A Weak Bisimulation for Weighted Automata

Peter Kemper College of William and Mary

- Weighted Automata and Semirings
 - here focus on commutative & idempotent semirings
- Weak Bisimulation
- Composition operators
- Congruence property

Motivation

Notions of equivalence have been detected for many notations:

- process algebras
- automata
- stochastic processes

Equivalences are useful

- for a theoretical investigation of equivalent behaviour
- increasing the efficiency of analysis techiques by
 - minimization to the smallest equivalent automaton
 - composition of minimized automata

requires congruence property!

Many different equivalences exist:

trace-equivalence, failure equivalence, strong / weak bisimulation, ...

We consider a weak bisimulation for automata whose nodes and edges are annotated by labels and weights.

Weights are elements of an algebra -> a semiring.

Semiring

- Semiring $K_{+,*} = (K,+,*,0,1)$ Operations + and * defined for K have the following properties
 - associative: + and *
 - commutative: +
 - right/left distributive for + with respect to *
 - 0 and 1 are additive and multiplicative identities with 0 \neq 1
 - for all $k \in K \ 0 * k = k * 0 = 0$
- What is so special?

Similar to a ring, but each element need not(!) have an additive inverse.

- Special cases:
 - Idempotent semiring (or Dioid): + is idempotent: a+a=a
 - Commutative semiring: * is commutative

Semiring

Alternative definition

- A semiring is a set K equipped with two binary operations + and \cdot , called addition and multiplication, such that:
- (K, +) is a commutative monoid with identity element 0:
 - (a + b) + c = a + (b + c)
 - 0 + a = a + 0 = a
 - a + b = b + a
- (K, \cdot) is *a* monoid with identity element 1:
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - $-1 \cdot a = a \cdot 1 = a$
- Multiplication distributes over addition:
 - $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$
- 0 annihilates K:
 - $0 \cdot a = a \cdot 0 = 0$

Semiring

- Semiring $K_{+,*} = (K,+,*,0,1)$
- Examples
 - Boolean semiring
 - Real numbers
 - max/+ semiring
 - min/+ semiring
 - max/min semiring
 - square matrices

g $(B, \vee, \wedge, 0, 1)$ (R, +, *, 0, 1) $(R \cup -\infty, \max, +, -\infty, 0)$ $(R \cup \infty, \min, +, \infty, 0)$ $(R \cup -\infty \cup \infty, \max, \min, -\infty, \infty)$ $(R^{n \times n}, +, *, 0, 1)$

- A Kleene algebra is an idempotent semiring R with an additional unary operator $* : R \rightarrow R$ called the Kleene star. Kleene algebras are important in the theory of formal languages and regular expressions.

Idempotent Semiring

Let's define a partial order ≤ on an idempotent semiring:
a ≤ b whenever a + b = b

(or, equivalently, if there exists an x such that a + x = b).

- Observations:
 - 0 is the least element with respect to this order: $0 \le a$ for all a.
 - Addition and multiplication respect the ordering :
 - $a \le b$ implies

ac \leq bc ca \leq cb (a+c) \leq (b+c)

Kleene Algebra

- A Kleene algebra is a set A with two binary operations +: A \times A \rightarrow A and \cdot : A \times A \rightarrow A and one function *: A \rightarrow A, (Notation: a+b, ab and a*) and
- Associativity of + and -, Commutativity of +
- Distributivity of over +
- Identity elements for + and ': exists 0 in A such that for all a in A: a + 0 = 0 + a = a. exists 1 in A such that for all a in A: a1 = 1a = a.
- a0 = 0a = 0 for all a in A.

The above axioms define a semiring.

We further require:

• + is idempotent: a + a = a for all a in A.

Kleene Algebra

• Let's define a partial order \leq on A:

 $a \le b$ if and only if a + b = b

(or equivalently: $a \le b$ if and only if exists x in A such that a + x = b).

With this order we can formulate the last two axioms about the operation *:

- $1 + a(a^*) \le a^*$ for all a in A.
- $1 + (a^*)a \le a^*$ for all a in A.
- if a and x are in A such that $ax \le x$, then $a^*x \le x$
- if a and x are in A such that $xa \le x$, then $x(a^*) \le x$

Think of

a + b as the "union" or the "least upper bound" of a and b and of

ab as some multiplication which is monotonic, in the sense that $a \le b$ implies $ax \le bx$.

