFG error that triggers remod-
eling mechanism

CPU txbyt/s txpkt/s wtps bwrtn/s

in-VM1-mon 27.45 0 0 2052.77 30859.36
in-VM2-mon 0.83 3.08e+06 3000 0 0

DFG 5.14 3.15e+06 3021 214.81 30773.46

Server resource 5.74 3.14e+06 3009 176.96 7927.70

The large estimation error highlighted in bold triggers the
remodeling mechanism. Note that remodeling is only ap-
plied for the IO write metrics. The model of other resources
is kept unchanged. The new model is based on the data
points collected in the previous time window. The new disk
IO write model replaces the original one. Close examination
indicates that the large estimation error (see the bold value
in the table) happens because that loopback based storage
uses the Domain-0 kernel page cache. When a file write oc-



curs, the page backing the particular block is looked up. If
it is already found in cache, the write is done to that page
in memory.
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Figure 9: Relative error for in-VM monitoring
method and run time calibration mechanism

Figure 9 illustrates the relative error for in-VM monitor-
ing method and run time calibration mechanism. Note the
log-scale on the Y-axis. One can easily see the significant
improvement in the estimation accuracy. The relative er-
ror of the “bwrtn/s” is reduced from 276% down to 3.5%.
The “txpkt/s” metric in Figure 9(a) is still better than the
calibration result after remodeling but the run time calibra-
tion has already given a good estimation which only has a
relative error of 0.5% only.

7.2.3 Scenario 3: Co-hosting IO-intensive Apps
In scenario 3, we show the case study of how the DFG

based model is useful in decomposing disk IO. We setup
two virtualized servers on one physical machine. The first
VM server executes the IOzone benchmark to perform only
writes and re-writes. The second VM server runs the Sys-
Bench benchmark and writes to disk at the rate of 8MBps.
The block size is set to 16K bytes and the total size of test-
ing files is 8GB. We choose “default” for other options. In
both cases, we use blktap based virtual block devices.

The effectiveness of DFG based model in decomposing
mixed IO and CPU is shown in Figure 10. The DFG based
model successfully decomposes the mixed CPU utilization
and reduces the relative error in write request rate from
391.5% down to 10.6% in Figure 10(a) and from 304.4%
to 31% in Figure 10(b). Meanwhile, the figure shows that
relative error in CPU is also reduced significantly.
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Figure 10: Relative error for in-VM monitoring and
DFG model in mixed signal decomposing

8. RELATED WORK
Our benchmark based DFG model profiling is motivated

by application-specific benchmarking [6, 20]. In app-specific
benchmarking, a set of micro-benchmarks are run on a sys-
tem to generate a system vector of resource utilization in-
formation, which serves as the fundamental primitives of

the system; an application running on the system will be
constructed with an application vector based on its resource
utilization information, and that vector will be used with the
system vector to produce a relevant performance metric for
benchmarking purposes. Gupta et al. [8] present the design
and evaluation of a set of primitives implemented in Xen
to enforcing performance isolation among VMs. They look
into per-VM CPU overhead in the driver domain caused by
network traffic and use a linear model to approximate their
relationships. Our work is complementary to [8] on driver
domain CPU overhead modeling and extends to other re-
sources including disk I/O and memory.

Wood et al. [22] propose a combination of application
modeling and virtualization overhead profiling for estimat-
ing the Domain-0 and Domain-U CPU utilization of an ap-
plication when it is moved from native to virtualized hard-
ware. They use micro-benchmarks to profile the relation-
ships of different I/O activities to the CPU overhead, apply
robust stepwise linear regression method to build the mod-
els, and predict an application’s CPU demand after virtual-
ization based on the benchmark models and the application’s
native resource utilization. Our work is different from theirs
in the following points: (1) our calibration process is a run-
time process where a feedback loop controls the remodeling
process, while their prediction process is a one-time offline
profiling with a fixed set of regression models; (2) our cal-
ibration process covers three other resources in addition to
CPU, and we show in Section 5 that there are situations
where the virtual activities are not equal to their physical
activities for some non-CPU resources. (3) our DFG method
is a source separation framework where different functional
modeling approaches can be used as plug-ins, as it is not
limited to linear regression.

Isci et al. [10] study the run-time CPU demand estimation
in VM consolidation for effective dynamic resource manage-
ment. They derive a simple and accurate alternative esti-
mate of CPU demand even when a server is overloaded with
VMs hosting CPU-intensive applications. Extending their
idea to other type of applications (e.g., IO-intensive) and
other type of resources is interesting and important.

Kraft et al. [12] propose a trace-driven approach to pre-
dict the performance degradation of disk request response
times due to storage device contention in consolidated vir-
tualized environment. However, our approach is a run-time
process without trace and is designed to solve the problem
for different resources.

Pacifici et al. [18] consider a dynamic CPU demand esti-
mation problem for web applications. They use statistical
and classification methods to determine the CPU demand
for different web request types. While that technique relies
on application domain knowledge, our calibration process,
as a commonly applicable solution, can be integrated with
it to provide more accurate resource utilization information.

Virtualization technologies evolve in a fast speed, and
many new approaches have been proposed to address vir-
tualization overhead concern. For example, Liu et al. [14]
propose hypervisor-bypassing in Xen to reduce the perfor-
mance penalty of network I/O; Santos et al. [19] designs
an optimized network IO scheduling algorithm to improve
network throughput in Xen. These results bring more dy-
namics into the relationships between physical and virtual
resource activities, and call for the necessity of an adaptive
calibration solution like the one presented in this paper.



9. CONCLUSIONS & FUTURE WORK
In this paper, we present the design and evaluation of

a VM monitoring information calibration mechanism. We
formulate our problem as a source separation problem and
base our solution on a directed factor graph. We show how
to build a base DFG model through benchmarking and de-
sign a run-time remodeling solution which is adaptive and
guided by the base DFG model. Our evaluation shows that
the proposed methodology is robust as it successfully cali-
brates the VM monitoring information and compares well
to baseline measures.

Virtualization overhead greatly depends on the hardware
platform. For example, [22] shows that their regression mod-
els learned on an Intel platform will have large prediction
error for applications running on AMD platform. While
our run-time calibration process is adaptive to platform het-
erogeneity through model relearning, a low-overhead cross-
platform modeling technology can still benefit our base model
profiling process.
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