Hardware Architecture of the Cell **Broadband Engine Processor** Presented by Wei Wei, 04/20/2009

The *Cell Broadband Enginee* (Cell/B.E.) processor is the first implementation of a new multiprocessor family conforming to the *Cell Broadband Engine Architecture* (CBEA)

The CBEA and the Cell/B.E. processor are the result of a collaboration between Sony, Toshiba, and IBM known as STI, formally begun in early 2001

Although the Cell/B.E. processor is initially intended for applications in media-rich

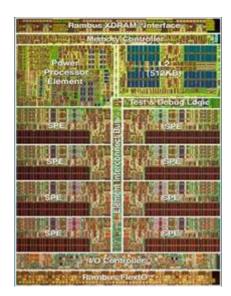
consumer-electronics devices such as game

consoles and high-definition televisions, the architecture

has been designed to enable fundamental advances in processor performance

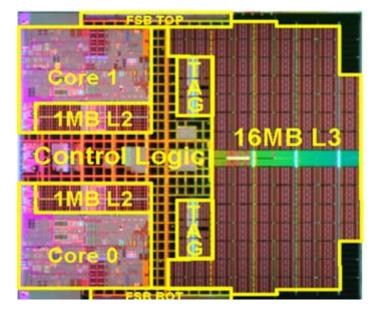
and supports a broad range of compute-intensive applications.

Cell/B.E. Basic Concepts


♦ Compatibility with IBM 64b Power Architecture[™]

- Builds on and leverages IBM investment and community
- ***** Increased efficiency and performance, especially on media-rich applications
 - Attacks on the "Power Wall"
 - Heterogeneous Multiprocessor
 - High design frequency @ a low operating voltage with advanced power management
 - Attacks on the "Memory Wall"
 - Streaming DMA architecture
 - 3-level Memory Model: System memory, Local Store, Register Files
 - Attacks on the "Frequency Wall"
 - Highly optimized implementation
 - Large shared register files and software controlled branching to allow deeper pipelines
- ***** Real time responsiveness to the user and the network
 - Challenges: Real-time and security in a multiprocessor environment
- ***** Applicable to a wide range of platforms
 - Multi-OS support, including RTOS / non-RTOS

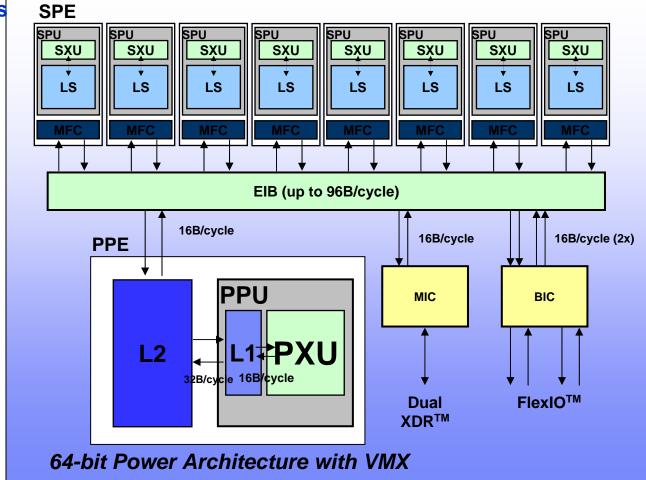
Comparison with traditional processors


Cell/B.E. vs traditional approaches

Cell/B.E. 175 mm², 3.2 GHz@60-80W 9 Cores, ~230 SP GFlops

Intel Tulsa (Xeon MP 7100 series) 424mm², 3.4 GHz@150W

2 Cores, ~54 SP GFlops


Please note, both processors use the 65nm process.

½ the space & power consumption & much higher performance

Overview of the CELL/B.E. processor

CELL/B.E. is a heterogeneous multiprocessor

- A Power Processor Element (PPE)
- 8 Synergistic Processor Elements (SPE)
- A high bandwidth Element Interconnect Bus (EIB)
- A Memory Interface Controller (MIC)
- A bus interface controller (BIC)

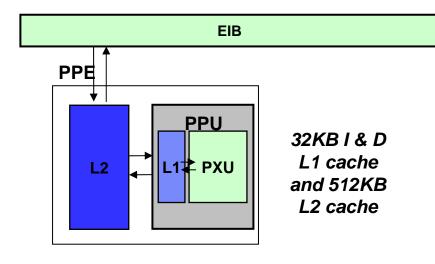
Why heterogeneous?

