CS654 Advanced Computer
Architecture

Lec 8 — Instruction Level Parallelism

Peter Kemper

Adapted from the slides of EECS 252 by Prof. David Patterson
Electrical Engineering and Computer Sciences
University of California, Berkeley

Review from Last Time #1

Leverage Implicit Parallelism for Performance:
Instruction Level Parallelism

Loop unrolling by compiler to increase ILP
Branch prediction to increase ILP
Dynamic Scheduling exploiting ILP

— Works when can’t know dependence at compile time
— Can hide L1 cache misses
— Code for one machine runs well on another

2/25/09 W&M CS654

Review from Last Time #2

Reservations stations: renaming to larger set of registers +
buffering source operands

— Prevents registers as bottleneck
— Avoids WAR, WAW hazards
— Allows loop unrolling in HW

Not limited to basic blocks
(low latency instructions can go ahead, beyond branches)

Helps cache misses as well

Lasting Contributions
— Dynamic scheduling
— Register renaming
— Load/store disambiguation

360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, ...

2/25/09 W&M CS654

Outline

* ILP

« Speculation

« Speculative Tomasulo Example
 Memory Aliases

 Exceptions

 VLIW

* Increasing instruction bandwidth

* Register Renaming vs. Reorder Buffer
* Value Prediction

2/25/09 W&M CS654

Speculation to obtain greater ILP

« Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct

— Speculation
= fetch, issue, and execute instructions
as if branch predictions were always correct
— Dynamic scheduling
=> only fetches and issues instructions
« Essentially a data flow execution model:

Operations execute as soon as their operands are
available

 What issues must be resolved for speculation to
apply ?

2/25/09 W&M CS654 5

Speculation to greater ILP

3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2/25/09 W&M CS654 6

Adding Speculation to Tomasulo

* Must separate execution from allowing instruction to
finish or “commit”

* This additional step called instruction commit

« When an instruction is no longer speculative, allow it to
update the register file or memory

 Allows us to
— Execute out-of-order
— Commit in-order

* Reorder buffer (ROB)

— additional set of buffers to hold results of instructions that have
finished execution but have not committed

— also used to pass results among instructions that may be
speculated

2/25/09 W&M CS654

Reorder Buffer (ROB)

* In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

« With speculation, the register file is not updated
until the instruction commits
— (we know definitively that the instruction should execute)

 Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

— ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS

2/25/09 W&M CS654 8

Reorder Buffer Entry

Each entry in the ROB contains four fields:

1. Instruction type
« a branch (has no destination result),
« a store (has a memory address destination),
« aregister operation (ALU operation or load, which has
register destinations)
2. Destination

* Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
 Value of instruction result until the instruction commits
4. Ready

* Indicates that instruction has completed execution, and the
value is ready

2/25/09 W&M CS654 9

Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station
Instructions commit =values at head of ROB placed in

registers v

As a result, easy to undo Reorder
speculated instructions Buffer
on mispredicted branches
or on exceptions

Commit path 1
\ 4

[Res Stations] [Res Stations|

2/25/09 W&M CS654 10

4 Steps of Speculative Tomasulo Algorithm‘

1.lssue—get instruction from FP Op Queue

If reservation station free,
issue instr & send operands
(this stage sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute;
if not ready, watch CDB for result;

when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs ;
mark reservation station available.

4. Commit

2/25/09 W&M CS654 11

Tomasulo With Reorder buffer:

Done?

