
CS 654 Advanced Computer Architecture

Lec. 11: Vector Computers

Adapted from the slides of:
Krste Asanovic

(krste@mit.edu)
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Peter Kemper

Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• A device to turn a compute-bound problem into an

I/O bound problem
• Any machine costing $30M+
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

Supercomputer Applications

 Typical application areas
• Military research (nuclear weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)

All involve huge computations on large data sets

In 70s-80s, Supercomputer ≡ Vector Machine

Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory

Cray-1 (1976)

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and

Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Code Example

Scalar Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes

Vector Arithmetic Execution

• Use deep pipeline (=> fast clock)
to execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank

Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined

functional units

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

T0 Vector Microprocessor (1995)

LaneVector register
elements striped

over lanes

[0]
[8]
[16]
[24]

[1]
[9]

[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Vector Memory-Memory versus
Vector Register Machines

• Vector memory-memory instructions hold all vector operands
in main memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

Vector Memory-Memory vs.
Vector Register Machines

• Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?
– All operands must be read in and out of memory

• VMMAs make if difficult to overlap execution of
multiple vector operations, why?
– Must check dependencies on memory addresses

• VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 elements
– For Cray-1, vector/scalar breakeven point was around 2 elements

⇒Apart from CDC follow-ons (Cyber-205, ETA-10) all
major vector machines since Cray-1 have had vector
register architectures

(we ignore vector memory-memory from now on)

Automatic Code Vectorization
for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒ requires extensive loop dependence
analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit into vector

registers, “Stripmining”
 ANDI R1, N, 63 # N mod 64
 MTC1 VLR, R1 # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1 # Reset full length
 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

load

Vector Instruction Parallelism
Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon
as first result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to
be written before starting dependent instruction

Vector Startup
Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector

instruction can start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA, vB, vC # Do add
SV vA, rA # Store result

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
 A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A values
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values

Vector Conditional Execution

Problem: Want to vectorize loops with conditional
code:

for (i=0; i<N; i++)
 if (A[i]>0) then
 A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements
LV vA, rA # Load entire A vector
SGTVS.D vA, F0 # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV vA, rA # Store A back to memory under mask

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off

result writeback according to mask

Compress/Expand Operations
• Compress packs non-masked elements from one

vector register contiguously at start of destination
vector register
– population count of mask vector gives packed vector length

• Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]
A[4]
A[5]
A[6]
A[7]

A[0]
A[1]
A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]
A[4]
A[5]

Used for density-time conditionals and also for general
selection operations

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary
tree to perform reduction
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
 VL = VL/2; # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

A Modern Vector Super: NEC SX-6 (2003)

• CMOS Technology
– 500 MHz CPU, fits on single chip
– SDRAM main memory (up to 64GB)

• Scalar unit
– 4-way superscalar with out-of-order and speculative

execution
– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256x64-bit

elements/VReg)
– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit,

1 mask unit
– 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)
– 1 load & store unit (32x8 byte accesses/cycle)
– 32 GB/s memory bandwidth per processor

• SMP structure
– 8 CPUs connected to memory through crossbar
– 256 GB/s shared memory bandwidth (4096 interleaved

banks)

Multimedia Extensions

• Very short vectors added to existing ISAs for micros
• Usually 64-bit registers split into 2x32b or 4x16b or 8x8b
• Newer designs have 128-bit registers (Altivec, SSE2)
• Limited instruction set:

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors

