

Judith Providence
Computer Architecture CS 654

Outline

- Background/Motivation
- Multi-processors
- Larrabee Architecture
- Performance studies
- Evaluation
- Conclusion

Motivation:Trends Towards Many-core Processors

- Power
. Growth in HPC
- Decrease performance in uniprocessors

Limits on Instruction-Level
Parallelism
Register renaming
Branch prediction
Jump prediction
Memory address Alias Analysis
Perfect caches

Larrabee:GPU or CPU?

- GPU
- PCI bus
- Only a minimum amount of memory available
- Only singleprecision floating point performance
- Larrabee CPU
- It supports 4 threads
- Efficient inter-block communication
- Ring network for full inter-processor communication
- Each Larrabee core is a complete x86 core that supports
- Virtual memory and page swapping
- Fully coherent caches at all levels

Larrabee:CPU

- Larrabee a in-order many-core x86 CPU
- Intel president in 2005 stated: We are dedicating all of our future product development to multi-core designs.
- Multi-core processors vs. many-core processors
- GPU-like capabilities

Motivation for an in-order CPU

- Comparison between a modern out-oforder CPU, the Intel Core2Duo processor, and a in-order test CPU design based on the Pentium processor with a 16-wide VPUs

\# CPU cores:	2 out-of-order	10 in-order
Instruction issue:	4 per clock	2 per clock
VPU per core:	4-wide SSE	16 -wide
L2 cache size:	4 MB	4 MB
Single-stream:	4 per clock	$\mathbf{2}$ per clock
Vector throughput:	$\mathbf{8}$ per clock	$\mathbf{1 6 0}$ per clock

Multi-processors

- Inter-processor Communication

Inter-processor Ring Network

- Computation

SIMD vector processing unit, mask register

- Shared Memory

Coherent cached memory hierarchy, MIMD Model

- Synchronization Mechanisms

Semaphores, Software locks

Larrabee Architecture

	In-Order CPU core	In-Order CPU core	\ldots	In-Order CPU core	In-Order CPU core	
	Interprocessor Ring Network					
	Coherent L 2 cache	Coherent L2 cache	...	Coherent L 2 cache	Coherent L 2 cache	
	Coherent L2 cache	Coherent L2 cache	\cdots	Coherent L2 cache	Coherent L2 cache	
		Interproce		,		
	In-Order CPU core	In-Order CPU core	\cdots	In-Order CPU core	In-Order CPU core	

Figure 1: Schematic of the Larrabee many-core architecture: The number of CPU cores and the number and type of co-processors and I/O blocks are implementation-dependent, as are the positions of the CPU and non-CPU blocks on the chip.

Core Design of Larrabee

Larrabee CPU core and associated system blocks: the CPU is derived from the Pentium processor in-order design, plus 64-bit instructions, multi-threading and a wide VPU. Each core has fast access to its 256 KB local subset of a coherent 2nd level cache. L1 cache sizes are 32 KB for Icache and 32 KB for Dcache. Ring network accesses pass through the L2 cache for coherency.

Inter-processor Ring Network

- Bi-directional
- Routing decisions made before messages are placed into the network
- Checks for data sharing
- Provides a path for the L2 cache to access memory
- Allows Fixed Function Logic agents to be accessed by the CPU cores
- Scaling to more than 16 cores

Wide Vector Processing

Unit

- SIMD
- 16 lanes
- Executes integer and

Floating point instructions

- Scatter gather supports
a Maximum of 16 elements

Fixed Function Logic Unit

- Used for Graphical tasks
- Larrabee uses software in place of a fixed functional unit for some graphical tasks
- Cores pass commands to the texture unit through the L2 cache
- Texture filter logic
- would be $12 x$ to $40 x$ longer in software

Advanced Applications

- Larrabee supports irregular data structures
- An efficient scatter-gather support for irregular data structures
- The SIMD vector processing unit can be programmed
- Intel's auto-vectorization computer technology

Performance Study

- Spectral methods/Dense Linear algebra
- Data is in the frequency domain
- High Performance Kernel-3D-FFT
- Data that are dense matrices or vectors -BLAS-3

High Performance Computing Kernels

- Simulation results are based on Stanford's PhysBam
- http://physbam.standford.edu/~fedkiw
- Amdahl's Law:Speedup maximum $=1 /(1$-fraction enhanced)

Evaluation of Larrabee for parallel applications

con

- Memory contention
- Lack of error correcting code(ECC) memory, Graphic double data rate
- Shortage of double precision floating point

Figure 6: Schematic of the Larrabee many-core architecture capability
pro

- Load balancing is accomplished by moving processes
- Supports irregular data structures

Conclusion-Relevance of Larrabee for the Future

- Amdahl's Law - Limitations in parallelism make it difficult to achieve good speedup
- 1965 - Moore's Law states that the number of transistors on a chip will double about every two years
- Need a Moore's Law to handle software
- Solution: the establishment of academic communities

