
Traviando - a Trace Analyzer to Debug Simulation Models∗

Peter Kemper, Carsten Tepper
Informatik IV, Universität Dortmund

D-44221 Dortmund, Germany
Email: peter.kemper@udo.edu
carsten.tepper@udo.edu

Abstract

Verification and validation of simulation models are cru-
cial steps to the success of a simulation project. Traces are
a common and powerful mean to document the dynamic be-
havior of a model and are generated by most simulation
engines. In this paper, we describe techniques and cor-
responding tool support that helps a modeler to gain in-
sight in the dynamic behavior of complex simulation models
based on trace analysis. We propose to visualize traces by
message sequence charts. We use a common modal logic,
namely the linear time logic (LTL), to identify states of inter-
est and a pattern system to make specification of formulas
more productive. The proposed techniques are implemented
in Traviando, a stand alone tool with an open XML interface
to import traces from various modeling environments, e.g.,
the APNN toolbox, the ProC/B toolset and Mobius.

Keywords: modelchecking, debugging simulation mod-
els, visualization and analysis tool

1 Introduction

Traces that document the dynamic behavior of a system
by a sequence of states and events are considered in many
different settings. For instance, they are used as input for
a trace-driven simulation, as data to obtain stochastic rep-
resentations of work load characteristics as distributions,
markovian arrival processes and alike. Traces are also ana-
lyzed with respect to some qualitative behavior in runtime
verification, where a system could be a multi-threaded java
program that is monitored at runtime. Finally traces are
generated from models by a simulator, a model checker, or
some monitoring tool for verification, validation, debugging
or animation purposes.

We focus on traces that are generated from a simulation
model by discrete event simulation. Such a trace contains

∗This material is based upon work supported in part Deutsche
Forschungsgemeinschaft, SFB 559.

different pieces of information, information with respectto
time and with respect to a causal order of events. While
timing information is usually used for estimates of perfor-
mance figures, the causal order and qualitative properties
are of interest in the search for flaws in a verification and
validation phase of a simulation project. Qualitative prop-
erties of dynamic behavior are usually described in a modal
logic and much research has gone into the development of
a variety of useful and expressive logics for dynamic sys-
tems in general. Common examples are computational tree
logic (CTL) as a branching time logic and linear time logic
(LTL) as a linear time logic, see Clarke et al [4] as a re-
cent textbook. Since a trace is based on a single and finite
sequence of observations, branching time logics like CTL
are not a natural choice and many concerns with respect to
the infinite behavior of a system do not matter. For trace
analyis, some work has been done in the area of runtime
verification. Havelund et al describe in [8] how to perform
model checking for linear time logic (LTL) formulae on a
trace by specially adjusted algorithms while Alur and Yan-
nakakis describe in [1] how a canonical LTL modelcheck-
ing approach would assess a trace of a concurrent model.
Uchitel et al [13] provide tool support for scenario-based
specification, synthesis and model-checking of models of
dynamic systems with the help of message sequence charts
(MSCs).

For practical applications, modelchecking has a number
of challenges. First, a human computer interface is required
that is easy to use and that helps a practitioner to be confi-
dent on the property he or she specified in a formal notation
like LTL. For instance, a formula likeG((q ∧ ¬r ∧ Fr) →
(¬pUr)) with atomic propositionsp, q, andr is not crys-
tal clear to a non-expert1. Dwyer et al. [6, 7] recognized
regularities in the use of logic formulas for modelchecking
and organized those into a pattern system. Second, given a
model and a formula, efficient algorithms are necessary to
decide whether a model fullfills that formula or not. Much

1It describes thatp is false betweenq andr; for the semantics of LTL
operators see Section 3.

1

research has gone into that problem and impressive results
have been obtained by so-called symbolic modelchecking
techniques. However, in case of traces, modelchecking re-
tains rather simple from a practical point of view since there
is only a single and finite sequence that has to be analyzed.
Third, once a result has been obtained, it must be repre-
sented or visualized in a way that maximizes the insight it
may give to a modeller.

