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Abstract different pieces of information, information with respéat
time and with respect to a causal order of events. While
Verification and validation of simulation models are cru- timing information is usually used for estimates of perfor-
cial steps to the success of a simulation project. Traces aremance figures, the causal order and qualitative properties
a common and powerful mean to document the dynamic be-are of interest in the search for flaws in a verification and
havior of a model and are generated by most simulation validation phase of a simulation project. Qualitative prop
engines. In this paper, we describe techniques and cor-erties of dynamic behavior are usually described in a modal
responding tool support that helps a modeler to gain in- logic and much research has gone into the development of
sightin the dynamic behavior of complex simulation models a variety of useful and expressive logics for dynamic sys-
based on trace analysis. We propose to visualize traces bytems in general. Common examples are computational tree
message sequence charts. We use a common modal logitggic (CTL) as a branching time logic and linear time logic
namely the linear time logic (LTL), to identify states oéimt ~ (LTL) as a linear time logic, see Clarke et al [4] as a re-
est and a pattern system to make specification of formulascent textbook. Since a trace is based on a single and finite
more productive. The proposed techniques are implementedgequence of observations, branching time logics like CTL
in Traviando, a stand alone tool with an open XML interface are not a natural choice and many concerns with respect to
to import traces from various modeling environments, e.g., the infinite behavior of a system do not matter. For trace
the APNN toolbox, the ProC/B toolset and Mobius. analyis, some work has been done in the area of runtime
verification. Havelund et al describe in [8] how to perform
Keywords: modelchecking, debugging simulation mod- model checking for linear time logic (LTL) formulae on a

els, visualization and analysis tool trace by specially adjusted algorithms while Alur and Yan-
nakakis describe in [1] how a canonical LTL modelcheck-
1 Introduction ing approach would assess a trace of a concurrent model.

Uchitel et al [13] provide tool support for scenario-based

Traces that document the dynamic behavior of a systemspecification, synthesis and model-checking of models of
by a sequence of states and events are considered in marfjynamic systems with the help of message sequence charts
different settings. For instance, they are used as input for(MSCs).

a trace-driven simulation, as data to obtain stochastic rep ~ For practical applications, modelchecking has a number
resentations of work load characteristics as distribstion ©of challenges. First, a human computer interface is reduire
markovian arrival processes and alike. Traces are also anathat is easy to use and that helps a practitioner to be confi-
lyzed with respect to some qualitative behavior in runtime denton the property he or she specified in a formal notation
verification, where a system could be a multi-threaded javalike LTL. For instance, a formula liké/((g A =r A Fr) —
program that is monitored at runtime. Finally traces are (—pUr)) with atomic propositiong, ¢, andr is not crys-
generated from models by a simulator, a model checker, ortal clear to a non-expétt Dwyer et al. [6, 7] recognized
some monitoring tool for verification, validation, debuggi  regularities in the use of logic formulas for modelchecking
or animation purposes. and organized those into a pattern system. Second, given a

We focus on traces that are generated from a simulationmodel and a formula, efficient algorithms are necessary to
model by discrete event simulation. Such a trace ContainsdeCide whether a model fullfills that formula or not. Much

*This material is based upon work supported in part Deutsche 11t describes thap is false betweery andr; for the semantics of LTL
Forschungsgemeinschaft, SFB 559. operators see Section 3.




research has gone into that problem and impressive result¥JML sequence diagrams are common and related graphi-
have been obtained by so-called symbolic modelcheckingcal representations. In the following, we focus on a variant
techniques. However, in case of traces, modelchecking re-of MSCs that adds (undirected) synchronized events to the
tains rather simple from a practical point of view since ¢her usual send, receive and local events of MSCs and that adds
is only a single and finite sequence that has to be analyzedstate information.

Third, once a result has been obtained, it must be repre-
sented or visualized in a way that maximizes the insight it
may give to a modeller.

In this paper, we contribute to those challenges in the fol-
lowing way. We describe a new tool that visualizes traces by
a variant of MSCs. It provides a pattern system with a for-
mula editor for LTL to describe properties of interest. For
a given set of formulas and propositions, it evaluates which
states fulfill which formulas and visualizes those propsrti
in the MSC representation. In addition, we provide a num-
ber of visualization features that help a user to retain an

overview on the dynamic activity [12], and to identify frag- and receive events. Each send is paired with exactly one re-

T e o oo BT ceeandice versa, Eveteanc can e paed ony
P i N(v1) = N(vp). m, C 2V relates up toP| processes by a

tool we present has an open XML interface for traces and : = ;
: i ) ) synchronized eveng is a finite set of states withy € S as
has been applied with several modeling frameworks includ-

ing the ProC/B toolset [2], the APNN toolbox [3] and the initial state and= : V — S determines the successor state

multi-paradigm multi-solution framework Mobius [5]. after event € V.