FP Op ﬁ ROB7 Newest

Queue ROB6

Reorder Buffer >

ROBZ } Oldest
FO LD FO,10(R2) N | rOB1

Registers To

Dest Dest from

l l Reservation l l 1 [10+R2
Stations

FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op ﬁ ROB7 Newest
Queue ROB6
ROB5
RQB4
Reorder Buffer <=
F10 ADDD F10,F4,F0 | N |ROB2 | o)dest
FO LD F0,10(R2) N | rOB1
Registers To
Memory
Dest
(2 [ADDD[R (F4) ,ROB1L Dest A{&?"E‘ry
1 ' Dest*
l l Reservation l l 1 |]10+R2
Stations
FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op — ROB7 Newest
Queue ROB6
ROB5
Reorder Buffer <+
F2 DIVD F2,F10,F6 | N | rROR3
F10 ADDD F10,F4,FO0 | N |RroB2 | oidest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest
g Dest from
2 ADDD R(F2) ROB. 3 [DIVD [ROEZ,R(F6) emory
1 ' Dest*
l l Reservation l l 1 |10+R2
Stations
FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op — ROB7 Newest
Queue FO ADDD FO,F4,F6 |N |ROB6
Fd LD F4,0 (R3) N | ROB5
- BNE F2,<.> N | rgp4
Reorder Buffer F2 DIVD F2,F10,F6 | N | rROR3
F1d ADDD F10,F4,FO0 | N [roB2 | gigest
FO LD FO0,10(R2) N | roB1
Registers To
Memory
D_ZS;DDD R(F4) ,ROBL Dest N{‘rom
R] 3 [DIVD [ROEZ,R(F6) emory
1 ' Dest*
l l Reservation l l 1 |10+R2
Stations — > | O+R3
FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op | - - | ROB5 |ST 0(R3),F4 N | ROB7 Newest
Queue FO ADDD FO,F4,F6 | N |ROB6
F4 LD F4,0 (R3) N | ROB5
-- BNE F2,<.> N | rRgR4
Reorder BUffer F2 DIVD F2,F10,F6 | N |RrOR3
F10 ADDD F10,F4,FO0 | N [Rr0B2 | oidest
FO LD FO0,10(R2) N | roB1
Registers To
Memory
D_zs'r . . Dest from
B o e S ooy cocomareaon LAY
- 1 Dest*
l l Reservation l l 1 [10+R2
Stations 21 O+R3

FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op ﬁ --| M[10] | ST O(R3) ,F4 Y | ROB7
Queue FO ADDD FO,F4,F6 |N |ROB6
F4| M[10] | LD F4,0 (R3) Y | ROB5
- BNE F2,<.> N | RQB4
Reor'der' BUffer F2 DIVD F2,F10,F6 | N | rOB3
F10 ADDD F10,F4,F0 | N |roB2
FO LD FO0,10 (R2) N | roR1
Registers To
Memory
Dest
. rom
2 [ADDD]|R (F4) ,ROBL D_es'r _ - Mfemory
6 IADDD|M[10],R(F6) 3 IDIVD |ROB2 ,R(F6)
Dest*

l l Reservation
Stations

P aclider'sl

l l 1 |10+R2

FP multipliers

Newest

Oldest

Tomasulo With Reorder buffer:

Done?
FP Op p——]p{ - - M[10] [ST 0(R3),F4 Y |ROE7 Newest
Queue FO|<val2>| ADDD FO,F4,F6 |Ex|ROB6
F4| M[10] | 1D F4,0(R3) Y | ROB5
—- BNE F2,<.> N | rQB4
Reorder Buffer F2 DIVD F2,F10,F6 | N [rOR3
F10 ADDD F10,F4,FO0 | N [R0B2 | 1dest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest
= Dest from
2 ADDD R(F2) ROB. 3 [DIVD [ROEZ,R(F6) Memory
1 1 Dest*
l l Reservation l l 1 |10+R2
Stations

FP aclider'sl FP multipliers

Tomasulo With Reorder buffer:

Done?
FP Op ﬁ --1 M[10] ST 0(R3) ,F4 Y | ROB7 Newest
Queue FO|<val2>| ADDD FO,F4,F6 |Ex|ROBé6
#4| M[TeJ | LD F4,0 (R3) Y | ROBS
—- RNE F2,<.> N | rgB4
Reorder Buffér F2 DIV F2,F10,F6 | N |rdR3
F10 ADDD §10,F4,FO0 | N [R0B2 | 1dest
FO LD FO,19 (R2) N | roB1
: A4
Registers To
Memory
Dest
et Dest from
2 ADDD R(F2) ROB. 3 [DIVD [ROEZ,R(F6) emory
- - Dest V
l l Reservation l l 1,10+P2
Stations —
FP aclider'sl FP multipliers
I

Avoiding Memory Hazards

WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

RAW hazards through memory are maintained
by two restrictions:

1. not allowing a load to initiate the second step of its execution
if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an

effective address of a load with respect to all earlier stores.
these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2/25/09 W&M CS654 20

Exceptions and Interrupts

* IBM 360/91 invented “imprecise interrupts”
— If computer stopped at this PC; its likely close to this address
— Not so popular with programmers
— Also, what about Virtual Memory? (Not in IBM 360)
 Technique for both

precise interrupts/exceptions and speculation:
out-of-order execution & completion and in-order
commit

— If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

— This is exactly same as need to do with precise exceptions

 Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

— If a speculated instruction raises an exception, the exception
is recorded in the ROB

2/25/09 W&M CS654 21

How far can we get this way?