In this paper, we contribute to those challenges in the fol-
lowing way. We describe a new tool that visualizes traces by
a variant of MSCs. It provides a pattern system with a for-
mula editor for LTL to describe properties of interest. For
a given set of formulas and propositions, it evaluates which
states fulfill which formulas and visualizes those properties
in the MSC representation. In addition, we provide a num-
ber of visualization features that help a user to retain an
overview on the dynamic activity [12], and to identify frag-
ments of traces that are critical for common performance
measures in process-oriented simulation models [10]. The
tool we present has an open XML interface for traces and
has been applied with several modeling frameworks includ-
ing the ProC/B toolset [2], the APNN toolbox [3] and the
multi-paradigm multi-solution framework Mobius [5].

The rest of the paper is structured as follows. In Section
2, we briefly define basic terminology for traces and MSCs.
Section 3 is devoted to LTL modelchecking of traces and
a pattern system for the specification of formulas. In Sec-
tion 4 we introduce our new tool for trace visualization, its
architecture and main functionality.

2 Definitions

We are interested in the analysis of finite traces.
Formally, we consider a trace as a sequenceσ =
s0e1s1 . . . ensn of states s0, . . . , sn ∈ S and events
e1, . . . , en ∈ E over some (finite or infinite) setsS, E for an
arbitrary but fixedn ∈ IN. For elements ofS, we assume an
equivalence relation denoted by “=”. Note that events are
irrelevant in the following formal treatment, but events are
important pieces of information in a trace in order to docu-
ment not only the state of the system but also what happens.
Hence, we keep events within our considerations.

Message sequence charts.If a trace results from a setP
of interacting, concurrent processes, we can assume that a
states ∈ S is a vector of local statessp ∈ Sp of processes
p ∈ P , i.e., let S ⊆ ×p∈P Sp and events may not nec-
essarily change the state of all processes. Hence we can
distinguish so-called local events that change the state of
only a single process from those that change two or more
processes. By adding more information, we can distinguish
among send and receive events and synchronized events.
For that scenario, message sequence charts (MSCs), [9], or

UML sequence diagrams are common and related graphi-
cal representations. In the following, we focus on a variant
of MSCs that adds (undirected) synchronized events to the
usual send, receive and local events of MSCs and that adds
state information.

Definition 1. An MSC M is defined as a tupleM =
(V, <, P, M, K, N, S, G, s0, m), whereV is a finite set of
events,<⊆ V × V is an acyclic relation,P is a set of
(MSC) processes,M is a set of message names,L : V → P

is a mapping that associates each event with a process,
K : V → {s, r, u, l} is a mapping that describes the
kind of each event as send, receive, synchronized or local,
N : V → M maps every event to a name,m = msr∪mu is
a relation called matching withmsr ⊆ V ×V that pairs send
and receive events. Each send is paired with exactly one re-
ceive and vice versa. Eventsv1 andv2 can be paired, only if
N(v1) = N(v2). mu ⊆ 2V relates up to|P | processes by a
synchronized event.S is a finite set of states withs0 ∈ S as
initial state andG : V → S determines the successor state
after eventv ∈ V .

Note that events cannot repeat due to<, but names of
events and states may occur multiple times in a trace. We
restrict ourselves to well-defined MSCs in the sense that
we assume a total order onV = {v1, v2, . . . , vn} such that
σ = s0v1s1 . . . sn with G(vi) = si that is consistent with
”<”, i.e., if vi < vj theni < j for all i, j ∈ {1, 2, . . . , n}.
The restriction does not exclude any relevant cases in prac-
tice, since we would start from a totally ordered sequenceσ

and represent it by an MSC. Synchronized events are repre-
sented by undirected edges (therefore we chooseu for no-
tation), while send-receive events yield directed arcs. The
definition of MSCs is a union of what is usually needed
by different modeling formalisms. We currently use lo-
cal events, send and receive events for traces generated by
the ProC/B toolset, and local and synchronized events for
traces generated by the APNN toolbox and Mobius. Fig-
ure 1 shows an example trace of six processes with local
and synchronized events, which was generated from a Mo-
bius model for a server system with two customer classes
A and B where the server is subject to failure and repair.
The model is compositional and each submodel matches a
process in the MSC. A process is visualized by a vertical
line with its name on top. Local events are represented by
small dots, synchronized events by horizontal lines, and a
states = G(v) is visualized in an additional window for
a selected eventv. Line thickness and colorings reflect re-
sults of modelchecking a particular formula. The vertical
order of events (top-down) follows the order of events in a
visualized sequenceσ.

