
P R E S E N T E D B Y
N A N Z H E N G

A Fault Tolerant Superscalar
Processor

[Based on “Coverage of a Microarchitecture-level Fault Check Regimen
in a Superscalar Processor” by V. Reddy and E. Rotenberg (2008)]

1

[Part of slides borrowed from V. Reddy’s slides in DSN2008]

Outline

 Introduction
 FT in processors: why
 Superscalar processors: what and why
 Conventional processor FT, related drawbacks

 Hardware & info & time redundancy
 The need for a regimen-based FT

2

Outline (Cont.)

 Regimen-based FT (RFT) by Reddy and Rotenberg
(2008)
 FT regimen

 Inherent Time Redundancy (ITR)
 Register Name Authentication (RNA)
 Timestamp-based Assertion Check (TAC)
 Sequential PC Checks (SPC)
 Register Consumer Counter (CC)
 BFT Verify (BTBV)

 Simulation Approach & Result

 Summary

3

Introduction
4

 Why Fault Tolerance (FT) in processors:
 Critical charge decreases with processor die area

(quadratically), i.e, making easier to flip a bit.
 Cosmic rays in atmosphere being a source

 Superscalar processors: what and why
 What?

 Processors that exploit ILP by fetching & executing multiple
instructions per cycle from a sequential instruction stream.

 Why?
 Almost all modern processors are superscalar

Introduction (Cont.)
5

Introduction (Cont.)
6

  Conventional FT schemes in processors
 Basic idea: some form of redundancy
 Hardware redundancy

  Additional FU especially for redundancy execution
  Drawbacks: silicon area overhead, not for commercial processors

 Information redundancy
  Error-correcting code (ECC) in memory
  Control flow based signals
  Checksums for algorithm-based FT

 Time redundancy
  Instruction re-execution
  Retrasmission of data…

 Note:
  Additional overheads in silicon area, pipeline stalls …
  Only focused on FUs, errors can also occur in DU, DS and RF
  Need a systematic suite of fault checks to achieve maximum coverage over all

pipeline stages, and minimum overhead at the same time

Regimen-based FT
7

 Overview on FT regimen:
  Inherent Time Redundancy (ITR)
 Register Name Authentication (RNA)
 Timestamp-based Assertion Check (TAC)
 Sequential PC Check (SPC)
 Register Consumer Counter (CC)
 Confident Branch Misprediction (ConfBr)
 BTB Verify (BTBV)

 Individuals explained next…

8

Inherent Time Redundancy (ITR)

==

==

==

==

==

==

==

==

program program duplicate program

Conventional time redundancy Inherent time redundancy

9

Inherent Time Redundancy (ITR)

•  A decode signature is maintained per instruction
– Signature is updated at last use of a decode signal

•  At retirement, instruction signatures are combined
into trace signatures
– A trace ends at branch or 16 instructions

•  Trace signatures are stored in a ITR cache
•  Each new trace signature is checked with the copy

in ITR cache
– Cache miss does not directly cause fault coverage loss
– Later hit to a previously missed signature detects faults in

either the current or previous signature

RNA & TAC
10

 Register Name Authentication (RNA)
 Detects faults in destination register mappings of

instructions
 Checks consistencies in rename unit

 Timestamp-based Assertion Check (TAC)
 Detect faults in the issue unit

 Checks if there’s sequential order among data dependent instructions

  Implementation:
 Check: Instr’s Timestamp >= Prod. Timestamps

11

Sequential PC Check (SPC)

 Detects faults affecting sequential control flow
 Asserts that a committing instr.’s PC matches

the retirement PC
 Implementation

 Maintain retirement program counter (PC)
 For non-branch instr., increment retirement PC by instr.

size
 For branch instr., update retirement PC with calculated

PC
 Check: committing instr. PC match retirement PC

12

CC & ConfBr

 Register Consumer Counter (CC)
 Detects faults in source register mappings after register

renaming
  Implementation:

 One counter per physical register
  Increment counter of source register at rename stage
 Assert counter of source register > 0 at register read stage
 Decrement counter of source register after register read

 Confident Branches Misprediction (ConfBr)
 Detects faults affecting values that influence branch outcomes
  Implementation

 Identify highly-predictable branches using ‘confidence’ counters
 Misprediction of a confident branch may be symptomatic of a

fault

13

BTB Verify (BTBV)

 Detects faults in BTB and decode logic
 Exploits inherent redundancy between the BTB

and the decode stage
 BTB hit produces decode info about branches one cycle

earlier than decode stage
 BTB info should match decode info
 Mismatch indicates fault in BTB logic (false hit, BTB

fault, etc.) or decode stage
 BTB aliasing mismatches are handled in the same

manner (flush the instruction and instructions after it,
don’t trust the decoder)

14

RFT: Simulation Approach

  Evaluation Using Fault Injection, goals:
  Measure processor fault coverage of a µarch-level fault-check

regimen
  Leverage C/C++ cycle-level µarch. simulators

 Cost and time efficient
  Ensure high fault modeling coverage

  Fault Injection Approach
  Analyze high-level (µarch-level) effects of faults in each pipeline

stage
  Randomly inject µarch-level faults in simulator
  Example: fetch stage (IF)

(a)

(b)

15

Fetch stage fault analysis
for fault detection

RFT: Simulation Approach
16

17

RFT: Results – Fault Locations

Fetch – 9%
Decode – 39%
Rename – 24%
Dispatch – 7%
Backend – 21%

18

RFT: Results – Fault Outcomes

Faults detected by
the regimen – 60%

Faults detected by
watchdog – 9%

Faults undetected
– 31%

RFT: Results (Cont.)
19

59.8% 8% 24.6% 6.3%
1.3%

6.2% 0.1% 17.4% 7.2% 0.4% 7.6% 35.8% 24%

Non-masked faults = 40.2%

Non-masked faults detected by regimen = 24% (60% reduction in vulnerability)

Non-masked faults detected by watchdog = 9% (23% reduction in vulnerability)

Non-masked faults detected by regimen + watchdog = 33% (~83% of non-masked
 faults get detected)

20

Summary

 RFT presented a regimen of µarch-level fault
checks to protect a superscalar processor

 Injected a broad spectrum of fault types across all
pipeline stages

 Regimen-based approach provides substantial fault
protection (detects ~83% of non-masked faults)

21

THANK YOU!