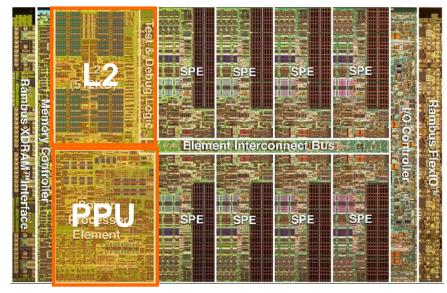
PPE: Control Plane

• The PPE is responsible for overall control of the chip, e.g., runing the operating system, managing system resources, and allocating tasks to the SPEs.

SPE: Data Plane

• The SPEs account for the computational power of the Cell/B.E. processor. They are designed to perform the compute-intensive, or "data plane," processing.

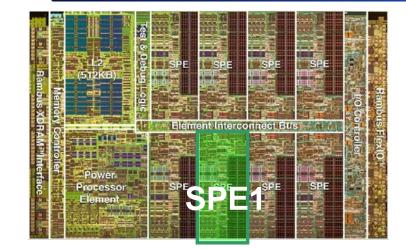

Decoupled data processing and control functions


 Architectures and implementations of the PPE and SPE can be optimized for their respective workloads and enables significant improvements in performance per transistor.

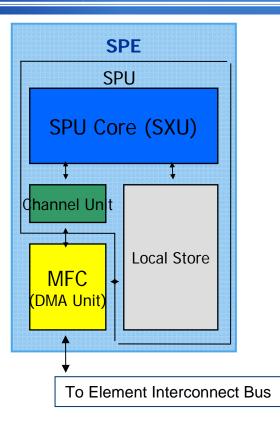
***** Benefits of Specialization

- Cell/B.E. can include nine cores in the same area as an industry-competitive generalpurpose processor.
- Is a significant factor in the substantial performance improvement achieved by CELL/B.E..

Power Processor Element



The PowerPC Processor Element (PPE) features:


- * A general-purpose 64-bit RISC processor, conforming to the PowerPC Architecture
 - Leverage IBM investment
- * In-order, 2-way hardware simultaneous multi-threading (SMT)
 - Less circuitry and lower energy consumption
- * With vector/SIMD multimedia extension (VMX)
 - Makes it easier to develop and port applications to the SPE
 - Allows applications to be parallelized across the PPE and SPEs

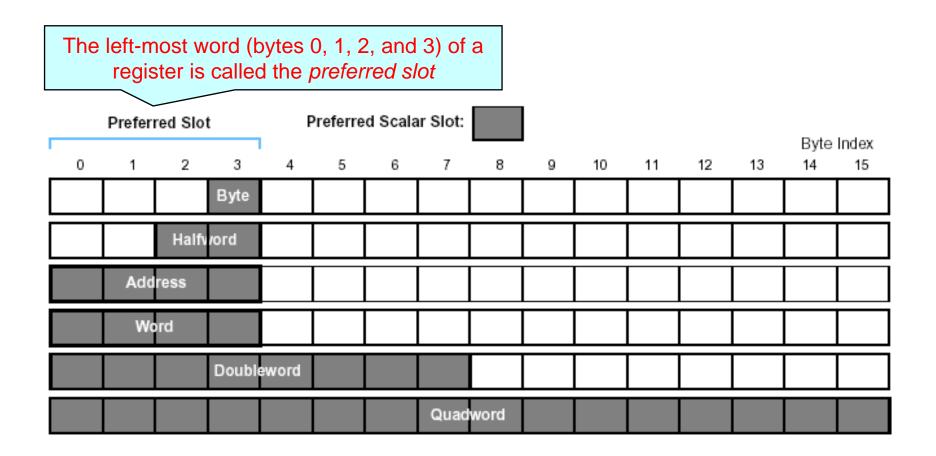
Synergistic Processor Elements

Each SPE:

- * Synergistic Processor Unit (SPU)
 - A dual-issue, in-order, SIMD processor
 - Contains a 128-entry, 128-bit register file
 - 256KB of private memory (local store)
 - A channel interface to the MFC
- * Memory Flow Controller (MFC)
 - Data movement to and from main memory, other SPEs' local stores, or I/O devices

SIMD Architecture in Cell/B.E.

