
When Software meets
Hardware Faults

Hao Han
hhan@cs.wm.edu

7 April 2009

CSCI654 Advanced Computer ArchitectureCSCI654 Advanced Computer ArchitectureCSCI654 Advanced Computer ArchitectureCSCI654 Advanced Computer Architecture

Some slides are adapted from talks of "SWAT"[ASPLOS'08], "SymPlFIED" [DSN'08], "Trace-
based diagnosis"[DSN'08], and "Likely program invariants"[DSN'08]

2

Outline
• Motivation
• Background
• Research points

– Program verification: SymPLFIED
– Error detection: SWAT

• Experimental methodology (see report)

• Limitations
• Conclusion

3

Motivation
• GoalGoalGoalGoal: highly reliable systems
• Conventional illusion: fault-free hardware devices to

software
⇒ Can not only focus on software bugs of programs

• Hardware faults will happen in the field
– Traditional solutions: (1) Hardware redundancy (2) special

circuits to verify hardware

⇒ Too expensive: area, power, and so on

Today: Re-think about the reliability problem when
considering hardware faults, especially in the core

4

Background - Location of H/W faults

Microarchitectural structureMicroarchitectural structureMicroarchitectural structureMicroarchitectural structure FaultsFaultsFaultsFaults

Instruction decoderInstruction decoderInstruction decoderInstruction decoder Decoding instruction is corrupted

Integer ALUInteger ALUInteger ALUInteger ALU Output latch of one of the ALUs

FP ALUFP ALUFP ALUFP ALU Output latch of one of the ALUs

Address or data busAddress or data busAddress or data busAddress or data bus Bus of register, cache, memory

Physical reg filePhysical reg filePhysical reg filePhysical reg file Physical regs in the reg file

Reorder buffer (ROB)Reorder buffer (ROB)Reorder buffer (ROB)Reorder buffer (ROB) Src/dest reg of instr in ROB entry

Address gen unit (AGEN)Address gen unit (AGEN)Address gen unit (AGEN)Address gen unit (AGEN) Virtual address generated by the unit

Register alias table (RAT)Register alias table (RAT)Register alias table (RAT)Register alias table (RAT) Logical -> phys map of a logical reg

5

Background - Hardware Faults
• Category of H/W faults:

(1) permanent (2) transient (3) intermittent
• Impact of H/W faults

6

Research Points

• Program verification under hardware faults
SymPLFIED [DSN'08] (Best paper award)

• Error detection for hardware faults with low
cost

SWAT [ASPLOS ’08]
SWAT Trace-Based Fault Diagnosis [DSN'08]

Likely Program Invariants [DSN'08]
Accurate Fault Models [HPCA'09]

7

SymPLFIED [DSN'08]
Goal:Goal:Goal:Goal: A formal framework to evaluate the effects of hardware faults on
arbitrary programs independent of the detection mechanism

Conceptual Design Flow of SymPLFIED

8

Techniques of SymPFLIED
• Model error propagation by representingl errors

in program as abstract symbol
<symbolic execution>
– Represents all kinds of faults
– Avoids explosion of exhaustive fault injection

• Automatically search possible values of symoblic
error that escape from detecion and cause SDC
<model checking>
– Bounded model checking using satisfiability solving

9

SWAT System
• Assumptions:

– Multicore system where a fault-free core is always available
– Checkpoint/rollback mechanism

• Goals:
– Provide low-cost software-level detection methods for permanent

hardware fault, and low-level diagnosis for recovery and possibly
repair/reconfiguration

• SWAT components
– Detection: Symptoms of software for detecting
– Diagnosis: Identify the source of faulty unit

10

FaultFaultFaultFault ErrorErrorErrorError SymptomSymptomSymptomSymptom
detecteddetecteddetecteddetected

RecoveryRecoveryRecoveryRecovery

DiagnosisDiagnosisDiagnosisDiagnosis RepairRepairRepairRepair

CheckpointCheckpointCheckpointCheckpoint CheckpointCheckpointCheckpointCheckpoint

1. Detectors w/ simple symtoms 1. Detectors w/ simple symtoms 1. Detectors w/ simple symtoms 1. Detectors w/ simple symtoms [ASPLOS [ASPLOS [ASPLOS [ASPLOS ’’’’08]08]08]08]

3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models [HPCA[HPCA[HPCA[HPCA’’’’09]09]09]09]

2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

11

Simple Symptoms
• Observe anomalous symptoms for fault detection

– Incur low overheads for “always-on” detectors
– Minimal support from hardware, no software support