The rest of the paper is structured as follows. In Section
2, we briefly define basic terminology for traces and MSCs.
Section 3 is devoted to LTL modelchecking of traces and
a pattern system for the specification of formulas. In Sec-
tion 4 we introduce our new tool for trace visualization, its
architecture and main functionality.

Definition 1. An MSC M is defined as a tupldl =
(V,<,P,M,K,N,S G,so,m), whereV is a finite set of
events,<C V x V is an acyclic relationP is a set of
(MSC) processed/ is a set of message nameés,V — P

is a mapping that associates each event with a process,
K 'V — {srul} is a mapping that describes the
kind of each event as send, receive, synchronized or local,
N : V — M maps every event to a name,= ms,Um,, is

a relation called matching with ;. C V xV that pairs send

Note that events cannot repeat duetpbut names of
events and states may occur multiple times in a trace. We
restrict ourselves to well-defined MSCs in the sense that
we assume a total order 80 = {vy, va,...,v,} such that
o = S5v181 ... 8, With G(v;) = s; that is consistent with
. "< e, ifu; < wjitheni < jforalli,j e {1,2,...,n}.

2 Definitions The restriction doJes not exclude any relevgnt cases i}ﬁ prac-
tice, since we would start from a totally ordered sequence

We are interested in the analysis of finite traces. and representit by an MSC. Synchronized events are repre-

Formally, we consider a trace as a sequemce = sented by undirected edges (therefore we chaofe no-
50€151 .- €nsn Of Statesso,...,s, € S and events  ation), while send-receive events yield directed arcse Th
e1,..., e, € £ oversome (finite orinfinite) sefs E foran  definition of A7 SCs is a union of what is usually needed

arbitrary but fixech € N. For elements of, we assume an  py different modeling formalisms. We currently use lo-
equivalence relation denoted by-". Note that events are  ca| events, send and receive events for traces generated by
irrelevant in the following formal treatment, but evente ar the ProC/B toolset, and local and synchronized events for
important pieces of information in a trace in order to docu- trgces generated by the APNN toolbox and Mobius. Fig-
ment not only the state of the system but also what happensyre 1 shows an example trace of six processes with local
Hence, we keep events within our considerations. and synchronized events, which was generated from a Mo-

bius model for a server system with two customer classes
Message sequence charts.If a trace results from a sdt A and B where the server is subject to failure and repair.
of interacting, concurrent processes, we can assume that @he model is compositional and each submodel matches a
states € S is a vector of local states, € S, of processes  process in the MSC. A process is visualized by a vertical
p € P, e, letS C x,cpS, and events may not nec- line with its name on top. Local events are represented by
essarily change the state of all processes. Hence we casmall dots, synchronized events by horizontal lines, and a
distinguish so-called local events that change the state ofstates = G(v) is visualized in an additional window for
only a single process from those that change two or morea selected event Line thickness and colorings reflect re-
processes. By adding more information, we can distinguishsults of modelchecking a particular formula. The vertical
among send and receive events and synchronized eventarder of events (top-down) follows the order of events in a
For that scenario, message sequence charts (MSCs), [9], ovisualized sequence
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3 LTL modelchecking that atomic propositions are defined for,; as well. For

a desired propertyf € AP, we say we are optimistic if
Given a sequence, it is interesting to identify what  we defines,,; = ¥ and pessimistic i, 1 = ¥. With

properties of the system are present or absent. Modal logicghat extension we define the semantics of LTL operators for

of various kinds have been developed to analyze dynamica sequencay, ..., s, and states;,i = 0,1,...,n + 1 as

systems. In our case, a single and finite sequence wouldollows:

be considered a trivial case in concurreny theory and a lin-s; = —f iff s; [~ f,

ear time logic like LTL seems a reasonable choice for our s; = f V giff s; = fors; =g,

purpose. si = fAgiff s; = fands; = g.

We assume a set of atomic propositioh®, such that
ana € AP : S — {it, f f} evaluates statese S to true or
false or in other terms |= a iff a(s) = t¢. Since we allow
for a relation= on .S, AP has to be consistent with, i.e.,
we require fors, s’ € S thatif s = s’ thena(s) = a(s’)
forall a € AP. This requirement is trivial for equality; it

becomes relevant if some form of bisimulation is considered

as “=".

