
CS 654
Computer Architecture

Summary
Peter Kemper



Chapters in
Hennessy & Patterson

• Ch 1: Fundamentals
• Ch 2: Instruction Level Parallelism
• Ch 3: Limits on ILP
• Ch 4: Multiprocessors & TLP
• Ap A: Pipelining
• Ap C: Memory Hierarchy
• Ap F: Vector Processors



C1: Fundamentals
• Computer Architecture:

– Topic:
• Designing the organization and hardware to meet goals and

functional requirements and to succeed with changing
technology

• Not just ISA
– Technology trends: Bandwidth over latency, scaling of

transistors and wires, power in ICs, cost, dependability
– Measuring, Reporting, Summarizing Performance
– Quantitative Principles

• Take advantage of parallelism
• Principle of locality
• Focus on common case
• Amdahl’s law
• Processor performance equation



C1: Fundamentals
• Formulas:

– CPU time, Amdahl’s law, Power dynamic & static,
Average memory access time, Availability, Die yield,
Misses per instruction, Cache index size, Means
(arithmetic, geometric -> Benchmarks)

• Rules of Thumb:
– Amdahl/Case Rule, 90/10 locality rule, bandwidth

rule, 2:1 Cache rule, dependability rule
Check short list inside book cover!



Ap A: Pipelining
• Key idea:

– Split up work in a sequence of steps, work along
stages in a piecemeal manner, start next instruction
as soon as previous one proceeded far enough

• RISC, load/store architecture
• Challenges:

– Hazards: Data (RAW,WAW,WAR), Control, Structural
• Focus:

– CPI: get average value as small as possible
• Close to 1
• Less than 1

• Means to reduce pipeline stalls ?



Ap A: Pipelining
Means to reduce pipeline stalls ?
• Fetching:

– Prefetching, Branch prediction, Caches (TLB, BTB)
• Decoding

– Decode (Trace cache), Issuing (Multi-issue)
• Execution

– Forwarding
– Trouble: multicycle instructions (FP)

• Memory
– Forwarding (trouble: data dep for load & successor)

• Write-back
– Write first half of cycle (to have reads in 2nd half)

Scheduling: Static vs dynamic



Ap C: Memory
Cache organization

– direct mapped, fully associative, n-way set assoc,
– write through vs write back, write alloc vs no-write alloc
– layered, dimensions, speed, inclusion property,
– size of cache lines, tags, control bits/flags
– Misses: 4 C’s

• Address transformation
– Virtual memory -> Physical address

• Access in parallel with TLB
– Virtually indexed, physically tagged

• Average memory access time =
Hit time + Miss rate * Miss penalty
Formula extends to multiple layers
Does out of order execution help?



Ap C: Memory
6 Basic Cache Optimizations in 3 categories
• Reducing the miss rate:

larger block size, larger cache size, higher
associativity

• Reducing the miss penalty:
multilevel caches, reads get priority over writes

• Reducing time to hit the cache:
avoid index translation when indexing the cache

Misses: compulsory, capacity, conflict, coherence



C 2: ILP
Challenge:

– Reorganize execution of instructions to utilize all units as much as
possible to speed up calculations

Obstacles:
Hazards: Control, Functional, Data (RAW,WAW,WAR)

Options:
– Compiler techniques: loop unrolling
– Branch prediction, static, dynamic, branch history table, 2-bit

prediction scheme, local vs global/correlating predictor, tournament
predictor

– Dynamic scheduling, hardware based speculation
• Tomasulo: reservation station, common data bus, register renaming,

issue in order, exec ooo, complete ooo, precise exceptions?
• Tomasulo + speculation: ROB, commit in order
• Register renaming

– Multiple Issue
• Statically/dynamically scheduled super scalar processor, VLIW

processors
– Instruction delivery and speculation, BTB



C 3: ILP limits
Simulation study to evaluate design space:
• Register renaming
• Branch prediction, jump prediction
• Memory address alias analysis
• Perfect caches
Spec benchmarks: limited ILP potential
More realistic assumptions reduce potential even

further
• Limited window size, maximum issue count
• Realistic branch and jump prediction
• ..
Also: uniform & extremely fast memory access



C 3: ILP limits
Superscalar processors & TLP:
• Coarse-grained, fine-grained and simultaneous

multithreading
• Challenges:

– Larger register file
– Not affecting clock cycle (issue & commit stages)
– Cache & TLP conflicts do not degrade performance

• Moderate level of TLP can be supported with little
extra HW effort
– Example Power4 -> Power5 with SMT

• Future trends:
– superscalar processors to expensive to push further
– Also wrt power consumption -> Multiproc, multicore



C 4: Multiprocessors & TLP
• Flynn’s taxonomy
• Centralized shared-memory vs distributed memory

multiprocessor design
• Cache coherence

– Snooping protocol vs directory-based protocol
– 3 state finite state machine / automaton
– Per cache line, (also memory for directory)
– Reacts on CPU read/write requests
– Reacts on bus read miss,write miss, invalidate requests
– Cache can contain no data, right data, wrong data and

be in state invalid, shared, exclusive
– Coherence traffic increases with #processors, does not

decrease with larger size of cache



C 4: Multiprocessors & TLP
• Synchronization

– Primitives: exchange, test&set, fetch&increment
Implemented with
– Pair of instructions: load linked, store conditional
Implementing locks with primitives
– Spin locks
Used to protect access to monitor/lock that synchronizes

threads and keeps queue of waiting threads e.g. in Java



Ap F: Vector processors
• ISA includes vector operations & vector registers

(Also in ordinary processors: SSE and Altivec for short vectors)
• Code:

– Concise: single instructions carries a lot of work to do
– No dependencies inside vector operation
– Stripmining

• Memory access
– Regular (possible with constant strides) for load & store

• Functional units
– Accesses same units, allows for lanes to parallelize

• Execution:
– Vector chaining
– Gather/scatter with indirect memory access
– Conditional execution
– Compress/expand operations


