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Abstract
Resources in large logistic networks are occasionally un-
available or malfunctioning. This implies that perfomability
becomes an issue for quantitative analysis of logistic net-
works. Different time scales between failures and normal
operation often justify the decomposition of a performabil-
ity model into a single availability model that considers fail-
ures and recovery of resources and a family of performance
models whose individual instances depend on the state of
resources. In this paper, we present an approach that sim-
ulates a set of performance models independently and in a
distributed manner on a network of workstations. We pro-
pose to optimize the achievable quality of results for a given
total amount of CPU time by minimizing the confidence in-
tervals for performability measures. This is possible by an
adaptive assignment of CPU time to simulate those models
whose results have the largest impact on the width of confi-
dence intervals.

1 Introduction

Quantitative analysis of a large logistic network is an im-
portant and challenging task during its development and op-
eration. Key measures like throughput, sojourn times, cost
of operation or usage of resources are usually computed
by simulating a model of the system rather than perform-
ing experiments with the system itself. Among the many
modeling formalisms known for dynamic systems, process-
oriented notations are particularly useful in that applica-
tion area. The ProC/B approach in [1] is one example of
such a modeling formalism for logistic networks. The cor-
responding ProC/B toolset provides a variety of analysis
techniques including simulation for the analysis of ProC/B
models. Quantitative results of logistic networks or pro-
cess chains depend on two parts, the load and the available
resources to process that load. In practice, the perceived
performance varies over time due to failure, malfunction,
maintenance, repair and replacement of resources. In com-
puter or communication systems, the concept performabil-
ity [7] reflects these issues. A transfer of performability
methods for computer and communication systems [4] to-

wards logistic networks is not straightforward. The major
difference is that the performance part of a performability
model for a computer system is often adequately described
by a product form queueing network but a model for a logis-
tic network usually requires features that exceed what can
be expressed by queueing networks. In consequence, the ef-
ficient algorithms employed for queueing network analysis
of models of computer systems do not apply and simulation
becomes the method of choice. On the other hand, there are
similarities as well. For instance, normal operation and fail-
ure/repair actions typically perform on different time scales.
In addition, the dependancy between performance of a sys-
tem and availability is often only one-sided, i.e., the per-
formance depends on availability of resources but not vice
versa. These two observations lead us to a time scale de-
composition approach where the availability part of a per-
formability model is analyzed numerically as a continuous
time Markov chain. The results of the availability analysis
determine a family of performance models that are subse-
quently analyzed by simulation. We propose a distributed
simulation on a network of workstations and describe how
the work load is distributed in order to minimize confidence
intervals of reward estimators.
The paper is stuctured as follows. Section 2 briefly in-
troduces performability modeling and analysis of logistic
networks. It proposes the decomposition approach and dis-
cusses issues of distributed simulation. In Section 3, we
describe a case study. A model of warehouse is analyzed
and we discuss benefits and limits of our approach.

2 Performability Models

From an application point of view, logistic networks han-
dle orders that are issued by customers. Procurement of or-
ders takes place by a single company or a network of com-
panies that collaborate. A single company can consider its
way of handling an order as a service that consists of a num-
ber of individual actions or steps that are either taken care
of by own units (divisions, departments, groups, individual
members of staff) or by some external partners (outsourc-
ing). The notion of a service that is provided someone and
requested by someone else serves the purpose of structuring



