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e Weighted Automata and Semirings
e here focus on commutative & idempotent semirings
e Weak Bisimulation
e Composition operators
e Congruence property



Motivation

Notions of equivalence have been detected for many notations:
e process algebras

e automata

e stochastic processes

Equivalences are useful

o for a theoretical investigation of equivalent behaviour

e increasing the efficiency of analysis techiques by
— minimization to the smallest equivalent automaton
— composition of minimized automata
requires congruence property!

Many different equivalences exist:

trace-equivalence, failure equivalence, strong / weak bisimulation, ...

We consider a weak bisimulation for automata whose nodes and edges are
annotated by labels and weights.

Weights are elements of an algebra -> a semiring.



Semiring
Semiring K, « = (K,+,%,0,1)

Operations + and * defined for K have the following properties
— associative: + and *
— commutative: +
— right/left distributive for + with respect to *
— 0 and 1 are additive and multiplicative identities with 0 = 1

- forall feK 0%k =k*0=0

What is so special?
Similar to a ring, but each element need not(!) have an additive inverse.

Special cases:
— Idempotent semiring (or Dioid): + is idempotent: a+a=a
— Commutative semiring: * is commutative



Semiring

Alternative definition

A semiring is a set K equipped with two binary operations + and -, called addition and
multiplication, such that:
(K, +) is a commutative monoid with identity element O:
— (@a+b)+c=a+Mb+c)
— O+a=a+0=a
— a+b=b+a
(K, -) is a monoid with identity element 1:
— (ab)-c=a-(b-c)
- la=al1=a
Multiplication distributes over addition:
— a(b+c)=(ab) + (ac)
— (a+b)c=(ac)+ (b
0 annihilates K:
— 0a=a0=0



Semiring

* Semiring K, .« = (K,+,%,0,1)
e Examples
— Boolean semiring  (B,v,A,0,]1)
— Real numbers (R,+,*,O,1)
— max/+ semiring (R U —OO,maX,+,—OO,O)
— min/+ semiring (R U 0, min, +, oo,())
— max/min semiring (R U —oo U 00. Max. min.—oo oo)
— square matrices (R xn L 1’) ’ >0

— A Kleene algebra is an idempotent semiring R with an additional unary
operator * : R = R called the Kleene star. Kleene algebras are
important in the theory of formal languages and regular expressions.



Idempotent Semiring

o Let's define a partial order < on an idempotent semiring:
a < bwhenevera+b=>b
(or, equivalently, if there exists an x such that a + x = b).
e Observations:
— 0 is the least element with respect to this order:
0 < afor all a.
— Addition and multiplication respect the ordering :
a < b implies
ac < bc
ca<ch
(a+c) < (b+0)



Kleene Algebra

A Kleene algebra is a set A with two binary operations + : A x A
— Aand - : A X A= Aandone function * : A = A,
(Notation: a+b, ab and a*) and

e Associativity of + and *, Commutativity of +
o Distributivity of * over +

e Identity elements for + and *:
exists 0in AsuchthatforallainA:a+0=0+a = a.
exists 1 in A such that for allain A: al = 1a = a.

e a0 = 0a =0 forallainA.

The above axioms define a semiring.

We further require:

e + isidempotent: a + a = a for all a in A.



Kleene Algebra

o Let's define a partial order < on A:
a<bifandonlyifa+b=Db
(or equivalently: a < b if and only if exists x in A such thata + x = b).
With this order we can formulate the last two axioms about the operation *:
e 1+ a(a*) <a*forallainA.
e 1+ (a%¥)a<a*forallainA.
e jifaandx arein A such that ax < x, then a*x < x
e ifaandxarein A such that xa < x, then x(a*) < x
Think of
a + b as the "union" or the "least upper bound" of a and b and of

ab as some multiplication which is monotonic, in the sense thata < b
implies ax < bx.

The idea behind the star operatorisa* =1+ a + aa + aaa + ...

From the standpoint of programming theory, one may also interpret + as
"choice", * as "sequencing" and * as "iteration".

o Example: Set of regular expressions over a finite alphabet



Weighted Automaton
A finite K-Automaton over finite alphabet L (including t ) is 4 = (S,a,T, [3’)

with S : finite set of states and maps a:S—K,
giving initial, transition and final weights. T-SxLxS—K
p:S—=K

E.g. weights interpreted as costs, distances, time, ...
Weights multiply along a path, sum up over different paths.

We focus on commutative and idempotent K-automata, i.e.,
K is a semiring where * is commutative and + is idempotent!
Examples

— Boolean semiring
— max/+ semiring

— min/+ semiring E;CO:O Ak = E/o::() Ak ) E?:() Ak
— max/min semiring

Transitions are described by matrices
ldempotency implies:



Examples

b,2 —» Labelis t,1
a, 1 @ Initial weight = 1
. Final weight = 1

Yy

g b,1
e Boolean semiring,

— weights encode existence / non-existence of paths in directed graphs
— labels serve the same purpose, hence weights are usually omitted
— idempotency is quite natural:
e existence of a paths remains valid in case of multiple paths
e Max/+ semiring
— interpretation

e weights are multiplied along a path, * is +, weight of a path is the sum over all
edge weights

e sum over all paths starting at a node is given by max, hence the path with
highest weight is taken (snob if these are costs, greedy if this is profit)

e Max/Min semiring
— interpretation
e weight of a path: * is min, weight of a path gives minimal weight of its edges

e sum over paths: + is max, selects path whose bottleneck has largest capacity
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Some more notation

Welght of path JT W(.TL’) = OC(SO)° (fl;-LlT(Si_l,ll’,Si)) ﬁ(Sn)

or by vectors/matrices  _ a( So)(ﬂ?=1Mli (Si_l,si)))(sn)

Weight of sequence o w(o)=a- (ﬂ;’;lM i )b
Define automaton A* where sequences of t-transitions are

replaced by single ¢ transition.

