A Fault Tolerant Superscalar
Processor

0,

Outline

O,

Regimen-based FT (RFT) by Reddy and Rotenberg
(2008)

Inherent Time Redundancy (ITR)
Register Name Authentication (RNA)
Timestamp-based Assertion Check (TAC)
Sequential PC Checks (SPC)

Register Consumer Counter (CC)
BFT Verify (BTBV)

Summary

Why Fault Tolerance (FT) in processors:

Critical charge decreases with processor die area
(quadratically), i.e, making easier to flip a bit.

Cosmic rays in atmosphere being a source

Superscalar processors: what and why

What?

Processors that exploit ILP by fetching & executing multiple
instructions per cycle from a sequential instruction stream.

Why?
Almost all modern processors are superscalar

Introduction (Cont.)

mp Rl e]
I-Cache
Unit Unit
Decoded Instructions

i
Write| | Read Store | | Load
RF D-Cache
Operands for Execution
FU 1 FU 2 FU 3 FU 4
| J1 J 1 J 1
Results of Execution

Figure 1: Block Diagram of a Dynamically Scheduled
Superscalar Processor

Conventional FT schemes in processors
redundancy

Additional FU especially for redundancy execution
Drawbacks: silicon area overhead, not for commercial processors

Error-correcting code (ECC) in memory
Control flow based signals
Checksums for algorithm-based FT

Instruction re-execution
Retrasmission of data...

Additional overheads in silicon area, pipeline stalls ...
Only focused on FUs, errors can also occur in DU, DS and RF

Need a systematic suite of fault checks to achieve maximum coverage over all
pipeline stages, and minimum overhead at the same time

Regimen-based FT

9,

program program duplicate program

~ S

~ ’

- ~
-~ SS

., ’

~ S

~ ’

- ~
-~ SS

., ’

~ S

~ ’

- ~
-~ SS

., ’

Conventional time redundancy Inherent time redundancy

A decode signature is maintained per instruction
— Signature is updated at last use of a decode signal

At retirement, instruction signatures are combined
into trace signatures

— A trace ends at branch or 16 instructions
Trace signatures are stored in a ITR cache

Each new trace signature is checked with the copy
in ITR cache
— Cache miss does not directly cause fault coverage loss

— Later hit to a previously missed signature detects faults in
either the current or previous signature

Register Name Authentication (RNA)

Detects faults in destination register mappings of
instructions

Checks consistencies in rename unit

Timestamp-based Assertion Check (TAC)

Detect faults in the issue unit
Checks if there’s sequential order among data dependent instructions

Implementation:
Check: Instr’s Timestamp >= Prod. Timestamps

» Detects faults affecting sequential control flow

» Asserts that a committing instr.’s PC matches
the retirement PC

» Implementation
Maintain retirement program counter (PC)
For non-branch instr., increment retirement PC by instr.
size
For branch instr., update retirement PC with calculated
PC

Check: committing instr. PC match retirement PC

Register Consumer Counter (CC)

Detects faults in source register mappings after register
renaming

Implementation:
One counter per physical register
Increment counter of source register at rename stage
Assert counter of source register > 0 at register read stage
Decrement counter of source register after register read

Confident Branches Misprediction (ConfBr)
Detects faults affecting values that influence branch outcomes
Implementation

Identify highly-predictable branches using ‘confidence’ counters

Misprediction of a confident branch may be symptomatic of a
fault

BTB Verify (BTBV)

» Detects faults in BTB and decode logic

» Exploits inherent redundancy between the BTB
and the decode stage

BTB hit produces decode info about branches one cycle
earlier than decode stage

BTB info should match decode info

Mismatch indicates fault in BTB logic (false hit, BTB
fault, etc.) or decode stage

BTB aliasing mismatches are handled in the same

manner (flush the instruction and instructions after it,
don’t trust the decoder)

RFT: Simulation Approach

» Evaluation Using Fault Injection, goals:
Measure processor fault coverage of a parch-level fault-check
regimen
Leverage C/C++ cycle-level parch. simulators
Cost and time efficient
Ensure high fault modeling coverage
» Fault Injection Approach

Analyze high-level (uarch-level) effects of faults in each pipeline
stage

Randomly inject parch-level faults in simulator
Example: fetch stage (IF)

IF ID REN | DISP IS RR EX WB RE (a)

IF ID REN | DISP IS RR | AGEN M WB RE (b)

—-——-FetchQ ====-

-——-Fetch! ===—-

—-——-Fetch2 == —--

——--Decode ===---

ot

v

v

Instruction Cache

Unit

brpos

Next PC
Prediction

pred next
PC flush PC (from

override
PC

!