a complex world. It gives a separation of concerns as well
as a separation of resources and resource consumption.
The ProC/B formalism supports hierarchically structured
models based on the notion of service in the aforegoing
manner. The hierarchy is based on service calls (like func-
tion calls in a programming language) and inclusion of re-
source in the sense that a functional unit provides services
whose detailed description resembles actions which in turn
are performed as services of a (contained) resource. Ba-
sic resources for time consumption (an active resource like
a server in a queueing network) and space consumption (a
passive resource like a storage area) terminate this recur-
sive description. Special source and sink nodes to produce
or terminate service calls at the top level node of the hierar-
chy provide the load description. This process-orientedway
of modeling has gained a lot of attention in logistic systems
to identify inefficient organizational structures. The moti-
vation for modeling logistic systems are manifold, for in-
stance, there is interest in the identification of bottlenecks,
in technical measures like utilization of resources, produc-
tion lead times, the quality of service, the ability to meet
deadlines. Furthermore, economic measures like an assign-
ment of production costs to individual orders according to
resource usage are of interest.
Obviously, the performance of real world systems varies
due to failures of resources and delays due to the repair or
replacement of faulty resources. This kind of dynamic be-
havior does not necessarily formalize well as a process. It is
rather a behavior that a resource performs internally (and of-
ten independently from the state of its environment). Avail-
ability of resources is thus often modeled in a formalism
like a Markov chain, a stochastic automaton or a GSPN.
If both aspects are present in a single model, we can study
the performance degradation of a model due to failure of re-
sources. Since performance and availability imply different
types of dynamic behaviour, a model should reveal a struc-
ture that allows a partition into two distinct parts, one for
performance aspects and one for availability aspects. In our
case, this is accomplished by combining two different mod-
eling formalims. In general, the timing behavior of both
parts is mutually dependent. Trivially, the performance of
a systems depends on the availability of resources. On the
other hand, failure rates may depend on the load of a re-
source, a failure of one resource might cause a simultane-
ous failure of some other resource and repairs may be done
by repairmen which are also shared resources. However, it
is often the case, that there is only a one-sided dependancy
present in a model, i.e., the performance model depends on
the availability model, but not vice versa. This case is par-
ticularly advantageous for analysis and will be considered
in the following.
We employ the ProC/B formalism to describe the perfor-
mance part and GSPN for the availability part. It is straight-

forward to identify the number of available resources from
the marking of the GSPN. In our case of a one-sided de-
pendancy, the state of the availability model provides input
parameters for the performance model.

2.1 Analysis Based on Decomposition

More formally, we consider a class of models that share
state variables which describe the current configuration of
resources - and one (the availability) submodel reads and
writes those variables, while the other (the performance)
submodel only reads that information. In order to distin-
guish the different degrees in the number of available re-
sources, we define a set C of configurations, where a single
configuration c ∈ C describes which resources are available
and which are not. For realistic examples with resources of
different types, the set C may contain up to several thousand
configurations.
We assume that any measure that is of interest is formally
described by a reward R [8] . Rewards can be used to
express a wide variety of performance and performability
measures including throughputs, sojourn times, rejections
probabilities of orders or the filling of stocks. Let E[Rc]
be the first moment of the reward value if the performance
model is in configuration c. Furthermore let pc be the prob-
ability that the current configuration is c. The value

E[R] =
∑
c∈C

pcE[Rc] (1)

has to be computed.
The probabilities pc are computed from the availability
submodel. With our assumptions that the failure rates are
independent of the state of the performance model, the
probabilities can be computed with a high precision by
numerical analysis of the Markov chain described by the
GSPN.
In addition to this structural property, we observe different
time scales for the dynamic behavior of performance and
availability submodels. Note that, in a well designed system
failure and repair rates are orders of magnitude smaller than
service rates at resources. Usually the difference between
service rates and failure rates is at least 3 to 4 orders of mag-
nitude. This large difference has two implications. First of
all, a model of the complete system, if it exists, cannot be
analyzed using standard simulation. Since failures are rare
events, a huge number of service events has to be simulated
before the first failure occurs. To obtain statistically sig-
nificant results for the performance of the system including
failures and repairs, the number of necessary events would
be much too large. However, the large difference between
the rates also assures that between failures and repairs the
performance model reaches quasi steady state such that in-
dependent simulation runs can be performed for the config-
urations of the performance model.



