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A Weak Bisimulation for Weighted Automata

Peter Kemper
College of William and Mary

• Weighted Automata and Semirings
• here focus on commutative & idempotent semirings

• Weak Bisimulation
• Composition operators
• Congruence property
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Motivation
Notions of equivalence have been detected for many notations:
• process algebras
• automata
• stochastic processes
Equivalences are useful
• for a theoretical investigation of equivalent behaviour
• increasing the efficiency of analysis techiques by

– minimization to the smallest equivalent automaton
– composition of minimized automata
requires congruence property!

Many different equivalences exist:
trace-equivalence, failure equivalence, strong / weak bisimulation, ...

We consider a weak bisimulation for automata whose nodes and edges are
annotated by labels and weights.

Weights are elements of an algebra -> a semiring.
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Semiring

• Semiring
Operations + and * defined for K have the following properties
– associative: + and *
– commutative: +
– right/left distributive for + with respect to *
– 0 and 1 are additive and multiplicative identities with 0 ≠ 1

– for all

• What is so special?
Similar to a ring, but each element need not(!) have an additive inverse.

• Special cases:
– Idempotent semiring (or Dioid): + is idempotent: a+a=a
– Commutative semiring: * is commutative

00**0  ==! kkKk

)1,0,*,,(,* +=+ KK
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Semiring
Alternative definition
A semiring is a set K equipped with two binary operations + and ·, called addition and

multiplication, such that:
• (K, +) is a commutative monoid with identity element 0:

– (a + b) + c = a + (b + c)
– 0 + a = a + 0 = a
– a + b = b + a

• (K, ·) is a monoid with identity element 1:
– (a·b)·c = a·(b·c)
– 1·a = a·1 = a

• Multiplication distributes over addition:
– a·(b + c) = (a·b) + (a·c)
– (a + b)·c = (a·c) + (b·c)

• 0 annihilates K:
– 0·a = a·0 = 0
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Semiring

• Semiring

• Examples
– Boolean semiring
– Real numbers
– max/+ semiring
– min/+ semiring
– max/min semiring
– square matrices

– A Kleene algebra is an idempotent semiring R with an additional unary
operator * : R → R called the Kleene star. Kleene algebras are
important in the theory of formal languages and regular expressions.

)1,0,*,,(,* +=+ KK

)1,0,,,( !"B
)1,0,*,,( +R

)0,,max,,( !"+!"#R

)1,0,*,,( +
!nn

R

)0,,min,,( !+!"R
),min,max,,( !"!!#"!#R
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Idempotent Semiring

• Let’s define a partial order ≤ on an idempotent semiring:
a ≤ b whenever a + b = b

(or, equivalently, if there exists an x such that a + x = b).
• Observations:

– 0 is the least element with respect to this order:
0 ≤ a for all a.

– Addition and multiplication respect the ordering :
 a ≤ b implies

ac ≤ bc
ca ≤ cb
(a+c) ≤ (b+c)



7

Kleene Algebra

A Kleene algebra is a set A with two binary operations + : A × A
→ A and · : A × A → A and one function * : A → A,
(Notation: a+b, ab and a*) and

• Associativity of + and ·, Commutativity of +
• Distributivity of · over +
• Identity elements for + and ·:

exists 0 in A such that for all a in A: a + 0 = 0 + a = a.
exists 1 in A such that for all a in A: a1 = 1a = a.

• a0 = 0a = 0 for all a in A.
The above axioms define a semiring.
We further require:
• + is idempotent: a + a = a for all a in A.
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Kleene Algebra
• Let’s  define a partial order ≤ on A:

a ≤ b if and only if a + b = b
(or equivalently: a ≤ b if and only if exists x in A such that a + x = b).

With this order we can formulate the last two axioms about the operation *:
• 1 + a(a*) ≤ a* for all a in A.
• 1 + (a*)a ≤ a* for all a in A.
• if a and x are in A such that ax ≤ x, then a*x ≤ x
• if a and x are in A such that xa ≤ x, then x(a*) ≤ x
Think of

a + b as the "union" or the "least upper bound" of a and b and of
 ab as some multiplication which is monotonic, in the sense that a ≤ b
implies ax ≤ bx.

The idea behind the star operator is a* = 1 + a + aa + aaa + ...
From the standpoint of programming theory, one may also interpret + as

"choice", · as "sequencing" and * as "iteration".
• Example: Set of regular expressions over a finite alphabet
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Weighted Automaton
A finite K-Automaton over finite alphabet L (including  τ ) is

with S : finite set of states and maps
giving initial, transition and final weights.

E.g. weights interpreted as costs, distances, time, ...
Weights multiply along a path, sum up over different paths.