2

Figure 1. MSC of Example Trace

3 LTL modelchecking

Given a sequenceσ, it is interesting to identify what
properties of the system are present or absent. Modal logics
of various kinds have been developed to analyze dynamic
systems. In our case, a single and finite sequence would
be considered a trivial case in concurreny theory and a lin-
ear time logic like LTL seems a reasonable choice for our
purpose.

We assume a set of atomic propositionsAP , such that
ana ∈ AP : S → {tt, ff} evaluates statess ∈ S to true or
false or in other termss |= a iff a(s) = tt. Since we allow
for a relation= on S, AP has to be consistent with=, i.e.,
we require fors, s′ ∈ S that if s = s′ thena(s) = a(s′)
for all a ∈ AP . This requirement is trivial for equality; it
becomes relevant if some form of bisimulation is considered
as “=”.

LTL considers the behavior of a system as set of se-
quences and has formulas of the formAf where f is a path
formula. Following [4], an LTL path formula can be of two
kinds.

• If p ∈ AP , thenp is a path formla.

• If f and g are path formulas, then¬f , f ∨ g, f ∧
g,Xf ,Ff ,Gf ,fUg, andfRg are path formulas.

The logic connectives implication and equivalence follow
from the boolean operators in the usual manner,f → g ≡
¬f ∨ g andf ↔ g ≡ (f → g) ∧ (g → f).

We mildly adjust the semantics of LTL for the case of
a single finite sequence that is usually a prefix of a poten-
tially much longer or infinite sequence. Hence for opera-
tors that refer to future behavior, we can be optimistic or
pessimistic which we formally address by an additional ar-
tifical pair en+1sn+1 that is attached toσ and we assume

that atomic propositions are defined forsn+1 as well. For
a desired propertyΨ ∈ AP , we say we are optimistic if
we definesn+1 |= Ψ and pessimistic ifsn+1 6|= Ψ. With
that extension we define the semantics of LTL operators for
a sequences0, . . . , sn and statessi, i = 0, 1, ..., n + 1 as
follows:
si |= ¬f iff si 6|= f ,
si |= f ∨ g iff si |= f or si |= g,
si |= f ∧ g iff si |= f andsi |= g.
If i ≤ n, we define
si |= Xf iff si+1 |= f ,
si |= Ff iff there exists aj, i ≤ j ≤ n + 1 such that

sj |= f ,
si |= Gf iff for all j, i ≤ j ≤ n + 1 holdssj |= f ,
si |= fUg iff there exists ak, i ≤ k ≤ n + 1 such that

sk |= g and for allj , i ≤ j < k holdssj |= f ,
si |= fRg iff for all k, i ≤ k ≤ n + 1, for all j, i ≤ j < k

holdssj 6|= f thensk |= g.
Finally, we define fori = n + 1
sn+1 |= Xf iff sn+1 |= f ,
sn+1 |= Ff iff sn+1 |= f

sn+1 |= Gf iff sn+1 |= f

sn+1 |= fUg iff sn+1 |= g

sn+1 |= fRg iff sn+1 |= f ∧ g

Patterns. Dwyer et al. [7] suggest a pattern system that
integrates several logics and provides a common taxonomy.
It classifies properties into two classes, one foroccurrence
and one forordering(of states or events or properties). Both
classes are further refined into four subclasses each.occur-
rencecontainsabsence, universality, existenceandbounded
existence. orderingconsists ofprecedence, response,chain
precedence, andchain response. Patterns are elements of
those classes and each pattern has a scope that defines where

3

Figure 2. Graphical formula editor with pattern system

it applies, i.e., a scope gives the first and last state where a
formula (as a refinement of a corresponding pattern) should
be evaluated. Scopes are categorized into the following
five classes:global, before, after, betweenandafter-until.
Dwyer et al. derived their pattern system from a substantial
empirical study on the use of modal logics in verification
and validation of systems. They analyzed about 500 exam-
ple specifications taken from at least 35 different application
areas and experienced that very few kinds of formulas occur
in practice. They observed that patternsresponse, univer-
sality, andabsence, all with scopeglobal, cover about 80%
of the considered cases.