« CPUtime=IC*CPI*CT
* Pipelining
— Control hazards:
branch prediction, speculation, out-of-order execution
— Data hazards:
register renaming, out-of-order execution, ROB or RS tags

— Structural hazards:
more slots in ROB & RS than registers of ISA

* Influence:
— IC: if compiler does loop unrolling, other issues ?
— CPI:
» Try to get CPIl as close to 1 as possible
» Can we get CPI below 1 ???
Must issue > 1 inst per cycle, must commit > 1 inst per cycle
— CT: hardware complexity of operations and control logic

2/25/09 W&M CS654 22

Getting CPI below 1

« CPI 21 ifissue only 1 instruction every clock cycle

 Multiple-issue processors come in 3 flavors:
1. Superscalar processors

1. Issue: variable number of instructions per clock cycle

2. Schedule:
1. Statically-scheduled => Execution: in-order
2. Dynamically-scheduled => Execution: out-of-order

2. VLIW (very long instruction word) processors
1. Issue: fixed number of instructions per clock cycle

formatted either as one large instruction or as a fixed instruction
packet with the parallelism among instructions explicitly
indicated by the instruction (Intel/HP Itanium)

2/25/09 W&M CS654 23

VLIW: Very Large Instruction Word

« Each “instruction” has explicit coding for multiple
operations
— In 1A-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

* Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches

2/25/09 W&M CS654 24

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1Loop: L.D FO0,0(R1) L.D to ADD.D: 1 Cycle
2 L.D F6,-8(RI1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)

4 L.D F14,-24 (R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,Fl10,F2

8 ADD.D F16,Fl14,F2

9 S.D 0(R1l) ,F4

10 S.D -8 (R1) ,F8

11 S.D -16 (R1) ,F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8 (R1) ,F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
2/25/09 W&M CS654 25

Loop Unrolling in VLIW

Memory Memory
reference 1 reference 2

FP
operation 1

FP Int. op/
op. 2 branch

Clock

L.DFO,0(R1) L.D F6,-8(R1)
L.D F10,-16(R1) L.D Fia=24(R1).

L.D F18,-32(R1) L.D F22,-40(R1)
L.D F26,-48(R1)

S.D O(R1),F4 S.D -8(R1),F8
S.D -16(R1),F12 S.D -24(R1),F16
S.D -32(R1),F20 S.D -40(R1),F24
S.D -0(R1),F28

ADD.D F4,F0,F2

.D F12,F10,F2
ADD.D F20,F18,F2
ADD.D F28,F26,F2

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration
Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

2/25/09

W&M CS654

ADD.D F8,F6,F2
ADD.D F16,F14,F2
ADD.D F24,F22,F2

DSUBUI R1,R1,#48

BNEZ R1,LOOP

26

© 00 NO O WODN =

Problems with 1st Generation VLIW

 Increase in code size

— generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

— whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding

* Operated in lock-step; no hazard detection HW

— a stall in any functional unit pipeline caused entire processor to stall,
since all functional units must be kept synchronized

— Compiler might predict latencies of function units,
but caches hard to predict

* Binary code compatibility

— Pure VLIW => different numbers of functional units and unit latencies
require different versions of the code

2/25/09 W&M CS654 27

Intel/HP 1A-64 “Explicitly Parallel
Instruction Computer (EPIC)”

IA-64: instruction set architecture
128 64-bit integer regs + 128 82-bit floating point regs

— Not separate register files per functional unit as in old VLIW
Hardware checks dependencies
(interlocks => binary compatibility over time)

Predicted execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

Itanium ™ was first implementation (2001)
— Highly parallel and deeply pipelined hardware at 800Mhz

— 6-wide, 10-stage pipeline at 800Mhz on 0.18 p process

Iltanium 2™ is name of 2nd implementation (2005)
— 6-wide, 8-stage pipeline at 1666Mhz on 0.13 p process
— Caches: 32 KB |, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

2/25/09 W&M CS654 28

Multiple-issue processors

Multiple-issue processors come in 3 flavors:

1.Superscalar processors

1.Issue: variable number of instructions per clock cycle
2.Schedule:

1. Statically-scheduled => Execution: in-order

2. Dynamically-scheduled => Execution: out-of-order

2.VLIW (very long instruction word) processors
1. Issue: fixed number of instructions per clock cycle

formatted either as one large instruction or as a fixed
instruction packet with the parallelism among instructions
explicitly indicated by the instruction (Intel/HP Itanium)

 VLIW and statically-scheduled superscalar related.
 Let’s consider dynamically scheduled superscalar processors.