The idea behind the star operator is $a^* = 1 + a + aa + aaa + ...$

From the standpoint of programming theory, one may also interpret + as "choice", • as "sequencing" and * as "iteration".

• Example: Set of regular expressions over a finite alphabet

Weighted Automaton

A finite K-Automaton over finite alphabet L (including τ) is $A = (S, \alpha, T, \beta)$ with S : finite set of states and maps giving initial, transition and final weights. $\alpha : S \rightarrow K,$ $T : S \times L \times S \rightarrow K,$

 $\beta: S \to K$

E.g. weights interpreted as costs, distances, time, ... Weights multiply along a path, sum up over different paths.

We focus on commutative and idempotent K-automata, i.e., K is a semiring where * is commutative and + is idempotent! Examples

- Boolean semiring
- max/+ semiring
- min/+ semiring
- max/min semiring

Transitions are described by matrices Idempotency implies:

$$\sum_{k=0}^{\infty} \mathbf{A}^{\mathbf{k}} = \sum_{k=0}^{\infty} \mathbf{A}^{\mathbf{k}} \cdot \sum_{k=0}^{\infty} \mathbf{A}^{\mathbf{k}}$$

- Boolean semiring,
 - weights encode existence / non-existence of paths in directed graphs
 - labels serve the same purpose, hence weights are usually omitted
 - idempotency is guite natural:
 - existence of a paths remains valid in case of multiple paths
- Max/+ semiring
 - interpretation
 - weights are multiplied along a path, * is +, weight of a path is the sum over all edge weights
 - sum over all paths starting at a node is given by max, hence the path with highest weight is taken (snob if these are costs, greedy if this is profit)
- Max/Min semiring
 - interpretation
 - weight of a path: * is min, weight of a path gives minimal weight of its edges
 - sum over paths: + is max, selects path whose bottleneck has largest capacity

Some more notation

 Weight of path π or by vectors/matrices

$$w(\pi) = \alpha(s_0) \cdot \left(\prod_{i=1}^n T(s_{i-1}, l_i, s_i) \right) \beta(s_n)$$

= $\mathbf{a}(s_0) \left(\prod_{i=1}^n \mathbf{M}_{\mathbf{li}}(s_{i-1}, s_i) \right) (s_n)$

- Weight of sequence σ $w(\sigma) = \mathbf{a} \cdot \left(\prod_{i=1}^{n} \mathbf{M}_{li} \right) \mathbf{b}$
- Define automaton A* where sequences of τ -transitions are replaced by single ϵ transition.

$$\mathbf{M}_{\varepsilon} = \mathbf{M}_{\tau}^{*} = \sum_{i=0}^{\infty} \mathbf{M}_{\tau}^{i}, \qquad \mathbf{M}_{l} = \mathbf{M}_{\varepsilon} \cdot \mathbf{M}_{l} \cdot \mathbf{M}_{\varepsilon}^{i}, \quad \mathbf{b} = \mathbf{M}_{\varepsilon} \cdot \mathbf{b}$$

• Weight of sequence σ^{\prime}

$$w'(\sigma') = \mathbf{a} \cdot \left(\prod_{i=1}^{n} \mathbf{M}_{li} \right) \mathbf{b}'$$

= $\mathbf{a} \cdot \left(\prod_{i=1}^{n} \mathbf{M}_{\varepsilon} \left(\mathbf{M}_{li} \cdot \mathbf{M}_{\varepsilon} \right) \mathbf{M}_{\varepsilon} \right) \mathbf{M}_{\varepsilon} \cdot \mathbf{b}$
= $\mathbf{a} \cdot \left(\prod_{i=1}^{n} \mathbf{M}_{\varepsilon} \left(\mathbf{M}_{li} \right) \mathbf{M}_{\varepsilon} \right) \mathbf{M}_{\varepsilon} \cdot \mathbf{b}$

Weak bisimulation of K-automata

An equivalence relation $R \subseteq S \times S$ is a weak bisimulation relation

if for all $(s_1, s_2) \in R$, all $l \in L \setminus \{\tau\} \cup \{\varepsilon\}$, all equivalence classes $C \in S / R$

$\alpha(s_1) = \alpha(s_2)$	or	$\mathbf{a}(s_1) = \mathbf{a}(s_2)$
$\beta'(s_1) = \beta'(s_2)$	terms	$\mathbf{b}'(s_1) = \mathbf{b}'(s_2)$
$T'(s_1,l,C) = T'(s_2,l,C)$	ot matrices	$\mathbf{M'}_l(s_1, C) = \mathbf{M'}_l(s_2, C)$

