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A Fault Tolerant Superscalar 
Processor 

[Based on “Coverage of a Microarchitecture-level Fault Check Regimen 
in a Superscalar Processor” by V. Reddy and E. Rotenberg (2008)] 
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[Part of slides borrowed from V. Reddy’s slides in DSN2008] 



Outline 

 Introduction 
 FT in processors: why 
 Superscalar processors: what and why 
 Conventional processor FT, related drawbacks 

 Hardware & info & time redundancy 
 The need for a regimen-based FT  
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Outline (Cont.) 

 Regimen-based FT (RFT) by Reddy and Rotenberg 
(2008) 
 FT regimen 

 Inherent Time Redundancy (ITR) 
 Register Name Authentication (RNA) 
 Timestamp-based Assertion Check (TAC) 
 Sequential PC Checks (SPC) 
 Register Consumer Counter (CC) 
 BFT Verify (BTBV) 

 Simulation Approach & Result 

 Summary  
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Introduction 
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 Why Fault Tolerance (FT) in processors: 
 Critical charge decreases with processor die area 

(quadratically), i.e, making easier to flip a bit. 
 Cosmic rays in atmosphere being a source 

 Superscalar processors: what and why 
 What? 

 Processors that exploit ILP by fetching & executing multiple 
instructions per cycle from a sequential instruction stream. 

 Why? 
 Almost all modern processors are superscalar  



Introduction (Cont.) 
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Introduction (Cont.) 
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  Conventional FT schemes in processors 
 Basic idea: some form of redundancy 
 Hardware redundancy 

  Additional FU especially for redundancy execution 
  Drawbacks: silicon area overhead, not for commercial processors 

 Information redundancy 
  Error-correcting code (ECC) in memory 
  Control flow based signals 
  Checksums for algorithm-based FT   

 Time redundancy 
  Instruction re-execution 
  Retrasmission of data… 

 Note: 
  Additional overheads in silicon area, pipeline stalls … 
  Only focused on FUs, errors can also occur in DU, DS and RF 
  Need a systematic suite of fault checks to achieve maximum coverage over all 

pipeline stages, and minimum overhead at the same time  



Regimen-based FT 
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 Overview on FT regimen: 
  Inherent Time Redundancy (ITR) 
 Register Name Authentication (RNA) 
 Timestamp-based Assertion Check (TAC) 
 Sequential PC Check (SPC) 
 Register Consumer Counter (CC) 
 Confident Branch Misprediction (ConfBr) 
 BTB Verify (BTBV) 

 Individuals explained next… 
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Inherent Time Redundancy (ITR) 
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Inherent Time Redundancy (ITR) 

•  A decode signature is maintained per instruction 
– Signature is updated at last use of a decode signal 

•  At retirement, instruction signatures are combined 
into trace signatures 
– A trace ends at branch or 16 instructions 

•  Trace signatures are stored in a ITR cache 
•  Each new trace signature is checked with the copy 

in ITR cache 
– Cache miss does not directly cause fault coverage loss 
– Later hit to a previously missed signature detects faults in 

either the current or previous signature 



RNA & TAC 
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 Register Name Authentication (RNA) 
 Detects faults in destination register mappings of 

instructions 
 Checks consistencies in rename unit 

 Timestamp-based Assertion Check (TAC) 
 Detect faults in the issue unit 

 Checks if there’s sequential order among data dependent instructions 

  Implementation: 
 Check: Instr’s Timestamp >= Prod. Timestamps 
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Sequential PC Check (SPC) 

 Detects faults affecting sequential control flow 
 Asserts that a committing instr.’s PC matches 

the retirement PC 
 Implementation 

 Maintain retirement program counter (PC) 
 For non-branch instr., increment retirement PC by instr. 

size 
 For branch instr., update retirement PC with calculated 

PC 
 Check: committing instr. PC match retirement PC 
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CC & ConfBr 

 Register Consumer Counter (CC) 
 Detects faults in source register mappings after register 

renaming 
  Implementation: 

 One counter per physical register   
  Increment counter of source register at rename stage 
 Assert counter of source register > 0 at register read stage 
 Decrement counter of source register after register read 

 Confident Branches Misprediction (ConfBr) 
 Detects faults affecting values that influence branch outcomes 
  Implementation 

 Identify highly-predictable branches using ‘confidence’ counters 
 Misprediction of a confident branch may be symptomatic of a 

fault 
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BTB Verify (BTBV) 

 Detects faults in BTB and decode logic 
 Exploits inherent redundancy between the BTB 

and the decode stage 
 BTB hit produces decode info about branches one cycle 

earlier than decode stage 
 BTB info should match decode info 
 Mismatch indicates fault in BTB logic (false hit, BTB 

fault, etc.) or decode stage 
 BTB aliasing mismatches are handled in the same 

manner (flush the instruction and instructions after it, 
don’t trust the decoder) 
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RFT: Simulation Approach 

  Evaluation Using Fault Injection, goals: 
  Measure processor fault coverage of a µarch-level fault-check 

regimen 
  Leverage C/C++ cycle-level µarch. simulators 

 Cost and time efficient 
  Ensure high fault modeling coverage 

  Fault Injection Approach 
  Analyze high-level (µarch-level) effects of faults in each pipeline 

stage 
  Randomly inject µarch-level faults in simulator 
  Example: fetch stage (IF) 

(a) 

(b) 
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Fetch stage fault analysis 
for fault detection 



RFT: Simulation Approach 
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RFT: Results – Fault Locations 

Fetch – 9% 
Decode – 39% 
Rename – 24% 
Dispatch – 7% 
Backend – 21% 
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RFT: Results – Fault Outcomes 

Faults detected by 
the regimen – 60% 

Faults detected by 
watchdog – 9% 

Faults undetected 
– 31% 



RFT: Results (Cont.) 
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59.8% 8% 24.6% 6.3% 
1.3% 

6.2% 0.1% 17.4% 7.2% 0.4% 7.6% 35.8% 24% 

Non-masked faults = 40.2% 

Non-masked faults detected by regimen = 24% (60% reduction in vulnerability) 

Non-masked faults detected by watchdog = 9% (23% reduction in vulnerability) 

Non-masked faults detected by regimen + watchdog = 33% (~83% of non-masked 
       faults get detected) 
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Summary 

 RFT presented a regimen of µarch-level fault 
checks to protect a superscalar processor 

 Injected a broad spectrum of fault types across all 
pipeline stages 

 Regimen-based approach provides substantial fault 
protection (detects ~83% of non-masked faults) 
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THANK YOU! 