- SIMD = "single-instruction multiple-data"
- SIMD exploits data-level parallelism
 - a single instruction can apply the same operation to multiple data elements in parallel
- SIMD units employ "vector registers"
 - each register holds multiple data elements, e.g., SPE's large 128*128 register file.
- **SIMD** is pervasive in Cell/B.E.
 - PPE integrates SIMD multimedia extension of PowerPC architecture
 - SPE is a native SIMD architecture
 - A SIMD instruction set, SIMD functional units, vector registers


SIMD in SPE

- All SPE instructions are inherently SIMD
- Processing 128-bit-wide data in one of four granules:
 - sixteen 8-bit integers
 - eight 16-bit integers
 - four 32-bit integers or SP FP numbers
 - two 64-bit DP FP numbers

Preferred Slot for Scalar Operations

When instructions use or produce scalar operands or addresses, the values are in the preferred scalar slot:

Local Store: CELL/B.E. Attacks the Memory Wall

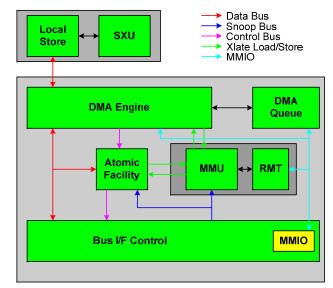
- Traditional processor architecture
 - Program touches memory, processor checks the caches.
 - If necessary, data is brought in from main memory and left in the caches, hopefully to be reused.
 - Limited ability for the programmer to hint what is needed and what is not.

✤ CELL/B.E. SPE

- 256-KB Local Store is a private memory, not a cache.
- SPE has load/store & instruction-fetch access only to its local store.
- No caching, tags, backing storage, etc. fixed access time (6 cycles).
- Access to main memory is entirely controlled by the programmer using DMA commands.
- DMA transfers happen asynchronously; overlap processor computation with data movement.

This 3-level organization of memory (register file, LS, main memory) is a radical break from conventional architecture and programming models

DMA capability

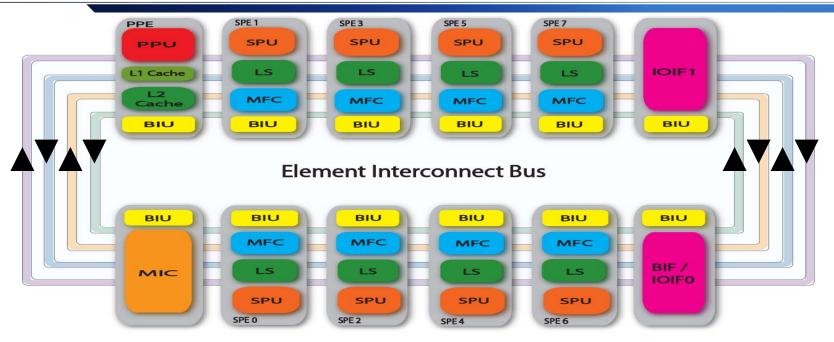

- The memory flow controller (MFC) delivers asynchronous DMA capability for data and instruction transfers between the local store and main memory.
 - DMA commands
- DMA transfers
 - DMA commands can be issued by either SPEs or PPE
 - Transfer sizes can be 1, 2, 4, 8, and n*16 bytes
 - Up to 16KB/command

***** DMA queues

- 16-element queue for DMA commands issued by the associated SPE
- 8-element queue for DMA commands issued by external elements

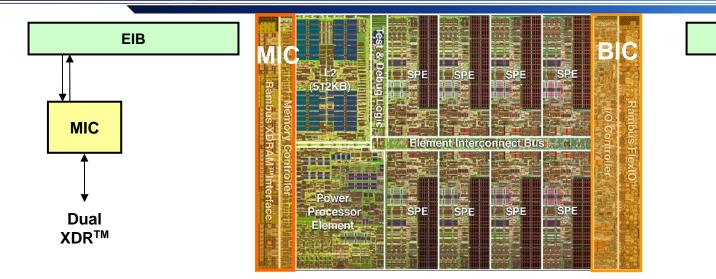
DMA lists

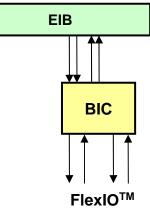
- A single DMA list command can convey a list of DMA commands.
- A list can contain up to 2K transfer requests
- Amortize DMA latency (475 cycles for get)
- Lists implement scatter-gather functions



