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Properties of Vector Processors

• Each result independent of previous result
=> long pipeline, compiler ensures no dependencies
=> high clock rate

• Vector instructions access memory with known pattern
=> highly interleaved memory
=> amortize memory latency of over - 64 elements
=> no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines
• Single vector instruction implies lots of work (- loop)

=> fewer instruction fetches
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Spec92fp     Operations (Millions)     Instructions (M)
Program        RISC   Vector     R / V       RISC      Vector       R / V
swim256 115 95  1.1x 115 0.8 142x
hydro2d 58 40 1.4x     58 0.8  71x
nasa7 69 41 1.7x     69 2.2  31x
su2cor 51 35 1.4x     51 1.8  29x
tomcatv 15 10 1.4x     15 1.3  11x
wave5 27 25 1.1x     27 7.2   4x
mdljdp2 32 52 0.6x     32 15.8   2x

Operation & Instruction Count:
RISC v. Vector Processor
(from F. Quintana, U. Barcelona.)

 Vector reduces ops by 1.2X, instructions by 20X
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Common Vector Metrics

• R∞: MFLOPS rate on an infinite-length vector
– vector “speed of light”
– Real problems do not have unlimited vector lengths, and the start-up

penalties encountered in real problems will be larger
– (Rn is the MFLOPS rate for a vector of length n)

• N1/2: The vector length needed to reach one-half of R∞

– a good measure of the impact of start-up

• NV: The vector length needed to make vector mode faster than scalar
mode

– measures both start-up and speed of scalars relative to vectors,
quality of connection of scalar unit to vector unit
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Vector Execution Time
• Time = f(vector length, data dependencies, struct. hazards)
• Initiation rate: rate that FU consumes vector elements

(= number of lanes; usually 1 or  2 on Cray T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead; good approximation for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result
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32

Memory operations

• Load/store operations move groups of data between
registers and memory

• Three types of addressing
– Unit stride

» Contiguous block of information in memory
» Fastest: always possible to optimize this

– Non-unit (constant) stride
» Harder to optimize memory system for all possible strides
» Prime number of data banks makes it easier to support different

strides at full bandwidth
– Indexed (gather-scatter)

» Vector equivalent of register indirect
» Good for sparse arrays of data
» Increases number of programs that vectorize
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Interleaved Memory Layout

• Great for unit stride:
– Contiguous elements in different DRAMs
– Startup time for vector operation is latency of single read

• What about non-unit stride?
– Above good for strides that are relatively prime to 8
– Bad for: 2, 4
– Better: prime number of banks…!

Vector Processor
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How to get full bandwidth
 for Unit Stride?

• Memory system must sustain (# lanes x word) /clock
• No. memory banks > memory latency to avoid stalls

– m banks ⇒ m words per memory latency l clocks
– if m <  l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m
– may have 1024 banks in SRAM

• If desired throughput greater than one word per cycle
– Either more banks (start multiple requests simultaneously)
– Or wider DRAMS.  Only good for unit stride or large data types

• More banks/weird numbers of banks good to support
more strides at full bandwidth

– can read paper on how to do prime number of banks efficiently
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Vectors Are Inexpensive

Scalar
• N ops per cycle

 ⇒ Ο(Ν2) circuitry
• HP PA-8000

• 4-way issue
• reorder buffer:

850K transistors
• incl. 6,720 5-bit register

number comparators

Vector
• N ops per cycle
⇒ Ο(Ν + εΝ2) circuitry

• T0 vector micro
(Torrent-0 vector microprocessor, 1995)

• 24 ops per cycle
• 730K transistors total

• only 23 5-bit register
number comparators
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Vectors Lower Power

Vector
• One inst fetch, decode,

dispatch per vector
• Structured register

accesses
• Smaller code for high

performance, less power in
instruction cache misses

• Bypass cache

• One TLB lookup per
group of loads or stores

• Move only necessary data
across chip boundary

Single-issue Scalar
• One instruction fetch, decode,

dispatch per operation
• Arbitrary register accesses,

adds area and power
• Loop unrolling and software

pipelining for high performance
increases instruction cache
footprint

• All data passes through cache;
waste power if no temporal locality

• One TLB lookup per load or store

• Off-chip access in whole cache
lines
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Superscalar Energy Efficiency Even
Worse

Vector
• Control logic grows

linearly with issue width
• Vector unit switches

off when not in use

• Vector instructions expose
parallelism without
speculation

• Software control of
speculation when desired:

– Whether to use vector mask or
compress/expand for
conditionals

Superscalar
• Control logic grows

quadratically with issue
width

• Control logic consumes
energy regardless of
available parallelism

• Speculation to increase
visible parallelism
wastes energy
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Vector Applications

Limited to scientific computing?
• Multimedia Processing (compress., graphics, audio synth, image

proc.)