• Anomalous symptoms
– Fatal hardware trapsFatal hardware trapsFatal hardware trapsFatal hardware traps

• For example, division by zero, RED State, etc.
– Abnormal application exitAbnormal application exitAbnormal application exitAbnormal application exit, indicated by OS

• For example, application terminates due to segmentation fault
– HangsHangsHangsHangs

• The whole system becomes unresponsive
• Detected by setting up counter

– High OS activityHigh OS activityHigh OS activityHigh OS activity
• Monitoring the amount of time the execution remains in the OS,

without returning to the application

12

FaultFaultFaultFault ErrorErrorErrorError SymptomSymptomSymptomSymptom
detecteddetecteddetecteddetected

RecoveryRecoveryRecoveryRecovery

DiagnosisDiagnosisDiagnosisDiagnosis RepairRepairRepairRepair

CheckpointCheckpointCheckpointCheckpoint CheckpointCheckpointCheckpointCheckpoint

1. SWAT 1. SWAT 1. SWAT 1. SWAT [ASPLOS [ASPLOS [ASPLOS [ASPLOS ’’’’08]08]08]08]

3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models [HPCA[HPCA[HPCA[HPCA’’’’09]09]09]09]

2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

13

Likely Program Invariant

Training PhaseTraining PhaseTraining PhaseTraining Phase
ApplicationApplicationApplicationApplication

Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM

-
ApplicationApplicationApplicationApplication

-

Range Range Range Range
i/p #1i/p #1i/p #1i/p #1 Range Range Range Range

i/p #ni/p #ni/p #ni/p #n

Invariant RangesInvariant RangesInvariant RangesInvariant Ranges

Invariant Invariant Invariant Invariant
Monitoring Monitoring Monitoring Monitoring

Code Code Code Code

Test,Test,Test,Test,
train, train, train, train,

external external external external
inputsinputsinputsinputs

MIN ≤ value ≤ MAX

14

Likely Program Invariant

Training PhaseTraining PhaseTraining PhaseTraining Phase
ApplicationApplicationApplicationApplication

Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM

-
ApplicationApplicationApplicationApplication

-

Ranges Ranges Ranges Ranges
i/p #1i/p #1i/p #1i/p #1 RangeRangeRangeRange

s i/p #ns i/p #ns i/p #ns i/p #n

Invariant RangesInvariant RangesInvariant RangesInvariant Ranges

Invariant Invariant Invariant Invariant
Monitoring Monitoring Monitoring Monitoring

Code Code Code Code

Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM Compiler Pass in LLVM

-
ApplicationApplicationApplicationApplication

-

Invariant Invariant Invariant Invariant
Checking Checking Checking Checking

Code Code Code Code

Full System Full System Full System Full System
SimulationSimulationSimulationSimulation

Inject Inject Inject Inject
FaultsFaultsFaultsFaults

SWAT Diagnosis SWAT Diagnosis SWAT Diagnosis SWAT Diagnosis

InvariantInvariantInvariantInvariant
ViolationViolationViolationViolation

False PositiveFalse PositiveFalse PositiveFalse Positive
(Disable Invariant)(Disable Invariant)(Disable Invariant)(Disable Invariant)

Fault Fault Fault Fault
DetectionDetectionDetectionDetection

Fault Detection PhaseFault Detection PhaseFault Detection PhaseFault Detection Phase

Test,Test,Test,Test,
train, train, train, train,

external external external external
inputsinputsinputsinputs

RefRefRefRef
inputinputinputinput

15

FaultFaultFaultFault ErrorErrorErrorError SymptomSymptomSymptomSymptom
detecteddetecteddetecteddetected

RecoveryRecoveryRecoveryRecovery

DiagnosisDiagnosisDiagnosisDiagnosis RepairRepairRepairRepair

CheckpointCheckpointCheckpointCheckpoint CheckpointCheckpointCheckpointCheckpoint

1. SWAT 1. SWAT 1. SWAT 1. SWAT [ASPLOS [ASPLOS [ASPLOS [ASPLOS ’’’’08]08]08]08]

3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis 3. Trace-Based Fault Diagnosis [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models 4. Accurate Fault Models [HPCA[HPCA[HPCA[HPCA’’’’09]09]09]09]

2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support 2. Detectors w/ compiler support [DSN [DSN [DSN [DSN ’’’’08]08]08]08]