A time-scale decomposition of performability models is
often considered in literature, however simulation is hardly
used to compute an estimate of E[Rc] for individual con-
figurations c. It is more common to consider queueing net-
works for the performance submodel and perform product-
form analysis for the price of hard restrictions on what can
be expressed in the performance part. For modeling logistic
networks, queueing networks are often too restricted to be
of general use. Thus, the challenge of the simulative per-
formance analysis is to analyze a large number of different
performance models such that the confidence interval for
E[R] is sufficiently small. Before we consider this issue in
depth, we discuss a side issue that is also of practical rele-
vance. For many systems, a minimal number of resources
must be available to be operational. Since the configura-
tions determine the number of available resources, we need
to ensure that only configurations that correspond to well-
defined models are considered for simulative analysis. This
is not trivial for complex models. It may require a func-
tional pre-analysis of the configurations. Since the ProC/B
toolset [1] allows a transformation of a performance model
into a Petri Net (PN), we compose a PN that results from
the performance model with the GSPN of the availability
model and subsequently apply analysis techniques for PNs
on the resulting net. Such functional techniques include
model checking or invariant analysis. Currently, the compo-
sition of both PNs is performed manually useing features of
the APNN toolbox [3] to manipulate hierarchical and com-
positional models. Let Co ⊆ C be the set of operational
configurations among the set of configurations.
Performance models that are non-stationary form a sec-
ond class of malfunctioning models. If a model is non-
stationary, our assumption that the performance model
reaches quasi steady state in each configuration is no longer
justified. Since the detection of non-stationary behavior is
not trivial, we assume in the sequel that all configurations
of the performance model are stationary. This can always
be achieved by limiting the number of processes in the sys-
tem, as it is also done in practice whenever the number of
arrivals exceeds the capacity of a logistic network.
We do not simulate a non-operational configuration c, nev-
ertheless we need E[Rc] in (1). If the requested reward
describes the throughput of the system, then the reward in
a non-operational configuration becomes 0. The determi-
nation of rewards that describe sojourn times or rejection
probabilities is more complex. For those cases, we assume
that no service occurs in a non-operational configuration
and that all arrivals are rejected during a non-operational pe-
riod. The latter assumption will only approximately match
a real situation. It is justified, if the duration of a non-
operational configuration is much longer than the interar-
rival time of new processes and the capacity is not too large.
Let dc be the mean duration of configuration c ∈ C \ Co,

which can be computed from the results of the numerical
analysis of the availability model, and let λk be the mean
arrival rate of processes of type k. If R describes the re-
jection rate of type k processes, then Rc = dc · λk and if
R describes the sojourn time, then Rc = dc because pro-
cesses in the system have to wait the whole period. In this
way rewards can be assigned to non-operational configura-
tions. The assigned rewards are only approximations, but
the approximation error tends to 0 for an increasing differ-
ence between service rates and failure/repair rates.
As sketched so far, the proposed approach can be con-
sidered as the solution of a Markov reward model where
rewards of individual states are determined by simulation.
This raises a number of interesting observations. For a
given reward evaluation, we may want to design a system in
a way that E[R] obtains some optimal value which yields
an optimization problem in order to change parameters of
the availability model in a way that distribution of pc over
C increases (or decreases) the value of E[R]. As long as
we assume that the behavior of the availability model is not
directly influenced by the state of the performance model,
this optimization can be done by modifying the availability
model only and reusing the simulation results for the per-
formance models. On the other hand, for a given c ∈ C, we
can adjust the quality of the simulation according to the rel-
ative importance of Rc for E[R] as indicated by the value
of pc. The potential of this observation is considered in the
following for distributed simulation on a workstation clus-
ter.

2.2 Distributed Simulation

Simulation is used to determine an estimate R̄(n) forE[R]
where n denotes the number of sample points used for the
estimate. Let S2

n be the sample variance of the estimator,
then a confidence interval can be computed by

R̄(n) ± z1−α/2

√
S2

n

n

for an n that is sufficiently large and where z1−α/2 is the
1 − α/2 quantile of the normal distribution [6].
In our case,E[R] is given as a weighted sum ofE[Rc] such
that

R̄(n) =
∑
c∈Co

pcR̄c(n) +
∑

c∈C\Co

pcRc .