• Standard benchmark kernels (Matrix Multiply, FFT, Convolution,
Sort)

• Lossy Compression (JPEG, MPEG video and audio)
• Lossless Compression (Zero removal, RLE, Differencing, LZW)
• Cryptography (RSA, DES/IDEA, SHA/MD5)
• Speech and handwriting recognition
• Operating systems/Networking (memcpy, memset, parity,

checksum)
• Databases (hash/join, data mining, image/video serving)
• Language run-time support (stdlib, garbage collection)
• even SPECint95
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Older Vector Machines

Machine         Year     Clock    Regs  Elements  FUs  LSUs
Cray 1 1976 80 MHz 8 64 6 1
Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
Cray YMP 1988 166 MHz 8 64 8  2 L, 1 S
Cray C-90 1991 240 MHz 8 128 8 4
Cray T-90 1996 455 MHz 8 128 8 4
Conv. C-1 1984 10 MHz 8 128 4 1
Conv. C-4 1994 133 MHz 16 128 3 1
Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
NEC SX/3 1995 400 MHz 8+8K 256+var 16 8
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Newer Vector Computers

• Cray X1
– MIPS like ISA + Vector in CMOS

• NEC Earth Simulator
– Fastest computer in world for 3 years; 40 TFLOPS
– 640 CMOS vector nodes

Recent Supercomputers:
• IBM Blue Gene
• IBM Roadrunner

– Cell / AMD Opteron based
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Key Architectural Features of X1

New vector instruction set architecture (ISA)
– Much larger register set (32x64 vector, 64+64 scalar)

– 64- and 32-bit memory and IEEE arithmetic
– Based on 25 years of experience compiling with Cray1 ISA

Decoupled Execution
– Scalar unit runs ahead of vector unit, doing addressing and control
– Hardware dynamically unrolls loops, and issues multiple loops concurrently
– Special sync operations keep pipeline full, even across barriers
⇒ Allows the processor to perform well on short nested loops

Scalable, distributed shared memory (DSM) architecture
– Memory hierarchy: caches, local memory, remote memory

– Low latency, load/store access to entire machine (tens of TBs)
– Processors support 1000’s of outstanding refs with flexible addressing
– Very high bandwidth network
– Coherence protocol, addressing and synchronization optimized for DM
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• Technology refresh of the X1 (0.13µm)
– ~50% faster processors

– Scalar performance enhancements

– Doubling processor density

– Modest increase in memory system bandwidth

– Same interconnect and I/O

• Machine upgradeable
– Can replace Cray X1 nodes with X1E nodes

• released 2005

Cray X1E Mid-life Enhancement
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ESS – configuration of a general
purpose supercomputer

1. Processor Nodes (PN) Total number of processor nodes is 640.
Each processor node consists of eight vector processors of 8
GFLOPS and 16GB shared memories. Therefore, total numbers
of processors is 5,120 and total peak performance and main
memory of the system are 40 TFLOPS and 10 TB, respectively.
Two nodes are installed into one cabinet, which size is
40”x56”x80”. 16 nodes are in a cluster. Power consumption per
cabinet is approximately 20 KVA.

2) Interconnection Network (IN): Each node is coupled together with
more than 83,000 copper cables via single-stage crossbar switches
of 16GB/s x2 (Load + Store). The total length of the cables is
approximately 1,800 miles.

3) Hard Disk. Raid disks are used for the system. The capacities are
450 TB for the systems operations and 250 TB for users.

4) Mass Storage system: 12 Automatic Cartridge Systems (STK
PowderHorn9310);  total storage capacity is approximately 1.6
PB.