- PPE is designed for general-purpose tasks
- ✤ SPE is optimized for compute-intensive applications

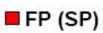
Feature	PPE	SPE	
Number of SIMD registers	32 (128-bit)	128 (128-bit)	
Organization of register file	separate fixed-point, FP, and vector multimedia registers	unified	
Load latency	variable (cache)	fixed	
Addressability	2 ⁶⁴ bytes	256 KB local store 2 ⁶⁴ bytes DMA	
Instruction set	more orthogonal	optimized for compute-intensive applications	
Single-precision	IEEE 754-1985	extended range 1.2E-38 to 6.8E38	
Double-precision	no doubleword SIMD	2-way SIMD DP FP	
Main memory access	load and store instructions moving data between main memory and private register file	DMA commands moving data and instructions between main memory and local store	




Element Interconnect Bus

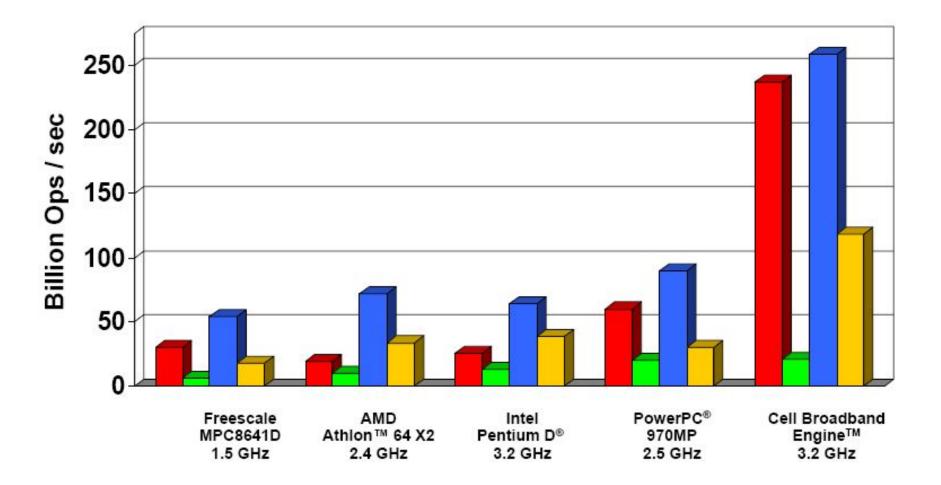
- Interconnects 12 elements
- Four 16-byte-wide unidirectional rings
- Each ring supports up to three simultaneous data transfers
- Transfers occur at half the frequency of the processor, i.e., 96 bytes/cycle theoretical peak bandwidth

Memory Interface Controller and Bus Interface Controller


- Connected to the external Rambus DRAM through two XIO channels
- Each channel can have eight memory banks
- 32 read and 32 write queues for each channel
- 25.6 GB/s @ 3.2 GHz peak memory bandwidth

- 7 transmit and 5 receive Rambus FlexIO links configured as 2 logical interfaces
- ✤ 1-byte-wide each link @ 5GHz
- 35 GB/s outbound and 25GB/s inbound peak raw bandwidth

High bandwidth contributes to CELL/B.E.'s performance.


Theoretical Peak Performance

E FP (DP)

Int (16 bit)

Int (32 bit)

Cell/B.E. Performance

Cell BE Performance Summary

Туре	Algorithm	3.2 GHz GPP	3.2 GHz Cell	Cell Perf Advantage
HPC	Matrix Multiplication (S.P.)	24 Gflops (w/SIMD)	200 GFlops* (8SPEs)	8x
	Linpack (S.P.)	16 GFlops (w/SIMD)	156 GFlops* (8SPEs)	9x
	Linpack (D.P.): 1kx1k matrix	7.2 GFlops (IA32/SSE3)	9.67 GFLops* (8SPEs)	1.3x
graphics	Transform-light	170 MVPS (G5/VMX)	256 MVPS** (per SPE)	12x
	TRE	1 fps (G5/VMX)	30 fps* (Cell)	30x
security	AES encryp. 128-bit key	1.03 Gbps	2.06Gbps** (per SPE)	16x
	AES decryp. 128-bit key	1.04 Gbps	1.5Gbps** (per SPE)	11x
	TDES	0.12 Gbps	0.16 Gbps** (per SPE)	10x
	DES	0.43 Gbps	0.49 Gbps** (per SPE)	9x
	SHA-1	0.85 Gbps	1.98 Gbps** (per SPE)	18x
video processing	mpeg2 decoder (CIF)		1267 fps* (per SPE)	
	mpeg2 decoder (SDTV)	354 fps (IA32)	365 fps** (per SPE)	8x
	mpeg2 decoder (HDTV)		73 fps* (per SPE)	
Notes: * Hardware measurement ** Simulation results				

