
P R E S E N T E D B Y
N A N Z H E N G

A Fault Tolerant Superscalar
Processor

[Based on “Coverage of a Microarchitecture-level Fault Check Regimen
in a Superscalar Processor” by V. Reddy and E. Rotenberg (2008)]

1

[Part of slides borrowed from V. Reddy’s slides in DSN2008]

Outline

 Introduction
 FT in processors: why
 Superscalar processors: what and why
 Conventional processor FT, related drawbacks

 Hardware & info & time redundancy
 The need for a regimen-based FT

2

Outline (Cont.)

 Regimen-based FT (RFT) by Reddy and Rotenberg
(2008)
 FT regimen

 Inherent Time Redundancy (ITR)
 Register Name Authentication (RNA)
 Timestamp-based Assertion Check (TAC)
 Sequential PC Checks (SPC)
 Register Consumer Counter (CC)
 BFT Verify (BTBV)

 Simulation Approach & Result

 Summary

3

Introduction
4

 Why Fault Tolerance (FT) in processors:
 Critical charge decreases with processor die area

(quadratically), i.e, making easier to flip a bit.
 Cosmic rays in atmosphere being a source

 Superscalar processors: what and why
 What?

 Processors that exploit ILP by fetching & executing multiple
instructions per cycle from a sequential instruction stream.

 Why?
 Almost all modern processors are superscalar

Introduction (Cont.)
5

Introduction (Cont.)
6

  Conventional FT schemes in processors
 Basic idea: some form of redundancy
 Hardware redundancy

  Additional FU especially for redundancy execution
  Drawbacks: silicon area overhead, not for commercial processors

 Information redundancy
  Error-correcting code (ECC) in memory
  Control flow based signals
  Checksums for algorithm-based FT

 Time redundancy
  Instruction re-execution
  Retrasmission of data…

 Note:
  Additional overheads in silicon area, pipeline stalls …
  Only focused on FUs, errors can also occur in DU, DS and RF
  Need a systematic suite of fault checks to achieve maximum coverage over all

pipeline stages, and minimum overhead at the same time

Regimen-based FT
7

 Overview on FT regimen:
  Inherent Time Redundancy (ITR)
 Register Name Authentication (RNA)
 Timestamp-based Assertion Check (TAC)
 Sequential PC Check (SPC)
 Register Consumer Counter (CC)
 Confident Branch Misprediction (ConfBr)
 BTB Verify (BTBV)

 Individuals explained next…

8

Inherent Time Redundancy (ITR)

==

==

==

==

==

==

==

==

program program duplicate program

Conventional time redundancy Inherent time redundancy

9

Inherent Time Redundancy (ITR)

•  A decode signature is maintained per instruction
– Signature is updated at last use of a decode signal

•  At retirement, instruction signatures are combined
into trace signatures
– A trace ends at branch or 16 instructions

•  Trace signatures are stored in a ITR cache
•  Each new trace signature is checked with the copy

in ITR cache
– Cache miss does not directly cause fault coverage loss
– Later hit to a previously missed signature detects faults in

either the current or previous signature

RNA & TAC
10

 Register Name Authentication (RNA)
 Detects faults in destination register mappings of

instructions
 Checks consistencies in rename unit

 Timestamp-based Assertion Check (TAC)
 Detect faults in the issue unit

 Checks if there’s sequential order among data dependent instructions

  Implementation:
 Check: Instr’s Timestamp >= Prod. Timestamps

11

Sequential PC Check (SPC)

 Detects faults affecting sequential control flow
 Asserts that a committing instr.’s PC matches

the retirement PC
 Implementation

 Maintain retirement program counter (PC)
 For non-branch instr., increment retirement PC by instr.

size
 For branch instr., update retirement PC with calculated

PC
 Check: committing instr. PC match retirement PC

12

CC & ConfBr

 Register Consumer Counter (CC)
 Detects faults in source register mappings after register

renaming
  Implementation:

 One counter per physical register
  Increment counter of source register at rename stage
 Assert counter of source register > 0 at register read stage
 Decrement counter of source register after register read

 Confident Branches Misprediction (ConfBr)
 Detects faults affecting values that influence branch outcomes
  Implementation

 Identify highly-predictable branches using ‘confidence’ counters
 Misprediction of a confident branch may be symptomatic of a

fault

13

BTB Verify (BTBV)

 Detects faults in BTB and decode logic
 Exploits inherent redundancy between the BTB

and the decode stage
 BTB hit produces decode info about branches one cycle

earlier than decode stage
 BTB info should match decode info
 Mismatch indicates fault in BTB logic (false hit, BTB

fault, etc.) or decode stage
 BTB aliasing mismatches are handled in the same

manner (flush the instruction and instructions after it,
don’t trust the decoder)

14

RFT: Simulation Approach

  Evaluation Using Fault Injection, goals:
  Measure processor fault coverage of a µarch-level fault-check

regimen
  Leverage C/C++ cycle-level µarch. simulators

 Cost and time efficient
  Ensure high fault modeling coverage

  Fault Injection Approach
  Analyze high-level (µarch-level) effects of faults in each pipeline

stage
  Randomly inject µarch-level faults in simulator
  Example: fetch stage (IF)

(a)

(b)

15

Fetch stage fault analysis
for fault detection

RFT: Simulation Approach
16

17

RFT: Results – Fault Locations

Fetch – 9%
Decode – 39%
Rename – 24%
Dispatch – 7%
Backend – 21%

18

RFT: Results – Fault Outcomes

Faults detected by
the regimen – 60%

Faults detected by
watchdog – 9%

Faults undetected
– 31%

RFT: Results (Cont.)
19

59.8% 8% 24.6% 6.3%
1.3%

6.2% 0.1% 17.4% 7.2% 0.4% 7.6% 35.8% 24%

Non-masked faults = 40.2%

Non-masked faults detected by regimen = 24% (60% reduction in vulnerability)

Non-masked faults detected by watchdog = 9% (23% reduction in vulnerability)

Non-masked faults detected by regimen + watchdog = 33% (~83% of non-masked
 faults get detected)

20

Summary

 RFT presented a regimen of µarch-level fault
checks to protect a superscalar processor

 Injected a broad spectrum of fault types across all
pipeline stages

 Regimen-based approach provides substantial fault
protection (detects ~83% of non-masked faults)

21

THANK YOU!