From Horst D. Simon, NERSC/LBNL, May
15, 2002, “ESS Rapid Response Meeting”ES: Earth Simulator
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Earth Simulator
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Earth Simulator Building
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ESS – complete system installed
4/1/2002
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Vector Summary
• Vector is alternative model for exploiting ILP
• If code is vectorizable, then simpler hardware,

more energy efficient, and better real-time model
than Out-of-order machines

• Design issues include number of lanes, number of
functional units, number of vector registers, length
of vector registers, exception handling, conditional
operations

• Fundamental design issue is memory bandwidth
– With virtual address translation and caching

• Will multimedia popularity revive vector
architectures?
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“The CRAY-1 computer system”
• by R.M. Russell, Comm. of the ACM, January 1978
• Number of functional units?

– Compared to today?

• Clock rate?
– Why so fast?
– How balance clock cycle?

• Size of register state?
• Memory size?
• Memory latency?

– Compared to today?

• “4 most striking features?”
• Instruction set architecture?
• Virtual Memory? Relocation? Protection?
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“The CRAY-1 computer system”

• Floating Point Format?
– How differs from IEEE 754 FP?

• Vector vs. scalar speed?
• Min. size vector faster than scalar loop?
• What meant by “long vector vs. short vector”

computer?
• Relative speed to other computers?

– Of its era?
– Pentium-4 or AMD 64?

• General impressions compared to today’s CPUs
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• VAX         : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006
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Déjà vu all over again?
“… today’s processors … are nearing an impasse as technologies approach

the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor
8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year
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Other Factors ⇒ Multiprocessors
• Growth in data-intensive applications

– Data bases, file servers, …

• Growing interest in servers, server perf.
• Increasing desktop perf. less important

– Outside of graphics

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment
by replication

– Rather than unique design
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Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Multiple Instruction Multiple
Data MIMD
(Clusters, SMP servers)

Multiple Instruction Single
Data (MISD)
(????)

Single Instruction Multiple
Data SIMD
(single PC: Vector, CM-2)

Single Instruction Single
Data (SISD)
(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.
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Back to Basics

• “A parallel computer is a collection of processing
elements that cooperate and communicate to
solve large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1.
• BW demands ⇒ Memory distributed among processors
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Centralized vs. Distributed Memory
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Centralized Memory Multiprocessor

• Also called symmetric multiprocessors (SMPs)
because single main memory has a symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of
processors

• Can scale to a few dozen processors by using
a switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases
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Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale
memory bandwidth
• If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con:  Communicating data between
processors more complex

• Con: Must change software to take
advantage of increased memory BW
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2 Models for Communication and
Memory Architecture
1. Communication occurs by explicitly passing

messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared

address, centralized memory MP
• NUMA (Non Uniform Memory Access time

multiprocessor) for shared address, distributed
memory MP

• In past, confusion whether “sharing” means
sharing physical memory (Symmetric MP) or
sharing address space
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Challenges of Parallel Processing

• First challenge is % of program
inherently sequential

• Suppose 80X speedup from 100
processors. What fraction of original
program can be sequential?
a.10%
b.5%
c.1%
d.<1%
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Amdahl’s Law Answers
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Challenges of Parallel Processing

• Second challenge is long latency to
remote memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote
memory, all local accesses hit memory
hierarchy and base CPI is 0.5. (Remote
access = 200/0.5 = 400 clock cycles.)

• What is performance impact if 0.2%
instructions involve remote access?
a.  1.5X
b. 2.0X
c.  2.5X
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CPI Equation
• CPI = Base CPI +

Remote request rate
x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3
• No communication is 1.3/0.5 or 2.6 faster

than 0.2% instructions involve local
access
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Challenges of Parallel Processing

1. Application parallelism ⇒ primarily via
new algorithms that have better parallel
performance

2. Long remote latency impact ⇒ both by
architect and by the programmer

• For example, reduce frequency of remote
accesses either by
– Caching shared data (HW)
– Restructuring the data layout to make more

accesses local (SW)
• Today’s lecture on HW  to help latency

via caches
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Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to
multiple processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data,
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem
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Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u :5
1

u :5

2

u :5

3

u = 7
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Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses

to different locations issued by a given process
– to preserve orders among accesses to same location by