!

Branch Decode

YV VY v
?insﬂ [vi|inst2[v2] | BTBInfo |
%

execute stage)
} A

&
BTB Verification
—
l l flush
/—)ﬁ—%

‘ inst1 ‘v1 ‘ inst2 ‘v2‘

FetchQ Allocator

I.
tail

1
tail +1

\ 4 V‘*‘* A

Fetch Qu?ue

A J

T
head

L |

e+ \i

FetchQ Deallocator

Decoder0

Decoder1

\J

\J

ﬁsﬂ decode| inst2 decode

= stall1 — fetch queue full

Fetch stage fault analysis
for fault detection

___ /@

RFT: Simulation Approach

Table 1. Table of faults for all pipeline stages.

Pipe Stage Fault Description
Fetch FETCH_PC Flip a random bit in the program counter
Fetch WRONG_INSTR Remove an arbitrary number of fetched instructions
Felch NEXT PC Flip a random bit in the override PC from the branch pre-decode/BTB verification stage
Fetch INSTR_DISAPP Mask a randomly selected instruction from fetched instructions
Fetch FETCHQ Flip a randomly selected bit in the tail/head pointer of the felch queue
Decode |OPCODE Flip a random bit in an instruction's opcode
Decode |FLAGS Flip a random bit in an instruction's decode flags
Decode SHAMT Flip a random bit in an instruction's logical/arithmetic shift quantity
Decode [SRC_LOG_REG Flip a random bit in an instruction's logical source register specifier
Decode |SRCA_LOG_REG Flip a random bit in an instruction's logical address source register specifier
Decode RDST _LOG _REG Flip a random bit in an instruction's logical destination register specifier
Decode |LAT Flip a random bit in an instruction's latency
Decode IMM Flip a random bit in an instruction's signed immediate value field
Decode UIMM Flip a random bit in an instruction's unsigned immediate value field
Decode |TARG Flip a random bit in an instruction's branch target address
Decode |NUM_RSRC Flip a random bit in an instruction's source eperand count
Decode |[NUM_RSRHCA Flip a random bit in an instruction's source cperand count, address operand
Decode NUM RDST Flip a random bit in an instruction's destination gperand count
Decode IS DECISION Flip the bit which indicates whether an instruction is a control-flow decision instruction
| __Decode |LEFT Flip the bit indicating left shift of data (LWL/'SWLinstructions)
Decode |RIGHT Flip the bit indicating right shift of data LWR/SWA instructions)
Decode SIZE Flip a random bit indicating the size of data (load/store instructions)
Rename |REN _MAP_TABLE Flip a random bit of a random mapping in the rename map table
Rename |ARCH _MAP_TABLE Flip a random bit of a random mapping in the architecture map table
Rename |SHADOW MAP _TABLE Flip a random bit of a random mapping in a shadow map table
Rename |FREE_LIST Flip a random bit of an entry in the physical reqister free list
Rename |FREE_LIST TAIL Flip a random bit of the physical register free list's tail pointer
Rename CHKPT Randomly pick a shadow map fable and {lip its availability (used-->iree)
Rename |BEN MAP_DEST INDEX Flip a random bit in the index used to write a new mapping to the rename map table
Danamn DOCA AMAD SOr INnEY Elinn a randnrm hil in tho inday nicod In raad o enirrn mannina frnm ths ronamo man tahils

Fetch — 9%

Decode — 39%

Rename — 24%

Dispatch — 7%

Backend — 21%

Faults detected by
the regimen — 60%

Faults detected by

watchdog — 9%

Faults undetected

- 31%

P

Non-masked faults = 40.2%

6.3% | CFD 24.6%| SDC 89% D(v‘f/%aO'Og; 50.8%| Mask

T AN s > N\ = - ¥ Y w0\ & a
ACFD UCFD ||| ASDC UsSDC ||| USDCWDOG ||| AWDOG || UWDOG || | AMask | | UMask
6.2% 0.1% \ 17.4% 7.2% 0.4%) _7.6%) 35.8% 24%

Non-masked faults detected by regimen = 24% (60% reduction in vulnerability)

Non-masked faults detected by watchdog = 9% (23% reduction in vulnerability)

Non-masked faults detected by regimen + watchdog = 33% (~83% of non-masked
faults get detected)

RFT presented a regimen of parch-level fault
checks to protect a superscalar processor

Injected a broad spectrum of fault types across all
pipeline stages

Regimen-based approach provides substantial fault
protection (detects ~83% of non-masked faults)