If the availability model is analyzed numerically, then the
values for pc are exact up to the numerical precision of the
machine. Additionally, the values Rc are fixed for c ∈ C \
Co. Thus, the variance of the estimator R̄(n) results from
the variance of R̄c(n) for c ∈ Co. If we assume that the
sample values to determine R̄c(n) are all independent we
obtain for the sample variance of the estimator R̄(n)

S̄2 =
∑
c∈Co

p2
c

S2
c (nc)
nc

(2)



where nc is the number of sample values to determine
R̄c(n) and S2

c (nc) is the estimator for the variance of Rc.
The relation holds because for independent random vari-
ables Xi with variance S2(Xi), S2(

∑
Xi) =

∑
S2(Xi)

and S2(cXi) = c2S2(Xi) [6]. The confidence interval for
S̄2 is computed as

R̄(n) ± z1−α/2

√
S̄2 .

Since the simulation models are independent for differ-
ent configurations of the performance model, an approach
based on independent replications can be used [6] for the
estimation of R̄c(n). Different simulation runs can be dis-
tributed on different machines or processors and can be per-
formed in parallel. We apply the approach in a workstation
network and assume thatM workstations are available. For
simplification we assume that all workstations are identi-
cal, but the following approach can be easily extended to
non-homogeneous machines. We further assume that we
can start and stop a simulation run on some processor and
obtain as a result of some run i for configuration c the val-
ues nc,i, Rc,i and S2

c,i(nc,i) for the number of observations,
the estimated mean and variance, respectively. The variance
S2

c,i(nc,i) can be estimated using some appropriate method
for dependent observations like batch means, regenerative
simulation or an autoregressive method [6].
We have defined a method to compute R̄(n) and its confi-
dence interval from a simulation using M processors. We
further assume that runs are performed in phases of length
Δ. At the beginning of each phase on each workstation
a simulation run is started which runs for Δ times units
and produces results of the above form. We assume that T
phases are simulated such that overallMT simulations runs
are made. A schedule describes the assignment of simula-
tion models to processors in the different phases. Since we
assume identical processors, we only have to define which
configurations are simulated in a phase and not the assign-
ment of models to processors. Phases are numbered from
1 through T and St is the multiset of configurations which
are simulated during phase t on some processor. St con-
tains M elements, one model for each processor, and may
contain the same elements several times since one configu-
ration can be simulated on different processors in the same
phase. A schedule is defined as

S = ∪T
t=1St .

Let occc(S) be the number of occurrence of c in S which
describes the number of phases of length Δ in which con-
figuration c has been simulated. Let S̄2

c (ac) be the estimator
for the variance of R̄c(n) if configuration c has been simu-
lated for ac intervals of length Δ. With this formalization

we can define the optimization problem

min
S

(∑
c∈Co

p2
cS(occc(S))

)

to find a schedule with a minimal variance of the estimator
for R̄(n) and therefore also with the smallest confidence
interval.
Of course, the computation of the optimal schedule re-
quires knowledge of S2

c which is not available. Conse-
quently, a schedule St+1 is computed using the information
which is available from the phases 1 through t. Let ac(t) =
occc(∪t

s=1Ss) and σc(ac(t)) =
√

(S̄2
c (ac(t))/ac(t)). For

the moment we assume ac(t) > 0 for all c ∈ Co. Since
S̄2

c (ac(t)) is an unbiased estimator for S2
c , σc(t) is propor-

tional to the width of the confidence interval for R̄c(n) after
t phases.
The gain of performing in phase t + 1, i parallel runs of
configuration c is proportional to the estimated reduction of
the confidence interval width due to these simulation runs
and is given by

gi
c(t + 1) = p2

c (σc(ac(t) + i) − σc(ac(t))) .

Since we do not know σc(ac(t) + i) a priori we assume

S2
c = ac(t) (σc(ac(t)))

2 ⇒ σc(ac(t)+ i) =

√
S2

c

(ac(t) + i)

and

gi
c(t + 1) = p2

cσc(ac(t))

(√
ac(t)

ac(t) + i
− 1

)
.