LTL considers the behavior of a system as set of se-

guences and has formulas of the fordyi where f is a path
formula. Following [4], an LTL path formula can be of two
kinds.

e If p € AP, thenp is a path formla.

e If f andg are path formulas, thenf, f VvV g, f A
9.Xf.Ff.Gf,fUg,andf Rg are path formulas.

If i < n, we define

si = Xfiff siv1 = f,

s; | Ff iff there exists aj, i < j < n + 1 such that
sj = [,

si = Gfiffforall j,i <j <n+1holdss; = f,

s; = fUyg iff there exists ak, i < k < n + 1 such that
sk = gandforallj,: <j < kholdss; = f,

s; E fRyiffforall k,i <k <n+1,foralj,i<j<k
holdss; (= f thens;, = g.

Finally, we define foi =n + 1

spy1 | Xfiff spp1 = f,

spt1 = Ffff sp1 = f

spt1 = Gfiff spp1 = f

snr1 = fUgiff s = g

sn+1 = fRgiff s B fAg

The logic connectives implication and equivalence follow Patterns. Dwyer et al. [7] suggest a pattern system that
from the boolean operators in the usual maniier; g = integrates several logics and provides a common taxonomy.
-fVvgandf—g=(f—9) A(g— f). It classifies properties into two classes, onedocurrence

We mildly adjust the semantics of LTL for the case of and one foordering(of states or events or properties). Both
a single finite sequence that is usually a prefix of a poten-classes are further refined into four subclasses emmtur-
tially much longer or infinite sequence. Hence for opera- rencecontainsabsenceuniversality existenceandbounded
tors that refer to future behavior, we can be optimistic or existence ordering consists ofprecedenceresponsghain
pessimistic which we formally address by an additional ar- precedenceandchain response Patterns are elements of

tifical pair e,,1s,+1 that is attached to and we assume  those classes and each pattern has a scope that defines where
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Figure 2. Graphical formula editor with pattern system

it applies, i.e., a scope gives the first and last state where aC1T hinking = 1. So state variables lik€1T hinking are
formula (as a refinement of a corresponding pattern) shouldused to make state informatiere S accessible to a specifi-

be evaluated. Scopes are categorized into the followingcation of properties in atomic propositions. The uppertrigh
five classesglobal, before after, betweerandafter-until. window in Fig. 2 shows the formula in a graphical, tree-
Dwyer et al. derived their pattern system from a substantial type representation that is used to create and refine formu-
empirical study on the use of modal logics in verification las, to assign atomic propositions to the leafs of the struc-
and validation of systems. They analyzed about 500 exam-ture, and to select colors for its graphical representation
ple specifications taken from at least 35 differentapplicat ~ The lower right window gives the common formal repre-
areas and experienced that very few kinds of formulas occursentation for users that are more familiar with that type of

in practice. They observed that patterasponsguniver- notation. Finally, the lower left window describes the for-
sality, andabsenceall with scopeglobal, cover about 80%  mula in technical prose that is initially derieved from pre-
of the considered cases. defined phrases associated with patterns and that can sub-

sequently be worked on by a user with further comments.

This motivated us to integrate that taxonomy into an Note that those representations describe the same informa-
editor for LTL formulas. Fig. 2 shows the editor win- tjon, but should complement each other for human under-
dow in the pattern system of Traviando with 3 represen- standing. The tree-type representation is what is used as
tations of formulaf of patternabsencewith scopebe- input for the modelchecking algorithms.
tween Formulaf = G((¢ A —r A Fr) — (—pUr))
has atomic propositions = User_A, ¢ = server_avail,
andr = server_failure that are formulated by equali- Algorithm. Since we consider the special case of a single
ties/inequalities on arithmetic expressions with state-va and finites, an algorithmic treatment of LTL path formu-
ables, e.g.server_avail is defined aswail = 1 where las is straightforward. Atomic propositions are evaluated
avail is a state variable of submod@bmpleteServer. p for individual states X, F, G, U, R operators are evaluated
is defined ag’1WaitsForServer+C1W aitsForUser+ backwords starting at state_ ;. Note that by definition the



evaluation ats,,; for X, F, G, U, R is immediate. With ~ focus on the interaction of processes and we believe that
known results at,, .1, we can make use of the following this is crucial: in modeling as well as programming with in-

properties: teracting submodels, components, processes or threads, th
siE Ffiff s; = forsgp | Ff behavior of an individual process is rather simple to arealyz
s; = Gfiff s; E fands;y1 EGf and debug but the overall effect of interactions contribute
s; = fUgiff s; =gor(s; = fands;.1 = fUg) much to the complexity of such systems. So the latter re-
si = fRgiff(si = fAg)or(s; EgAsivi E fRg) quires adequate tool support. Traviando supports a number