This motivated us to integrate that taxonomy into an
editor for LTL formulas. Fig. 2 shows the editor win-
dow in the pattern system of Traviando with 3 represen-
tations of formulaf of patternabsencewith scopebe-
tween. Formulaf = G((q ∧ ¬r ∧ Fr) → (¬pUr))
has atomic propositionsp = User A, q = server avail,
and r = server failure that are formulated by equali-
ties/inequalities on arithmetic expressions with state vari-
ables, e.g.,server avail is defined asavail = 1 where
avail is a state variable of submodelCompleteServer. p

is defined asC1WaitsForServer+C1WaitsForUser+

C1Thinking = 1. So state variables likeC1Thinking are
used to make state informations ∈ S accessible to a specifi-
cation of properties in atomic propositions. The upper right
window in Fig. 2 shows the formula in a graphical, tree-
type representation that is used to create and refine formu-
las, to assign atomic propositions to the leafs of the struc-
ture, and to select colors for its graphical representation.
The lower right window gives the common formal repre-
sentation for users that are more familiar with that type of
notation. Finally, the lower left window describes the for-
mula in technical prose that is initially derieved from pre-
defined phrases associated with patterns and that can sub-
sequently be worked on by a user with further comments.
Note that those representations describe the same informa-
tion, but should complement each other for human under-
standing. The tree-type representation is what is used as
input for the modelchecking algorithms.

Algorithm. Since we consider the special case of a single
and finiteσ, an algorithmic treatment of LTL path formu-
las is straightforward. Atomic propositions are evaluated
for individual states.X, F, G, U, R operators are evaluated
backwords starting at statesn+1. Note that by definition the

4

evaluation atsn+1 for X, F, G, U, R is immediate. With
known results atsn+1, we can make use of the following
properties:
si |= Ff iff si |= f or si+1 |= Ff

si |= Gf iff si |= f andsi+1 |= Gf

si |= fUg iff si |= g or (si |= f andsi+1 |= fUg)
si |= fRg iff (si |= f ∧ g) or (si |= g ∧ si+1 |= fRg)
From an implementation point of view, an evaluation can
be performed with the help of two arrays in the length of
all subformulas and by sweeping throughσ in a backward
manner. A similar approach is presented by Havelund et al
in [8] for runtime verification of systems.

Visualization. Figure 1 presents the visualization of the
formulaf = G((q∧¬r∧Fr) → (¬pUr)) as discussed be-
fore. and as specified in the formula editor in Fig. 2. We can
assign a color to each atomic proposition (leafs of the for-
mula tree) and subformulas and use those colors to highlight
in the MSC representation where a formula or subformula
holds. As shown in Fig. 1, highlighting of formulas takes
place at those processes whose state varibales are used in the
atomic propositions or subformulas. In case of subformu-
las, all relevant processes must be determined with respect
to every atomic proposition that is used in a subformula. By
coloring each subformula in a different color, it is easy to
identify when a subformula is valid across the trace. Note
that in Fig. 2, we decided to use colors for only 4 nodes of
the formula, namely a light blue color for the overall for-
mula, a red color for the atomic proposition that shows a
failure of a server, a green color for the atomic proposition
that shows an operational, available server and a blue color
for the atomic proposition that shows that all customers of
classA are not present at the server.2

The modelchecking algorithm computes additional in-
formation for each node in the tree of a formula. That in-
formation includes the total number of states that fulfill a
(sub)formula as well as the position of first and last occur-
rence of those states for ease of navigation. Buttons are pro-
vided that make the visualizer scroll to the first or last oc-
curence. This supports the intended usage of modelcheck-
ing: the modeller can specify properties of interest and the
modelchecker guides the modeller to that particular frag-
ment of the trace.