Two states are weakly bisimilar, $s_1 \approx s_2$, if $(s_1, s_2) \in \mathbb{R}$

Two automata are weakly bisimilar, $A_1 \approx A_2$, if there is a weak bisimulation on the union of both automata such that $\alpha(C_1) = \alpha(C_2)$ for all $C \in S / R$

If $A_1 \approx A_2$ for Ki - Automata A_1, A_2 then $w_1'(\sigma) = w_2'(\sigma)$ for all $\sigma \in L'^*$ where $L' = (L_1 \cup L_2) \setminus \{\tau\} \cup \{\varepsilon\}$

Weights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of labels, may start or stop at any state

Weakly ? Paths can contain subpaths of τ -labeled transitions represented by a single ϵ -labeled transition.

Example

is weakly bisimilar for max/+ semiring

is weakly bisimilar for min/max semiring

is weakly bisimilar for min/+ and max/min semiring

Deloping further

- consider largest bisimulation, i.e. the one with fewest classes
 - same argumentation as for Milner's CCS
- computation by O(nm) fix point algorithm, n states, m edges
 - starting from boolean semiring as in the concurrency workbench (Cleaveland, Parrows, Steffen)
 - extended to semiring of real numbers by Buchholz
 - extension to more general semirings straightforward
 - more efficient ones like O(n log m) as for boolean semiring ???
 - presupposes also computation of A^*
- bisimulation useful if preserved by composition operations (congruence property)
 - composition operations for automata ?
 - sum

direct or cascaded product

- synchronized product
- specific type of choice

good news: these are all ok !!! but how are they defined ?

- Sum
 - union of automata with no interaction
- Direct or cascaded product
 - build union of state sets and labels
 - take initial weights only from first automaton
 - take final weights only from second automaton
 - connect first with second automaton by new τ -transitions between final states of first, initial states of second automaton

- Sum
 - union of automata with no interaction
- Direct or cascaded product
 - build union of state sets and labels
 - take initial weights only from first automaton
 - take final weights only from second automaton
 - connect first with second automaton by new tau-transitions between final states of first, initial states of second automaton

- Synchronized product (with subset of labels for synchronisation)
 - build cross product of state sets, union of label sets
 - take product of initial weights
 - take product of final weights
 - take product of transition weights in case of synch otherwise proceed independently
 - Note: free product is special case with empty set of labels for synchronisation

- Synchronized product (with subset of labels for synchronisation)
 - build cross product of state sets, union of label sets
 - take product of initial weights
 - take product of final weights
 - take product of transition weights in case of synch otherwise proceed independently
 - Note: free product is special case with empty set of labels for synchronisation
- Choice
 - connects automata by merging only initial states
 - initial states must be unique and have initial weight 1 and equal final weights

Theorem

If $A_1 \approx A_2$ and A_3 are finite Ki - Automata then 1. $A_1 + A_3 \approx A_2 + A_3$ 2. $A_1 \cdot A_3 \approx A_2 \cdot A_3$ and $A_2 \cdot A_3 \approx A_1 \cdot A_3$ 3. $A_1 \parallel_{L_C} A_3 \approx A_2 \parallel_{L_C} A_3$ and $A_3 \parallel_{L_C} A_1 \approx A_3 \parallel_{L_C} A_2$ and if choice is defined then 4. $A_1 \vee A_3 \approx A_2 \vee A_3$ and $A_3 \vee A_1 \approx A_3 \vee A_2$

direct product

direct sum

synchronized product

choice

Some notes on proofs:

- proofs are lengthy,
- argumentation based matrices helps,
- argumentation along paths, resp. sequences more tedious
- idempotency simplifies valuation for concatenation of $\tau^* I \tau^*$ transitions
- note that algebra does not provide inverse elements wrt + and *

Summary

- Weak Bisimulation for weighted automata over commutative and idempotent semirings
- Congruence for
 - sum
 - direct or cascaded product
 - synchronized product
 - specific choice operator

References:

- P.Buchholz, P.Kemper: Weak bisimulation for (max/+) automata and related models; Journal of Automata, Languages and Combinatorics, Vol 8, Number 2, 2003.
- P.Buchholz, P.Kemper: Quantifying the dynamic behaviour of process algebras; Proc. joint PAPM/ProbMIV w´shop, Springer LNCS 2165, 2001.