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and  flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual 
Picture
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P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will

be returned by a read
• Coherence defines behavior to same location,

Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O
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Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to

location X that follows a write by P to X, with no writes of
X by another processor occurring between the write and
the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a

location, processors can never read the value of the location
as 2 and then later read it as 1
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Write Consistency

• For now assume
1. A write does not complete (and allow the next

write to occur) until all processors have seen the
effect of that write

2. The processor does not change the order of any
write with respect to any other memory access

⇒ if a processor writes location A followed by
location B, any processor that sees the new
value of B must also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order
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Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and
used there in a transparent fashion

– Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

• Replication – for shared data being simultaneously
read, since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data
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2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium

(a bus or switch)
• All cache controllers monitor or snoop on the medium

to determine whether or not they have a copy of a
block that is requested on a bus or switch access
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Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory
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$ $ $

P2 P3
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u = ?
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u = ?

u :5
1

u :5
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Architectural Building Blocks
• Cache block state transition diagram

– FSM specifying how disposition of block changes
» invalid, valid, dirty

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or
write accesses ⇒ Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same

cache block
• Also need to find up-to-date copy of cache block
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Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache

block, it provides it in response to a read request
and aborts the memory access

– Complexity from retrieving cache block from a processor
cache, which can take longer than retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back
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Cache Resources for WB Snooping

• Normal cache tags can be used  for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes ⇒ Need to know if know whether any

other copies of the block are cached
– No other copies ⇒ No need to place write on bus for WB
– Other copies ⇒ Need to place invalidate on bus
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Cache Resources for WB Snooping

• To track whether a cache block is shared, add
extra state bit associated with each cache block,
like valid bit and dirty bit

– Write to Shared block ⇒ Need to place invalidate on
bus and mark cache block as private (if an option)

– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or

exclusive)
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Cache behavior in response to bus

• Every bus transaction must check the cache-
address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1

cache to update the state and possibly retrieve the data, which
usually requires a stall of the processor
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Example Protocol

•  Snooping coherence protocol is usually
implemented by incorporating a finite-state
controller in each node

• Logically, think of a separate controller
associated with each cache block

– That is, snooping operations or cache requests for different
blocks can proceed independently

• In implementations, a single controller allows
multiple operations to distinct blocks to proceed
in interleaved fashion

– that is, one operation may be initiated before another is
completed, even through only one cache access or one bus
access is allowed at time
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Write-through Invalidate Protocol

• 2 states per block in each cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that cache
• Writes invalidate all other cache

copies
– can have multiple simultaneous readers

of block,but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem

P1

$ $

Pn

Bus

State  Tag   Data

PrRd: Processor Read
PrWr: Processor Write 
BusRd: Bus Read
BusWr: Bus Write
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Is 2-state Protocol Coherent?
• Processor only observes state of memory system by issuing

memory operations
• Assume bus transactions and memory operations are atomic

and a one-level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing next
– with one-level cache, assume invalidations applied during bus transaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or

enter directly in bus order

• Let’s understand other ordering issues
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Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though

shared-medium (bus) will order read misses too
– any order among reads between writes is fine,

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access
• Each memory block is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses



3/25/09 W&M CS654 60

CPU Read hit
Write-Back State Machine - CPU

• State machine
for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write 
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Write-Back State Machine- Bus request
• State machine

for bus requests
 for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss 
for this block

Read miss 
for this block

Write miss 
for this block

Write Back
Block; (abort
memory access)
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Block-replacement

• State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Place read miss
on bus

Write-back State Machine-III
• State machine

for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss 
for this block

Write Back
Block; (abort
memory access)

Write miss 
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2
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And in Conclusion [1/2] …

• 1 instruction operates on vectors of data
• Vector loads get data from memory into big

register files, operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very efficient architecture for
vectorizable codes, including multimedia and
many scientific codes
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And in Conclusion [2/2] …
• “End” of uniprocessors speedup => Multiprocessors
• Parallelism challenges: % parallelizable, long latency to remote

memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP
• Message Passing vs. Shared Address

– Uniform access time vs. Non-uniform access time
• Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write
• Sharing cached data  ⇒ Coherence (values returned by a read),

Consistency (when a written value will be returned by a read)
• Shared medium serializes writes
⇒ Write consistency