We focus on commutative and idempotent K-automata, i.e.,
K is a semiring where * is commutative and + is idempotent!
Examples

– Boolean semiring
– max/+ semiring
– min/+ semiring
– max/min semiring

),,,( !" TSA =

,: KS !"

Transitions are described by matrices
Idempotency implies:

!"!=! #
=

#
=

#
= 000 kkk

kkk
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,: KSLST !""

KS !:"



10

Examples

• Boolean semiring,
– weights encode existence / non-existence of paths in directed graphs
– labels serve the same purpose, hence weights are usually omitted
– idempotency is quite natural:

• existence of a paths remains valid in case of multiple paths
• Max/+ semiring

– interpretation
• weights are multiplied along a path, * is +, weight of a path is the sum over all

edge weights
• sum over all paths starting at a node is given by max, hence the path with

highest weight is taken (snob if these are costs, greedy if this is profit)
• Max/Min semiring

– interpretation
• weight of a path: * is min, weight of a path gives minimal weight of its edges
• sum over paths: + is max, selects path whose bottleneck has largest capacity

0 1

2

3

4

5

a,2

b,2

a,1

b,1

Label is τ,1
Initial weight = 1

Final weight = 1
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Some more notation

• Weight of path π

or by vectors/matrices

• Weight of sequence σ

• Define automaton A* where sequences of τ-transitions are
replaced by single ε transition.

• Weight of sequence σ´
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Weak bisimulation of K-automata
An equivalence relation is a weak bisimulation relation
if

Two states are weakly bisimilar, , if

Two automata are weakly bisimilar, , if there is a
weak bisimulation on the union of both automata such that
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Theorem

Weights of sequences are equal in weakly bisimilar automata.

Ki ? commutative and idempotent semiring K

Sequence? sequence considers all paths that have same sequence of labels,
may start or stop at any state

Weakly ? Paths can contain subpaths of τ-labeled transitions represented by a
single ε-labeled transition.
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Example
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for 
min/max
semiring



15

Deloping further
• consider largest bisimulation, i.e. the one with fewest classes

– same argumentation as for Milner´s CCS
• computation by O(nm) fix point algorithm, n states, m edges

– starting from boolean semiring as in the concurrency workbench (Cleaveland,
Parrows, Steffen)

– extended to semiring of real numbers by Buchholz
– extension to more general semirings straightforward
– more efficient ones like O(n log m) as for boolean semiring ???
– presupposes also computation of A*

• bisimulation useful if preserved by composition operations (congruence
property)
– composition operations for automata ?

sum
direct or cascaded product
synchronized product
specific type of choice good news: these are all ok !!!

but how are they defined ?
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Composition operations

• Sum
– union of automata with no interaction

• Direct or cascaded product
– build union of state sets and labels
– take initial weights only from first automaton
– take final weights only from second automaton
– connect first with second automaton by new τ-transitions between final

states of first, initial states of second automaton
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Label is τ,1
Initial weight = 2

Final weight = 3
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Composition operations

• Sum
– union of automata with no interaction

• Direct or cascaded product
– build union of state sets and labels
– take initial weights only from first automaton
– take final weights only from second automaton
– connect first with second automaton by new tau-transitions between

final states of first, initial states of second automaton
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Initial weight = 2

Final weight = 3

Label is τ,2*3
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Composition operations
• Synchronized product (with subset of labels for synchronisation)

– build cross product of state sets, union of label sets
– take product of initial weights
– take product of final weights
– take product of transition weights in case of synch otherwise proceed

independently
– Note: free product is special case with empty set of labels for synchronisation

0 1
a,2

b,2
0 1

a,2

b,2 0,0 1,0

a,2*2

b,2

0,1 1,1

τ,1+1

b,2

Synch on {a}

b,2b,2

τ,1+1

τ,1+1 τ,1+1
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Composition operations
• Synchronized product (with subset of labels for synchronisation)

– build cross product of state sets, union of label sets
– take product of initial weights
– take product of final weights
– take product of transition weights in case of synch otherwise proceed

independently
– Note: free product is special case with empty set of labels for synchronisation

0 1
a,2

b,2

0 1
a,2

b,2

• Choice
– connects automata by merging only initial states
– initial states must be unique and have initial weight 1 and equal final weights

0 1a,2
b,2

2

a,2
b,2
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Theorem

Some notes on proofs:
• proofs are lengthy,
• argumentation based matrices helps,
• argumentation along paths, resp. sequences more tedious
• idempotency simplifies valuation for concatenation of  τ*l τ* transitions
• note that algebra does not provide inverse elements wrt + and *
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Summary

• Weak Bisimulation for weighted automata over commutative
and idempotent semirings

• Congruence for
– sum
– direct or cascaded product
– synchronized product
– specific choice operator
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