CSCI654 Advanced Computer Architecture

When Software meets
Hardware Faults

Hao Han

hhan@cs.wm.edu
7 April 2009

Some slides are aaapted from talks of "'SWAT JASPLOS08], "SymPIFIED" [DSN0OS)], “Trace-
based diagnosis TDSN08E], and ‘Likely program invariants JDSN0OE]

Outline

* Motivation
« Background

* Research points

— Program verification: SymPLFIED
— Error detection: SWAT

* Experimental methodology (see report)
* Limitations
» Conclusion

Motivation

Goal: highly reliable systems

Conventional illusion: fault-free hardware devices to
software

— Can not only focus on software bugs of programs

Hardware faults will happen in the field

— Traditional solutions: (1) Hardware redundancy (2) special
circuits to verify hardware

— T00 expensive: area, power, and so on

Today: Re-think about the reliability problem when
considering hardware faults, especially in the core

Background - Location of H/\W faults

Microarchitectural structure Faults

Instruction decoder Decoding instruction is corrupted
Integer ALU Output latch of one of the ALUs

FP ALU Output latch of one of the ALUs
Address or data bus Bus of register, cache, memory
Physical reg file Physical regs in the reg file

Reorder buffer (ROB) Src/dest req of instr in ROB entry
Address gen unit (AGEN) Virtual address generated by the unit
Register alias table (RAT) Logical -> phys map of a logical reg

Background - Hardware Faults

« Category of H/W faults:
(1) permanent (2) transient (3) intermittent

« Impact of H/W faults Fatal trap.

< certain M instruction s

"Symptom |

_ detected \ Hang|
rHigh contiguous OS activity \

< certainn M instruction s

i)) No symptom
No architecture yimp
detected

state corrupted ‘ \

' App or OS ‘ ame | Different

Fault 11}351{&1 - ash output _output |
by architecture : l

{Abnonnal app exit (Abort—app) \

Architecture
state corrupted

f Hardware |
Fault

Later aunptem Fault 111'1 sked Slient data
detected by application copyption
> certain M instruction s

Research Points

* Program verification under hardware faults
SymPLFIED [DSN'OS] (Best paper award)

* Error detection for hardware faults with low
cost

r SWAT [ASPLOS '08]

SWAT < Trace-Based Fault Diagnosis [DSN'08]

Likely Program Invariants [DSN'08]

. Accurate Fault Models [HPCA'09]

SymPLFIED [DSN'08]

Goal: A formal framework to evaluate the effects of hardware faults on
arbitrary programs independent of the detection mechanism

Machine Mode|
SymPLFIED (Memory, Registers,
Lomponents Instructions)

Error Model Detector Model
(Register errors, [Specification and
memaory errors, execution model for

control-flow errors) detectors

User

Assembly Language Program Detectors supplied

Qutput

User /System Proof that program is resistant to errors (OR)
supplied Enumeration of all possible errors that evade detection

Conceptual Design Flow of SymPLFIED

Techniques of SymPFLIED

* Model error propagation by representingl errors
In program as abstract symbol
<symbolic execution>
— Represents all kinds of faults
— Avoids explosion of exhaustive fault injection

* Automatically search possible values of symoblic
error that escape from detecion and cause SDC

<model checking>
— Bounded model checking using satisfiability solving

SWAT System

* Assumptions:
— Multicore system where a fault-free core is always available
— Checkpoint/rollback mechanism

 Goals:

— Provide low-cost software-level detection methods for permanent
hardware fault, and low-level diagnosis for recovery and possibly
repair/reconfiguration

« SWAT components
— Detection: Symptoms of software for detecting
— Diagnosis: ldentify the source of faulty unit

1. Detectors w/ simple symtoms [ASPLOS ’08]

2. Detectors w/ compiler support [DSN ’08]
Checkpoint 1 Checkpoint

Y
+%"e
‘v, % U *

& a a * 4

s % 0

PN .. 0

Fault Error Symptom —p Recovery
/ detected I
4. Accurate Fault Models [HPCA’09] Diagnosis ==p Repair

}

3. Trace-Based Fault Diagnosis [DSN ’08]
10

Simple Symptoms

* Observe anomalous symptoms for fault detection
— Incur low overheads for “always-on” detectors
— Minimal support from hardware, no software support
 Anomalous symptoms

— Fatal hardware traps
» For example, division by zero, RED State, etc.