Source: Cell Broadband Engine Architecture and its first implementation - A performance view, http://www.ibm.com/developerworks/library/pa-cellperf/

Why is Cell/B.E. So Fast?

* The SPE is a fast lean core optimized for compute-intensive processing

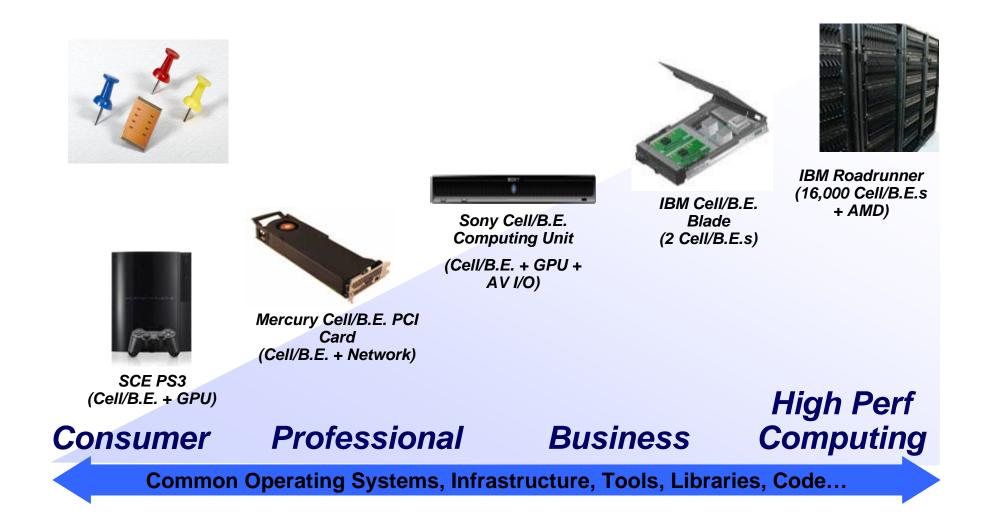
- Each SPE (3.2 GHz) is up to 3 times faster than the Pentium core (3.6 GHz) when computing FFTs
- That is 24X better performance chip to chip