4 Tool

Traviando supports the visualization and analysis of
traces of interacting processes. The visualization is based
on MSCs and its particular purpose is to make information
accessible to a human being, information that is otherwise
hidden in large trace file. MSCs are promising since they

2Colors are visible in the pdf file of this paper.

focus on the interaction of processes and we believe that
this is crucial: in modeling as well as programming with in-
teracting submodels, components, processes or threads, the
behavior of an individual process is rather simple to analyze
and debug but the overall effect of interactions contributes
much to the complexity of such systems. So the latter re-
quires adequate tool support. Traviando supports a number
of operations that are helpful for trace analysis. In [11], we
discuss the role and potential of fundamental operations on
MSCs for trace analysis in more detail, for instance, the role
of grouping a subset of processes into a single process to
manage the level of abstraction and to set a focus on partic-
ular processes (while others are aggregated into one or few
groups, “environments”). Traviando also supports moder-
ate manipulations on the total order of events which is still
consistent with the partial order of an MSCs and which can
substantially improve the visualization and make it easier
to understand for a human observer, see [11] for further de-
tails. A key advantage to a direct animation of some mod-
eling formalism is that the MSC visualization in Traviando
allow to track down causes in a backword manner while
retaining an overview of a number of events. Most anima-
tions of dynamic behavior like the token game for Petri nets,
some animated simulation model, or some debugging facil-
ity usually do only show the current state and a human user
is forced to memorize its history while navigating forward.

Traviando imports sequences in an open XML format
that consists of two parts, namely a prefix and the sequence
of events that constitutes the trace. The prefix contains defi-
nitions for processes, events, their type and association with
processes, state variables and more. The prefix helps to
keep the sequence of events concise in its description and
also allows for some preprocessing and consistency check
for the trace based on the given structural information. The
sequence of events in the second part of a trace can be
enhanced in many ways by additional information, for in-
stance by time stamps and by information on changes to
state variables.

Traviando is implemented in Java and is able to work
on traces of different kinds and from different sources. It
operates on traces generated with the APNN toolbox [3].
Those traces result from Petri net models and a notion of
process is introduced by partitioning the set of place (state
variables). Many partitions are possible, the finest partition
has one place per process, the coarsest has one process with
all places. The APNN toolbox particularly supports super-
posed GSPNs that are composed of Petri nets by synchro-
nized transitions; that class of nets comes with a partition
of places and hence has a natural mapping to processes in
MSCs. The resulting MSCs have synchronized events for
transitions whose pre- or postset covers different processes.

Traviando operates on traces generated with the ProC/B
toolset [2] which follows the common process interaction

5

approach for simulation modeling. The ProC/B notation is
based on a notion of hierarchy with function calls. So the re-
sulting traces make use of send-receive events (represented
as directed actions). This allows us to infer a notion of
population and response times for function calls to (server)
processes. In [10], we describe three additional visualiza-
tion operations that are particularly designed to track down
what happens in a trace of a ProC/B model and with respect
to time. Highlighting and colorings are useful to illustrate
more information on the empirical distribution of response
times and populations derived from a trace. Visualizing the
number of open function calls also helps to identify the root
of blocking and deadlock situations in open models.

The most recent advance of Traviando is towards traces
generated from the multi-formalism multi-solution frame-
work Mobius [5]. Models are structured in a hierarchical
manner such that a decomposition into processes according
to the composition of atomic and composed models is a nat-
ural choice. Fig. 3 shows a Mobius model of a server with
failure and repair for a performability study. We generated
a trace from this model that serves as a running example for
the visualization in Fig. 1 and and the formula in Fig. 2.

Traviando’s new visualization features include a LTL
modelchecking of traces that is supported by a pattern sys-
tem. Atomic propositions are build by arithemic expres-
sions on state variables and equalities and inequalities. As
illustrated in Fig. 2, we combine three descriptions of a for-
mula to make LTL modelchecking more accessible to a user.
The upper right window shows the formula in a graphi-
cal, tree-type representation the lower left window describes
the formula in technical prose, and the lower right window
gives the common formal representation. Note that those
representations describe the same information, but should
complement each other for human understanding.