The following algorithm computes St from the available
gains gi

c(t).
1. St = ∅ ;
2. for (m = 1 toM ) do

3. c = minc

(
g

occc(St)+1
c (t) − g

occc(St)
c (t)

)
;

4. St = St ∪ {c} ;
The only remaining point is the estimation of the initial
values for σc(.). One possibility is to run each configura-
tion at least once at the beginning to obtain some result and
start afterwards with the algorithm. If the number of con-
figurations is huge, only some configurations are simulated
and other configurations receive values of similar configu-
rations which have been simulated. However, the latter ap-
proach introduces an additional approximation and usually
requires the use of some form of a metamodel which goes
beyond the goal of the current paper.



2.3 Tool Support

Performability analysis of realistic models of logistic net-
works requires adequate tool support. We propose the
ProC/B toolset that provides a graphical user interface for
the ProC/B formalism. Models are either mapped onto HIT-
models [2] for a simulative analysis or onto Generalized
Stochastic Petri Nets (GSPNs) for functional analysis based
on invariant analysis or model checking, numerical analysis
of the associated CTMC or simulation. HIT-models are sup-
ported by the tool HIT [2]; GSPN models are supported by
the APNN toolbox [3]. The numerical analysis of the avail-
ability model is limited by the size of the resulting Markov
chain; currently models in the order of 106 − 107 states can
be analyzed in the APNN toolbox.

3 Case Study: Warehouse

In this section, we analyze a model for the management
of a warehouse at a manufacturing site for cars. The model
contains three processes that describe the operational activ-
ities. The first process, denoted as Truck Arrival, de-
scribes the supply and storage of sub-assemblies (engines
etc.) and the return of buffered empties (boxes). The sec-
ond process, labeled In-Plant Transport, puts sub-
assemblies (including their packages) on-demand into a
second intermediate buffer that serves the actual production
line. Finally, the third process, labeled Demand, describes
the demand of the production line and moves freed shipping
boxes back into the buffers. Since involved buffers have a
finite capacity, certain activities remain blocked until suffi-
cient inventory or free space becomes available. Fork-lifts
access buffers for loading and unloading operations. They
are statically assigned to specific buffers and exclusively-
used to manipulate their inventory. Furthermore, fork-
lifts are used to load and unload trucks that deliver sub-
assemblies or take empties. Since the number of fork-lifts is
limited (2 per buffer and 21 for trucks), processes may ex-
perience queuing and additional waiting times due to non-
availability of requested fork-lifts. Fork-lifts occasionally
fail and albeit the system remains operational, its overall
performance degrades. Since failures happen rarely, the
maintenance policy is as follows. A single worker is respon-
sible for repairing fork-lifts on-site in case of a breakdown.
In addition, an external company sends additional staff to
perform regular maintenance checks in fixed time intervals
to keep the number of breakdowns at an acceptable level.
A maintenance check implies that all operational fork-lifts
are not available for a short period of time, the maintenance
interval.
In order to evaluate the impact of failures on performance
measures we have created two models, a dependability
model that captures the failure, maintenance and repair be-
havior of involved fork-lifts and a performance model that
captures the three processes that the normal operation of

the warehouse and measures lead times of the involved pro-
cesses. Lead times are typically used to evaluate the per-
formance of the system. Application experts are interested
in the determination of optimal maintenance frequencies.
Notice, exorbitant maintenance effort would prevent from
failures (and non-availability), but this is at the expense of
more frequent non-availability caused by maintenance in-
terrupts. In the system, the time to failure of maintained
fork-lifts is assumed to be the same as the time to failure of
repaired fork-lifts.
In what follows, we briefly introduce a ProC/B perfor-
mance model and a GSPN dependability model, cf. Fig.
1 and 2. Due to space limitation, we highlight only cer-
tain parts of the performance model and restrict ourselves
to the Truck Arrival process. The upper part of Fig-
ure 1 (separated by a dashed line) shows a flow-chart of
activities (arrow-like hexagons) that make up the process of
incoming trucks and their handling at the warehouse. The
lower part gives the resources that are demanded by activ-
ities for their execution. Incoming trucks first go to an en-
trance office and experience a simple delay, then they reg-
ister at this office. After registration, a specific storage area
is selected (timeless activity) and the process forks into two
subprocesses modeling the arrival of trucks (upper chain)
and the arrival of requested fork-lifts (lower chain) at the
loading ramp. Afterwards, the process performs unload-
ing activities (represented by 5 arrow-like hexagons) and
reaches a boolean branch. It is assumed, that only cer-
tain trucks carry sub-assemblies that need to be buffered.
Therefore, in the upper branch the process puts the freight
into the main store, proceeds to the empties store and un-
loads empties from the empties store by calling the service
unload, whereas in the lower branch, the process imme-
diately reaches a sink for finalization. Notice, the model is
hierarchically structured and the description of services in
terms of involved activities and demanded resources is dele-
gated to the submodel and invisible from the calling activity
denoted Unload Empties.
We proceed in this section with a description of the GSPN
model capturing the dependability aspects of the system un-
der investigation. In our model we assume that the time
to failure, the repair time and the maintenance time are all
Erlang-2 distributed. Figure 2 shows a coloredGSPNmodel
of the described scenario. It consists of three parts:
• the upper part (subnet p7, . . . , p10, t6, . . . , t8) de-
scribes the maintenance process of all operational fork-
lifts,