16

Diagnosis: first step

16

No symptomNo symptomNo symptomNo symptom SymptomSymptomSymptomSymptom
Permanent h/w bug orPermanent h/w bug orPermanent h/w bug orPermanent h/w bug or

deterministic s/w bug ordeterministic s/w bug ordeterministic s/w bug ordeterministic s/w bug or
false positivefalse positivefalse positivefalse positive

SymptomSymptomSymptomSymptom detected detected detected detected

Faulty GoodFaulty GoodFaulty GoodFaulty Good

Rollback on Rollback on Rollback on Rollback on faultyfaultyfaultyfaulty core core core core

Rollback/replay Rollback/replay Rollback/replay Rollback/replay
on on on on goodgoodgoodgood core core core core

Continue Continue Continue Continue
ExecutionExecutionExecutionExecution

Transient h/w bugTransient h/w bugTransient h/w bugTransient h/w bug or or or or
non-deterministic s/w bugnon-deterministic s/w bugnon-deterministic s/w bugnon-deterministic s/w bug

SymptomSymptomSymptomSymptom
PermanentPermanentPermanentPermanent
h/w fault, h/w fault, h/w fault, h/w fault,

needs repair!needs repair!needs repair!needs repair!

No symptomNo symptomNo symptomNo symptom
False positive False positive False positive False positive orororor
deterministic s/w bug deterministic s/w bug deterministic s/w bug deterministic s/w bug (send to s/w layer)(send to s/w layer)(send to s/w layer)(send to s/w layer)

17

Diagnosis: second step

Permanent Permanent Permanent Permanent
faultfaultfaultfault

Microarchitecture-LevelMicroarchitecture-LevelMicroarchitecture-LevelMicroarchitecture-Level
Granularity DiagnosisGranularity DiagnosisGranularity DiagnosisGranularity Diagnosis

Unit X is faultyUnit X is faultyUnit X is faultyUnit X is faulty

SymptomSymptomSymptomSymptom
detecteddetecteddetecteddetected

DiagnosisDiagnosisDiagnosisDiagnosis

SoftwareSoftwareSoftwareSoftware
bugbugbugbug

TransientTransientTransientTransient
faultfaultfaultfault

Goal:Goal:Goal:Goal: to efficiently diagnose the source
(microarchitecture-level unit) of a
permanent fault

Advantages:Advantages:Advantages:Advantages: do not disable the entire
core, only repair or disable/reconfigure
the faulty µarch-level unit

18

Trace-Based Fault Diagnosis (TBFD)
Permanent Permanent Permanent Permanent

fault detectedfault detectedfault detectedfault detected

Rollback faulty-Rollback faulty-Rollback faulty-Rollback faulty-
core to checkpointcore to checkpointcore to checkpointcore to checkpoint

Load checkpoint Load checkpoint Load checkpoint Load checkpoint
on fault-free coreon fault-free coreon fault-free coreon fault-free core

Replay execution,Replay execution,Replay execution,Replay execution,
collect collect collect collect µµµµarch infoarch infoarch infoarch info

Fault-free Fault-free Fault-free Fault-free
instruction execinstruction execinstruction execinstruction exec

Faulty traceFaulty traceFaulty traceFaulty trace

Test traceTest traceTest traceTest trace

=?=?=?=?

Invoke TBFDInvoke TBFDInvoke TBFDInvoke TBFD

Diagnosis Algorithm:Diagnosis Algorithm:Diagnosis Algorithm:Diagnosis Algorithm:
1. Front-end1. Front-end1. Front-end1. Front-end
2. Meta-datapath2. Meta-datapath2. Meta-datapath2. Meta-datapath
3. Datapath3. Datapath3. Datapath3. Datapath

Mismatch!!Mismatch!!Mismatch!!Mismatch!!

• Faults in front-end is
related to Instruction
Decoder;

• Fault in meta-datapath
indicates faults in ROB
or RAT;

• Faults in datapath is
related to ALU, data
bus, and register file.

19

Limitations
• Do not consider the off-core faults, such as faults in

crossbar
• Most work only considers single error for simplicity, but

in practice hardware faults can be multi-types and multi-
sources

• Pure software level detection has inherent shortcomings,
hybrid method (combining hardware and software) may
be a better choice

• SWAT is passive scheme, need more aggressive
detection method

...

20

Conclusion
• Verifying program and detecting hardware

faults are vital for reliable system
• For SymPLFIED
�Verify programs automatically with symbolic execution

and model checking
• For SWAT
�High-level detection, low-level diagnosis
�Treats hardware faults as software bugs
�Handles all faults that matter, and oblivious to masked

faults