The graphical, tree-type representation with one node
per logical operator and atomic propositions as leafs is used
to derive formulas by refinement. Atomic propositions can
be selected by mouse-clicks from a menu that is derived
from a currently defined set atomic propositions. A set of
atomic propositions is defined in an additional editor win-
dow. Colors are associated with nodes in the formula editor
to define the coloring and highlighting used for the visual-
ization of the modelchecking results on a MSC, for instance
the colors selected in Fig. 2 match those in Fig. 1. Novel
trace reduction techniques, which are not presented here for
lack of space, help to separate repetitive from progressing
parts of a trace and can substantially cut down on the num-
ber of events considered for trace analysis.

5 Conclusion

We propose LTL modelchecking for the analysis of
traces in combination with a trace visualization by MSCs.

Figure 3. Composed Model

The approach is implemented in Traviando, a new software
tool for Trace visualization and analysis from Dortmund
University. More information on Traviando can be found
at http://www4.cs.uni-dortmund.de/Traviando/

Acknowledgements We would like to thank W.H.
Sanders, Tod Courtney and Michael Mc Quinn for support-
ing us with an appropriate XML trace output of Mobius.

References

[1] R. Alur and M. Yannakakis. Model checking of message
sequence charts. InProc. 10th Intl. Conf. on Concurrency
Theory, pages 114–129. Springer Verlag, 1999.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker.
The ProC/B toolset for the modelling and analysis of process
chains. In T. Field, P.G. Harrison, J. Bradley, and U. Harder,
editors,Computer Performance Evaluation, Modelling Tech-
niques and Tools, Springer LNCS 2324, pages 51–70, 2002.

[3] Falko Bause, Peter Buchholz, and Peter Kemper. A tool-
box for functional and quantitative analysis of DEDS. In
Ramón Puigjaner, Nunzio N. Savino, and Bartomeu Serra,
editors,Computer Performance Evaluation (Tools), volume
1469 ofLecture Notes in Computer Science, pages 356–359.
Springer, 1998.

[4] E. M. Clarke, Jr. O. Grumberg, and D. A. Peled.Model
checking. MIT Press, 1999.

[5] Daniel D. Deavours, Graham Clark, Tod Courtney, David
Daly, Salem Derisavi, Jay M. Doyle, William H. Sanders,
and Patrick G. Webster. The Möbius framework and its im-
plementation.IEEE Trans. Software Eng., 28(10):956–969,
2002.

[6] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Property specification patterns for finite-state verifica-
tion. In Mark A. Ardis and Joanne M. Atlee, editors,FMSP,
pages 7–15. ACM, 1998.

[7] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Patterns in property specifications for finite-state verifi-
cation. InICSE, pages 411–420, 1999.

6

[8] Klaus Havelund and Grigore Rosu. Synthesizing monitors
for safety properties. InTools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’02), LNCS 2280, pages
342–356. Springer Verlag, 2002.

[9] ITU-T Recommendation Z.120.Message Sequence Charts
(MSC’96), 1996.

[10] P. Kemper and C.Tepper. Trace based analysis of process
interaction models. InProc. of the 2005 Winter Simulation
Conference, pages 427–436, 2005.

[11] P. Kemper and C. Tepper. Visualizing the dynamic behavior
of ProC/B models. In T. Schulze et al., editor,Simulation und
Visualisierung, pages 63–74. SCS Publishing House, 2005.

[12] Peter Kemper and Carsten Tepper. Visualizing the dynamic
behavior of ProC/B models. In Thomas Schulze, Graham
Horton, Bernhard Preim, and Stefan Schlechtweg, editors,
SimVis, pages 63–74. SCS Publishing House e.V., 2005.

[13] Sebastián Uchitel, Robert Chatley, Jeff Kramer, and Jeff
Magee. Ltsa-msc: Tool support for behaviour model elab-
oration using implied scenarios. In Hubert Garavel and John
Hatcliff, editors,TACAS, volume 2619 ofLecture Notes in
Computer Science, pages 597–601. Springer, 2003.

7