— Abnormal application exit, indicated by OS

« For example, application terminates due to segmentation fault
— Hangs

* The whole system becomes unresponsive

» Detected by setting up counter

— High OS activity

» Monitoring the amount of time the execution remains in the OS,
without returning to the application

11

1. SWAT [ASPLOS ’08]

Checkpoint Checkpoint

o
%"
oy ‘s U L
¢ 0, : “ g .o .‘..0
" . o
‘ [4 L 3 1

Fault Error Symptom —p Recovery
/ detected I
4. Accurate Fault Models [HPCA’09] Diagnosis ==p Repair

}

3. Trace-Based Fault Diagnosis [DSN ’08]
12

Likely Program Invariant

[Application }

Trammg‘Phase/

[Compiler Pass in LLVM

~

Test,
Invariant [~ ~&= train,
Monitoring external

Code Application | inputs

@
ilp #1 i/p #n

\

(&

)
Y
Invariant Ranges f

MIN < value £ MAX

13

Likely Program Invariant

Application
Fault Detection Phase

[] —{ Compiler Pass in LLVM]

nvarlan T’ }.

Checking | Application

- Code =2 o
Inject

[Full System }/Fauus
Simulation
. u J Invariant
O Violation |
L ilp #r | SWAT Diagnosis |

4 N\
Fault False Positive
[] \Detection (Disable Invari@/

14

1. SWAT [ASPLOS ’08]

2. Detectors w/ compiler support [DSN ’08]
Checkpoint 1 Checkpoint

Y
+%"e
‘v, % U *

& a a * 4

s % 0

PN .. 0

Fault Error Symptom —p Recovery
/ detected I
4. Accurate Fault Models [HPCA’09] Diagnosis ==p Repair

|
3. Trace-Based Fault Diagnosis fosn 01

15

Diagnosis: first step

Faulty Good
SymptoT detected H B
{ Rollback on faulty core } C]
No symptom /\Symptom
Transient h/w bug or Permanent h/w bug or
non-deterministic s/w bug deterministic s/w bug or
| false positive
Continue l)
Execution Rollbackireplay | i B>
on good core
No symptam/\..}‘ymptom
Permanent False positive or
hiw fault, deterministic siw bug (send to s/w layer)

needs repairl
16

Diagnosis: second step

Goal: to efficiently diagnose the source
(microarchitecture-level unit) of a
permanent fault

Advantages: do not disable the entire
core, only repair or disable/reconfigure
the faulty parch-level unit

| Perparent |

Microarchitecture-Level
Granularity Diagnosis

|

Unit X is faulty

17

Trace-Based Fault Diagnosis (TBFD)

Permanent
fault detected

/nvoke TBFD

[

Rollback faulty-
core to checkpoint

]

Load checkpoint

4)

. on fault-free core |

\ 4

v

(Replay execution,
L collect parch info)

~\

Fault-free
instruction exec

\ 4

Faulty trace

<~

»(=?
T~ Mismatch!!

[Test trace]
¥

/

-

Diagnosis Algorithm:

1. Front-end
2. Meta-datapath
3. Datapath

e Faults in front-end is
related to Instruction
Decoder:

« Fault in meta-datapath
indicates faults in ROB
or RAT;

 Faults in datapath is
related to ALU, data
bus, and register file.

= |

18

Limitations

Do not consider the off-core faults, such as faults in
crossbar

Most work only considers single error for simplicity, but
in practice hardware faults can be multi-types and muilti-
sources

Pure software level detection has inherent shortcomings,
hybrid method (combining hardware and software) may
be a better choice

SWAT is passive scheme, need more aggressive
detection method

19

Conclusion

* Verifying program and detecting hardware
faults are vital for reliable system

* For SymPLFIED

v Verify programs automatically with symbolic execution
and model checking

e For SWAT

v High-level detection, low-level diagnosis
v’ Treats hardware faults as software bugs

v"Handles all faults that matter, and oblivious to masked
faults

20