2/25/09 W&M CS654 29

Dynamic superscalar processors

 |ssues:

Frontend
— More bandwidth for instruction supply / instruction fetch
— Speed up issue stage:
» Keep instructions in order at reservation stations

» Pipeline: Perform issue of n instructions in 1 cycle by fast
assignment of RS and update to pipeline control table in
1/n th of cycle

and/or

» Widen issue logic: add logic do handle n instructions at
once (Beware of cumbersome combinations)

Backend

— More bandwidth for instruction completion and commit

2/25/09 W&M CS654 30

Increasing Instruction Fetch Bandwidth

Predicts next
instruct address, Branch Target Buffer (BTB)

sends it out

befOre d eCOd i N g PC of instruction to fetch
i nStru CtiO n Look up Predicted PC

PC sent to BTB
When matCh iS Number of

found, Predicted téth

PC is returned | b

If branch

predicted taken,

instruction fetch S Frmcionls

continues at q praehiprosssanurmall Branch
PrediCted PC Yes: then instruction is branch and predicted Lilf[:r;eor:

PC should be used as the next PC

2/25/09 W&M CS654 31

Variation on BTB

« So far:
— BTB provides new value for PC if instruction is a branch
instruction, if it is in the cache and predicted to be taken.
« Variation: Branch folding
— Make BTB store next instruction instead of target
» Gives BTB access more time to come up with result
(slower buffers, larger buffers)
» Buffer can even hold several instructions (sequence),
not just one for multiple issue processors
— In case of unconditional branch: 0-cycle branch possible
» Branch instruction only updates PC
» However done with BTB anyhow

» So pipeline can substitute BTB instruction for branch
instruction -> 0-cycle unconditional branch

2/25/09 W&M CS654 32

IF BW: Return Address Predictor

e Small buffer of Returns cause “indirect jumps”:
retu n addresses Destination address varies at runtime
acts as a stack
70% g0
« Caches most 560% —————— > R —=— m88ksim
recent return 3 ccl
ddresses £ compress
? 5
« Call = Push a B
D
return address £
on stack S
 Return = Pop an .
addreSS Off StaCk & Return address buffer entries

predict as new PC

2/25/09 W&M CS654 33

0: standard branch prediction

Separate Instruction Fetch Unit

Integrates:

 Integrated branch prediction

— branch predictor is part of instruction fetch unit and is constantly
predicting branches

 Instruction prefetch

— Instruction fetch unit prefetches to deliver multiple instructions
per clock, integrating it with branch prediction

 Instruction memory access and buffering

Fetching multiple instructions per cycle:
— May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

— Provides buffering, acting as on-demand unit to provide
instructions to issue stage as needed and in quantity
needed

2/25/09 W&M CS654 34

aaaaaaaa

Speculation: Register Renaming vs. ROB

 Alternative to ROB is a larger physical set of
registers combined with register renaming

— Extended registers replace function of both ROB and
reservation stations

 Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

* Most Out-of-Order processors today use
extended registers with renaming

2/25/09 W&M CS654 35

Value Prediction

« Attempts to predict value produced by instruction
—E.g., Loads a value that changes infrequently

« Value prediction is useful only if it significantly
increases ILP

—Focus of research has been on loads; so-so
results, no processor uses value prediction

* Related topic is address aliasing prediction
— RAW for load and store or WAW for 2 stores

 Address alias prediction is both more stable and
simpler since need not actually predict the address
values, only whether such values conflict

—Has been used by a few processors

2/25/09 W&M CS654 36

Putting it all together: Intel Pentium 4

Aggressive out-of-order speculative architecture
Goal: multiple-issue + high clock rate for high thruput

Front end decoder translates 1A-32 instruction stream into
sequence of uops
Novelty: execution trace cache (of uops)

— Tries to exploit temporal locality, even across branches
— Avoids need to redecode I1A-32 stream
— Has BTB of its own

L2 holds 1A-32 instructions

Pipeline:
— Dynamically scheduled: instructions vary in #clock cycles
— Register renaming

— 2004 version: 3.2 Ghz clock rate,
a simple instruction uses 31 cycles from fetch to retire

2/25/09 W&M CS654 37

(Mis) Speculation on Pentium 4
* % of micro-ops not used

2/25/09

Misspeculation Fraction

45%
40%
35%
30%
25%
20%
15%
10%

5%

430/0 450/0

39%

24%

24%

0% -

Integer

vV oXivi

3 %

1% 1% 0%

Q
Q)
CS654 :

ums-p/1 I

!Jﬁw'zm-l
O]
|dde’ g&l

Perspective

* Interest in multiple-issue because wanted to
improve performance without affecting uniprocessor
programming model

« Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

« Conservative in ideas, just faster clock and bigger

* Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
iIssue processors announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
=> performance 8 to 16X

 Peak v. delivered performance gap increasing

2/25/09 W&M CS654 39

In Conclusion ...

* Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

— Possibly large quantities of state must be saved before interrupting

 Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed
 Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!
— Important enabling factor for out-of-order execution

2/25/09 W&M CS654 40

