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A Fault Tolerant Superscalar 
Processor 

[Based on “Coverage of a Microarchitecture-level Fault Check Regimen 
in a Superscalar Processor” by V. Reddy and E. Rotenberg (2008)] 
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[Part of slides borrowed from V. Reddy’s slides in DSN2008] 



Outline 

 Introduction 
 FT in processors: why 
 Superscalar processors: what and why 
 Conventional processor FT, related drawbacks 

 Hardware & info & time redundancy 
 The need for a regimen-based FT  
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Outline (Cont.) 

 Regimen-based FT (RFT) by Reddy and Rotenberg 
(2008) 
 FT regimen 

 Inherent Time Redundancy (ITR) 
 Register Name Authentication (RNA) 
 Timestamp-based Assertion Check (TAC) 
 Sequential PC Checks (SPC) 
 Register Consumer Counter (CC) 
 BFT Verify (BTBV) 

 Simulation Approach & Result 

 Summary  
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Introduction 
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 Why Fault Tolerance (FT) in processors: 
 Critical charge decreases with processor die area 

(quadratically), i.e, making easier to flip a bit. 
 Cosmic rays in atmosphere being a source 

 Superscalar processors: what and why 
 What? 

 Processors that exploit ILP by fetching & executing multiple 
instructions per cycle from a sequential instruction stream. 

 Why? 
 Almost all modern processors are superscalar  



Introduction (Cont.) 
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Introduction (Cont.) 
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  Conventional FT schemes in processors 
 Basic idea: some form of redundancy 
 Hardware redundancy 

  Additional FU especially for redundancy execution 
  Drawbacks: silicon area overhead, not for commercial processors 

 Information redundancy 
  Error-correcting code (ECC) in memory 
  Control flow based signals 
  Checksums for algorithm-based FT   

 Time redundancy 
  Instruction re-execution 
  Retrasmission of data… 

 Note: 
  Additional overheads in silicon area, pipeline stalls … 
  Only focused on FUs, errors can also occur in DU, DS and RF 
  Need a systematic suite of fault checks to achieve maximum coverage over all 

pipeline stages, and minimum overhead at the same time  



Regimen-based FT 
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 Overview on FT regimen: 
  Inherent Time Redundancy (ITR) 
 Register Name Authentication (RNA) 
 Timestamp-based Assertion Check (TAC) 
 Sequential PC Check (SPC) 
 Register Consumer Counter (CC) 
 Confident Branch Misprediction (ConfBr) 
 BTB Verify (BTBV) 

 Individuals explained next… 
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Inherent Time Redundancy (ITR) 
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Conventional time redundancy Inherent time redundancy 
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Inherent Time Redundancy (ITR) 

•  A decode signature is maintained per instruction 
– Signature is updated at last use of a decode signal 

•  At retirement, instruction signatures are combined 
into trace signatures 
– A trace ends at branch or 16 instructions 

•  Trace signatures are stored in a ITR cache 
•  Each new trace signature is checked with the copy 

in ITR cache 
– Cache miss does not directly cause fault coverage loss 
– Later hit to a previously missed signature detects faults in 

either the current or previous signature 



RNA & TAC 
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 Register Name Authentication (RNA) 
 Detects faults in destination register mappings of 

instructions 
 Checks consistencies in rename unit 

 Timestamp-based Assertion Check (TAC) 
 Detect faults in the issue unit 

 Checks if there’s sequential order among data dependent instructions 

  Implementation: 
 Check: Instr’s Timestamp >= Prod. Timestamps 
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Sequential PC Check (SPC) 

 Detects faults affecting sequential control flow 
 Asserts that a committing instr.’s PC matches 

the retirement PC 
 Implementation 

 Maintain retirement program counter (PC) 
 For non-branch instr., increment retirement PC by instr. 

size 
 For branch instr., update retirement PC with calculated 

PC 
 Check: committing instr. PC match retirement PC 
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CC & ConfBr 

 Register Consumer Counter (CC) 
 Detects faults in source register mappings after register 

renaming 
  Implementation: 

 One counter per physical register   
  Increment counter of source register at rename stage 
 Assert counter of source register > 0 at register read stage 
 Decrement counter of source register after register read 

 Confident Branches Misprediction (ConfBr) 
 Detects faults affecting values that influence branch outcomes 
  Implementation 

 Identify highly-predictable branches using ‘confidence’ counters 
 Misprediction of a confident branch may be symptomatic of a 

fault 
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BTB Verify (BTBV) 

 Detects faults in BTB and decode logic 
 Exploits inherent redundancy between the BTB 

and the decode stage 
 BTB hit produces decode info about branches one cycle 

earlier than decode stage 
 BTB info should match decode info 
 Mismatch indicates fault in BTB logic (false hit, BTB 

fault, etc.) or decode stage 
 BTB aliasing mismatches are handled in the same 

manner (flush the instruction and instructions after it, 
don’t trust the decoder) 
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RFT: Simulation Approach 

  Evaluation Using Fault Injection, goals: 
  Measure processor fault coverage of a µarch-level fault-check 

regimen 
  Leverage C/C++ cycle-level µarch. simulators 

 Cost and time efficient 
  Ensure high fault modeling coverage 

  Fault Injection Approach 
  Analyze high-level (µarch-level) effects of faults in each pipeline 

stage 
  Randomly inject µarch-level faults in simulator 
  Example: fetch stage (IF) 

(a) 

(b) 
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Fetch stage fault analysis 
for fault detection 



RFT: Simulation Approach 
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RFT: Results – Fault Locations 

Fetch – 9% 
Decode – 39% 
Rename – 24% 
Dispatch – 7% 
Backend – 21% 
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RFT: Results – Fault Outcomes 

Faults detected by 
the regimen – 60% 

Faults detected by 
watchdog – 9% 

Faults undetected 
– 31% 



RFT: Results (Cont.) 
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59.8% 8% 24.6% 6.3% 
1.3% 

6.2% 0.1% 17.4% 7.2% 0.4% 7.6% 35.8% 24% 

Non-masked faults = 40.2% 

Non-masked faults detected by regimen = 24% (60% reduction in vulnerability) 

Non-masked faults detected by watchdog = 9% (23% reduction in vulnerability) 

Non-masked faults detected by regimen + watchdog = 33% (~83% of non-masked 
       faults get detected) 
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Summary 

 RFT presented a regimen of µarch-level fault 
checks to protect a superscalar processor 

 Injected a broad spectrum of fault types across all 
pipeline stages 

 Regimen-based approach provides substantial fault 
protection (detects ~83% of non-masked faults) 
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THANK YOU! 