Parallel processing inside chip

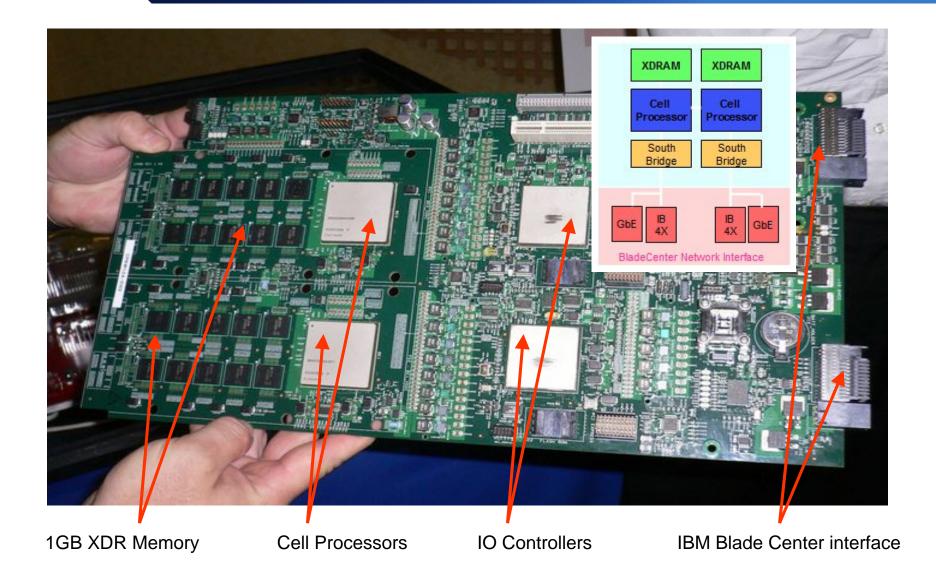
• 8 SPEs run concurrently

Specialization

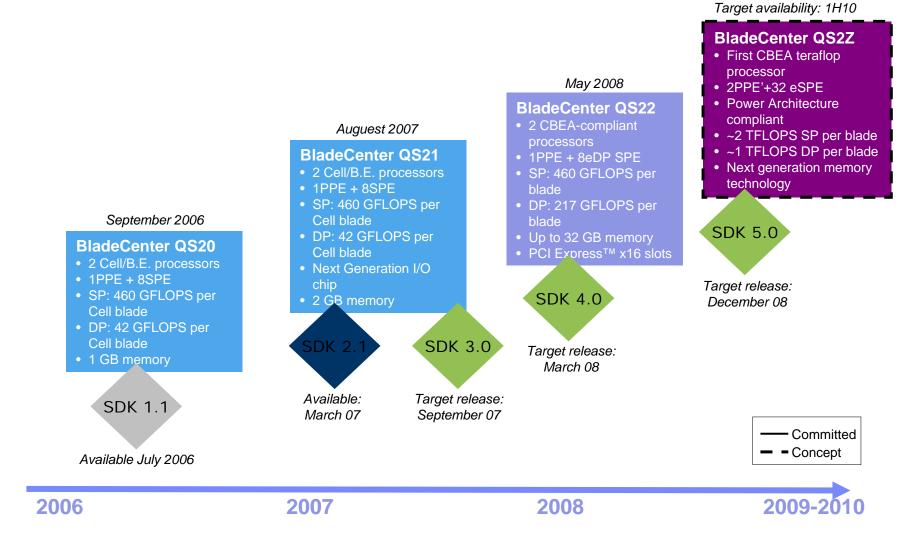
- PPE: Control Plane
- SPE: Data Plane

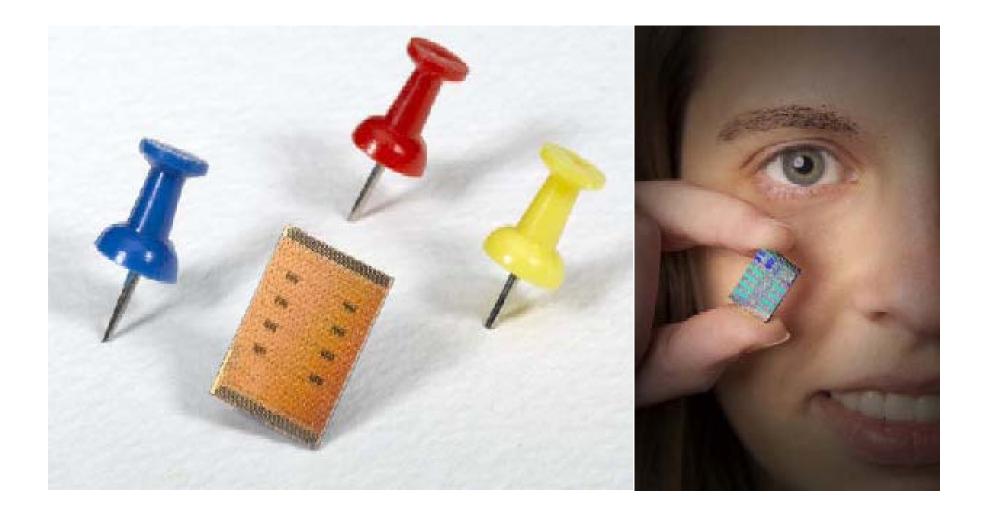

✤ High bandwidth

- 205 GB/s sustained ring bandwidth
- 25.6 GB/s main memory bandwidth
- 60 GB/s I/O bandwidth


* High performance DMA transfers

- DMA transfers can be fully overlapped with core computation
- Software controlled DMA transfers can bring the right data into local store at the right time


Cell/B.E. Products


The First Generation Cell/B.E. Blade (QS20)

IBM BladeCenter QS20 and beyond

