

Judith Providence Computer Architecture CS 654

# Outline

- Background/Motivation
- Multi-processors
- Larrabee Architecture
- Performance studies
- Evaluation
- Conclusion

Motivation: Trends Towards Many-core Processors

- Power
- Growth in HPC
- Decrease performance in uniprocessors
  Limits on Instruction-Level
  - Parallelism

Register renaming Branch prediction Jump prediction

Memory address Alias Analysis

Perfect caches W&M CS 654

## Larrabee: GPU or CPU?

- GPU
- PCI bus
- Only a minimum amount of memory available
- Only singleprecision floating point performance

- Larrabee CPU
- It supports 4 threads
- Efficient inter-block communication
  - Ring network for full inter-processor communication
- Each Larrabee core is a complete x86 core that supports
  - Virtual memory and page swapping
  - Fully coherent caches at all levels 4

#### Larrabee:CPU

- Larrabee a in-order many-core x86 CPU
- Intel president in 2005 stated: We are dedicating all of our future product development to multi-core designs.
- Multi-core processors vs. many-core processors
- GPU-like capabilities

## Motivation for an in-order CPU

Comparison between a modern out-oforder CPU, the Intel Core2Duo processor, and a in-order test CPU design based on the Pentium processor with a 16-wide VPUs

| #CPU cores:        | 2 out-of-order | 10 in-order   |  |  |
|--------------------|----------------|---------------|--|--|
| Instruction issue: | 4 per clock    | 2 per clock   |  |  |
| VPU per core:      | 4-wide SSE     | 16-wide       |  |  |
| L2 cache size:     | 4 MB           | 4 MB          |  |  |
| Single-stream:     | 4 per clock    | 2 per clock   |  |  |
| Vector throughput: | 8 per clock    | 160 per clock |  |  |

#### **Multi-processors**

- Inter-processor Communication
  - Inter-processor Ring Network
- Computation

SIMD vector processing unit, mask register

#### Shared Memory

Coherent cached memory hierarchy, MIMD Model

#### Synchronization Mechanisms

Semaphores, Software locks

#### Larrabee Architecture

| Fixed Function Logic |                      | In-Order<br>CPU core        | In-Order<br>CPU core |                      | In-Order<br>CPU core | In-Order<br>CPU core | ces                     | lces    |
|----------------------|----------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|---------|
|                      |                      | Interprocessor Ring Network |                      |                      |                      |                      |                         | erfs    |
|                      |                      | Coherent<br>L2 cache        | Coherent<br>L2 cache |                      | Coherent<br>L2 cache | Coherent<br>L2 cache |                         | /O Inte |
|                      | Coherent<br>L2 cache | Coherent<br>L2 cache        |                      | Coherent<br>L2 cache | Coherent<br>L2 cache |                      | Memory & I/O Interfaces |         |
|                      |                      | Interprocessor Ring Network |                      |                      |                      |                      | noi                     |         |
|                      |                      | In-Order<br>CPU core        | In-Order<br>CPU core |                      | In-Order<br>CPU core | In-Order<br>CPU core |                         | Men     |

**Figure 1**: Schematic of the Larrabee many-core architecture: The number of CPU cores and the number and type of co-processors and I/O blocks are implementation-dependent, as are the positions of the CPU and non-CPU blocks on the chip.

W&M CS 654

#### **Core Design of Larrabee**

Larrabee CPU core and associated system blocks: the CPU is derived from the Pentium processor in-order design, plus 64-bit instructions, multi-threading and a wide VPU. Each core has fast access to its 256KB local subset of a coherent 2nd level cache. L1 cache sizes are 32KB for Icache and 32KB for Dcache. Ring network accesses pass through the L2 cache for coherency.



## Inter-processor Ring Network

- Bi-directional
- Routing decisions made before messages are placed into the network
- Checks for data sharing
- Provides a path for the L2 cache to access memory
- Allows Fixed Function Logic agents to be accessed by the CPU cores
- Scaling to more than 16 cores

# Wide Vector Processing Unit

- SIMD
- 16 lanes
- Executes integer and Floating point instructions
- Scatter gather supports a Maximum of 16 elements



## **Fixed Function Logic Unit**

- Used for Graphical tasks
- Larrabee uses software in place of a fixed functional unit for some graphical tasks
- Cores pass commands to the texture unit through the L2 cache
- Texture filter logic
  - would be 12x to 40x longer in software



## **Advanced Applications**

- Larrabee supports irregular data structures
- An efficient scatter-gather support for irregular data structures
- The SIMD vector processing unit can be programmed
- Intel's auto-vectorization computer technology

## **Performance Study**

- Spectral methods/Dense Linear algebra
- Data is in the frequency domain
- High Performance Kernel-3D-FFT
- Data that are dense matrices or vectors -BLAS-3

## High Performance Computing Kernels

- Simulation results are based on Stanford's PhysBam
- http://physbam.standford.edu/~fedkiw

Amdahl's Law:Speedup <sub>maximum</sub> =1/(1-fraction enhanced)



# Evaluation of Larrabee for parallel applications

con

- Memory contention
- Lack of error correcting code(ECC) memory, Graphic double data rate
- Shortage of double precision floating point capability



Figure 6: Schematic of the Larrabee many-core architecture

pro

- Load balancing is accomplished by moving processes
- Supports irregular data structures

## Conclusion-Relevance of Larrabee for the Future

- Amdahl's Law Limitations in parallelism make it difficult to achieve good speedup
- 1965 Moore's Law states that the number of transistors on a chip will double about every two years
- Need a Moore's Law to handle software
- Solution: the establishment of academic communities