• the middle part (dotted box, subnet
p11, . . . , p13, t9, . . . , t13) models the elapsed time
between maintenance intervals, and

• the lower part (subnet p1, . . . , p6, t1, . . . , t5) describes
operational fork-lifts, being subject to failures, and re-
pair.
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Figure 1. ProC/B performance model: Truck Arrival process
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Figure 2. GSPN Dependability Model

Places p1, . . . , p5, p7, . . . p9 are colored places represent-
ing the four different types of fork-lifts and similarly tran-
sitions t1, . . . , t8, t11, . . . , t13 are colored transitions. All
incidence functions are identity functions, indicated by a
letter “x” in case of colored transitions, using the notation
proposed in [5].
lower part: Places p1 and p2 model operational fork-lifts

and transitions t1 and t2 represent the Erlang-2 dis-
tribution for the time to failure. A (colored) token at
p3 indicates that the corresponding fork-lift is broken
an needs repair. After a negative exponentially dis-
tributed preparation delay the worker (p6) starts repair-
ing a fork-lift. Transitions t4, t5 model the Erlang-2
distributed repair time.

middle part: This part of the GSPN represents the fixed
time interval between maintenance processes. We ap-

proximate this time interval by an Erlang-2 distribution
(transitions t9, t10). The beginning of maintenance is
indicated by a token at place p13. While p13 is marked,
transitions t11 and t12 empty the two places p1 and p2

thus “moving” all tokens to place p7. Once the places
p1, p2 have been emptied, transition t13 becomes en-
abled (note the inhibitor arcs from p1, p2) and the time
interval between maintenance processes is restarted.

upper part: A token at place p7 indicates a fork-lift wait-
ing for maintenance. After a negative exponentially
distributed preparation delay the mechanic starts with
maintenance of the fork-lift, provided he is available
(p10). The time for maintenance is given by an Erlang-
2 distribution represented by transitions t7 and t8. The
fork-lift becomes available after maintenance at place
p1.

Since places p1 and p2 model the availability of opera-
tional fork-lifts we are interested in the probability pi,x :=
P [M(p1)(x) + M(p2)(x) = i] that i fork-lifts of type x
are available. pi,x surely depends on the chosen parameters
for timed transitions. In reality most of these parameters are
determined by the type of fork-lift and are thus given. I.e.
given the time to failure and repair and maintenance times,
one might be interested to find an “optimal” duration be-
tween maintenance intervals. This results in the following
optimization problem: Find a parameter λ (the firing rate
for t9 and t10 representing an Erlang-2 distribution) such
that pk,x is maximal, where k denotes the number of exist-
ing fork-lifts of type x. In our model, we assume the fixed
parameter setting of 20000min for time to failure, 2000min
repair time and 80 min maintenance time.
Performability analysis comprises numerical analyzes of



parameterized dependability models and simulative ana-
lyzes of performance models. For the later we apply the
proposed scheduling algorithm, see section 2.2, and com-
pare its effectiveness with a conventional approach.
The GSPN dependability model is solved based on the un-
derlyingMarkov chain with exactly 12, 246, 960 states. Us-
ing numerical steady-state analysis techniques we can com-
pute the probability mass function (pmf) of resource con-
figurations (pc values) within 80 minutes. The frequency
of stipulated maintenances is regarded as a parameter of the
dependability model. Therefore, we must perform numer-
ical analysis for different dependability models and obtain
a set of pmf’s. Figure 3 shows the pmf restricted on C0 for
different parameter settings.
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Figure 3. Pmf of resource configurations for
different parameter values of the dependabil-
ity model