M, =M, = SM., M,'=M,"M, M,

E O
i=0

Weight of sequence 6° w'(0")=a- ( __;’=1Mh-’)b’
( __?=1M8 ’Mll' ' Ms ) Ms “b
=4ar (r.:zthe ,Mlz' )Mg b

b'=M, b

=Qqa4°
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Weak bisimulation of K-automata

An equivalence relation R C § x .S is a weak bisimulation relation
if forall(s;,s,)ER,all/EL\{T}U {e}, all equivalence classes CES /R

a(sy) =a(s,) i‘;r a(sy) =a(s,)
B(s1)=p"(s2) tirms b'(s1) =b’(sy)

T,(SI,I,C)=T,(S2,I,C) MIZ(SI,C)=M,Z(S2,C)

matrices

Two states are weakly bisimilar, s; =s, , if (51,5,)ER

Two automata are weakly bisimilar, 4; = 4, , if there is a
weak bisimulation on the union of both automata such that

a(C)) =a(C,)forallCES/R
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Theorem

It 4, = A4, for Ki- Automata 4;, 4, then w, (0) = w, (0)
forallo€e L *where L'=(L; U Ly)\{T} U {¢}

Weights of sequences are equal in weakly bisimilar automata.
Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of labels,
may start or stop at any state

Weakly ? Paths can contain subpaths of t-labeled transitions represented by a
single ¢-labeled transition.
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Example

Is weakly bisimilar

:. for
|4

e
F

b, e0 max/+
semiring
a,z2
T % a1 is weakly bisimilar
’ > for
a, b1 L4 min/max
> semiring
b,1
n a,2 Is weakly bisimilar
(o) 2(2) for
b, I_+ min/+
a,1 and
b,1 max/min

semiring
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Deloping further

consider largest bisimulation, i.e. the one with fewest classes

same argumentation as for Milner's CCS

computation by O(nm) fix point algorithm, n states, m edges

starting from boolean semiring as in the concurrency workbench (Cleaveland,
Parrows, Steffen)

extended to semiring of real numbers by Buchholz

extension to more general semirings straightforward

more efficient ones like O(n log m) as for boolean semiring ??7?
presupposes also computation of A*

bisimulation useful if preserved by composition operations (congruence
property)

composition operations for automata ?

sum

direct or cascaded product

synchronized product

specific type of choice good news: these are all ok !!!
but how are they defined ?
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Composition operations

e Sum
— union of automata with no interaction

e Direct or cascaded product
— build union of state sets and labels
— take initial weights only from first automaton . Final weight = 3

— take final weights only from second automaton

— connect first with second automaton by new t-transitions between final
states of first, initial states of second automaton

a,z2
o 7 .g

by
a,1

b,1

—p Labelis t,1
Q© Initial weight = 2
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Composition operations

e Sum
— union of automata with no interaction

e Direct or cascaded product
— build union of state sets and labels
— take initial weights only from first automaton . Final weight = 3
— take final weights only from second automaton

— connect first with second automaton by new tau-transitions between
final states of first, initial states of second automaton

—p Labelis t,1
Q© Initial weight = 2

a,2 a,2
4 6)
b,2 0,2 % 4
: a,1
a,
>(s b,1
b,1

—p Labelis t,2%3
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Composition operations

e Synchronized product (with subset of labels for synchronisation)

build cross product of state sets, union of label sets
take product of initial weights
take product of final weights

take product of transition weights in case of synch otherwise proceed
independently

Note: free product is special case with empty set of labels for synchronisation

0)

n a,2 2 T,1+1 T,1+1
(o, *(1) B 2 ® Synch on {a} [¥ b2 »

b,2 u b,2 u @ .
b,2$%f£b,2

(4 b2 L4

t,1+1 t,1+1
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Composition operations

e Synchronized product (with subset of labels for synchronisation)
— build cross product of state sets, union of label sets
— take product of initial weights
— take product of final weights

— take product of transition weights in case of synch otherwise proceed
independently

— Note: free product is special case with empty set of labels for synchronisation
e Choice

— connects automata by merging only initial states
— initial states must be unique and have initial weight 1 and equal final weights

a,z2
B ® Mﬂ

2 |4 az
B :2 N.u

21
L4

b,2
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Theorem

If A; = A, and A5 are finite K1 - Automata then

1. Al + A3 =~ A2 + A3 direct sum

2. Al : A3 =~ A2 ’ A3 and A2 ’ A3 =~ Al ’ A3 direct product

3. Al ||LC A3 =~ A2 ||LC A3 and A3 ||LC Al ~ A3 ||LC Az syné:hr(t)nized
proauc

and 1f choice 1s defined then
4. Al VvV A3 ~ A2 V A3 and A3 V Al ~ A3 V Az choice

Some notes on proofs:

e proofs are lengthy,

e argumentation based matrices helps,

e argumentation along paths, resp. sequences more tedious

e idempotency simplifies valuation for concatenation of t*| t* transitions
e note that algebra does not provide inverse elements wrt + and *
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Summary

e Weak Bisimulation for weighted automata over commutative
and idempotent semirings

e Congruence for
— sum
— direct or cascaded product
— synchronized product
— specific choice operator
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