The evaluation of the performance model requires to con-
duct independent simulation runs for each operational re-
source configuration c ∈ C0, see section 2.1. We vary
the number of available fork-lifts and obtain 88 operational
configurations in this particular setting. A particular simula-

tion run determines estimates of quantities of interest (lead
times of involved processes). First we consider a scenario
with single simulation runs. Performance results thereby
obtained based on runs that terminate at once if, either 90
percent confidence bands are attained of a width of at most
5 percent of the estimated means for all process lead times,
or some maximum model time has elapsed. Totally, 88 sin-
gle simulation runs need 17 hours of CPU time (measured
on SUN Blade 100, Ultra Sparc IIe processor, 500 MHz).
This solid stopping criterion ensures reliable results. How-
ever, the drawback is, that computational efforts for obtain-
ing reliable performance results are by no means adapted
to their relative importance (=pc values) with respect to re-
liable performability results. Therefore, it is reasonable to
replicate simulation runs using some adaptive control which
makes use of pc values and thus greedy reduces confidence
intervals of performability quantities (see section 2.2). In
our setting, the relative importance of configurations dra-
matically differs. Figure 3 reveals, that pc values decreases
exponentially for configurations with lower index (note the
logarithmic scale). For our example, the controlled repli-
cation approach clearly outperforms its uncontrolled sin-
gle run counterpart. The controlled version needs only 3-
4 hours of CPU time (compared to 17 hours) in order to
achieve confidence intervals that has been reached in the
single run approach. Figure 4 shows the run-time behav-
ior of the algorithm in terms of confidence intervals (per-
cent) for performability measures (lead times of three basic
processes) depending on dependabilitymodel parameters (8
settings). After 3-4 hours, charts fall below the mesh indi-
cating confidence intervals of the single run approach. In
order to gain a better understanding of the algorithms be-
havior we do not stop the execution at this point and pro-
ceed until 240 replications are conducted. 240 replications
require 10-11 hours of CPU time and confidence intervals
become fairly small (±0.1%), cf. Figure 4.
We conclude this section with performability results based
on formula 1. Fig. 5 shows lead times of the three basic
processes (Truck Arrival, In-Plant Transport
and Demand) depending on the parameter setting of the
dependability model. A time interval of about 5500 min
between two maintenance inspections minimizes lead times
of all processes. Lead times of processes are of interest by
their own, however, their obvious interpretation necessitates
deeper knowledge of the performance model.

4 Conclusions

This paper presents an approach for the performability
analysis of large logistic networks by a combination of nu-
merical analysis of a dependability model and simulative
analysis of a possibly large set of performance models.
From a simulation perspective it is particularly interesting



4
6

8
10Time

2

4

6

8

Dependability Model Index

0.2

0.3

0.4

0.5

0.6

0.7

Conf Interv

4
6

8
10Time 1

2
3

4
5

6
7

8

Dependability Model Index

0.4

0.6

0.8

1

1.2

1.4

Conf Interv

4
6

8
10Time 1

2
3

4
5

6
7

8

Dependability Model Index

0.2

0.4

0.6

0.8

Conf Interv

Figure 4. Run-time behavior of algorithm:
confidence intervals (percent) of performabil-
ity measures

how to distribute simulation time among the set of perfor-
mance models to minimize the width the confidence inter-
vals. The paper introduces an approach to perform simula-
tion in phases and in parallel on a network of workstations.
After every phase the available information is used to de-
termine the subset of performance models which is simu-
lated during the following phase to obtain a maximal gain
measured in a maximal reduction of the confidence interval
width.
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