From an implementation point of view, an evaluation can of operations that are helpful for trace analysis. In [11¢, w
be performed with the help of two arrays in the length of discuss the role and potential of fundamental operations on
all subformulas and by sweeping througtin a backward MSCs for trace analysis in more detail, for instance, the rol
manner. A similar approach is presented by Havelund et alof grouping a subset of processes into a single process to
in [8] for runtime verification of systems. manage the level of abstraction and to set a focus on partic-
ular processes (while others are aggregated into one or few
groups, “environments”). Traviando also supports moder-
ate manipulations on the total order of events which is still
consistent with the partial order of an MSCs and which can
substantially improve the visualization and make it easier
to understand for a human observer, see [11] for further de-
in the MSC representation where a formula or subformula f@ilS- A key advantage to a direct animation of some mod-
holds. As shown in Fig. 1, highlighting of formulas takes eling formalism is that the MS_C visualization in Trawand_o
place at those processes whose state varibales are used in tfH/OW t0 track down causes in a backword manner while
atomic propositions or subformulas. In case of subformu- r€t@ining an overview of a number of events. Most anima-

las, all relevant processes must be determined with respections of dynamic behavior like the token game for Petri nets,

to every atomic proposition that is used in a subformula. By SCMe animated simulation model, or some debugging facil-
coloring each subformula in a different color, it is easy to %Y usually do only show the current state and a human user
identify when a subformula is valid across the trace. Note is forced to memorize its history while navigating forward.
that in Fig. 2, we decided to use colors for only 4 nodes of ~ Traviando imports sequences in an open XML format
the formula, namely a light blue color for the overall for- that consists of two parts, namely a prefix and the sequence
mula, a red color for the atomic proposition that shows a Of events that constitutes the trace. The prefix contains defi
failure of a server, a green color for the atomic proposition nitions for processes, events, their type and associatiin w
that shows an operational, available server and a blue coloiProcesses, state variables and more. The prefix helps to

for the atomic proposition that shows that all customers of keep the sequence of events concise in its description and
classA are not present at the server. also allows for some preprocessing and consistency check

The modelchecking algorithm computes additional in- for the trace based on the given structural information. The
formation for each node in the tree of a formula. That in- Sequence of events in the second part of a trace can be
formation includes the total number of states that fulfill a €nhanced in many ways by additional information, for in-
(sub)formula as well as the position of first and last occur- stance by time stamps and by information on changes to
rence of those states for ease of navigation. Buttons are prostate variables.
vided that make the visualizer scroll to the first or last oc-  Traviando is implemented in Java and is able to work
curence. This supports the intended usage of modelchecken traces of different kinds and from different sources. It
ing: the modeller can specify properties of interest and the operates on traces generated with the APNN toolbox [3].
modelchecker guides the modeller to that particular frag- Those traces result from Petri net models and a notion of

Visualization. Figure 1 presents the visualization of the
formulaf = G((gA—-rAFr) — (-pUr)) as discussed be-
fore. and as specified in the formula editor in Fig. 2. We can
assign a color to each atomic proposition (leafs of the for-
mula tree) and subformulas and use those colors to highligh

ment of the trace. process is introduced by partitioning the set of place €stat
variables). Many partitions are possible, the finest partit
4 Tool has one place per process, the coarsest has one process with

all places. The APNN toolbox particularly supports super-
posed GSPNs that are composed of Petri nets by synchro-
nized transitions; that class of nets comes with a partition
of places and hence has a natural mapping to processes in
MSCs. The resulting MSCs have synchronized events for
transitions whose pre- or postset covers different prasess

Traviando operates on traces generated with the ProC/B
2Colors are visible in the pdf file of this paper. toolset [2] which follows the common process interaction

Traviando supports the visualization and analysis of
traces of interacting processes. The visualization isdase
on MSCs and its particular purpose is to make information
accessible to a human being, information that is otherwise
hidden in large trace file. MSCs are promising since they




approach for simulation modeling. The ProC/B notation is
based on a notion of hierarchy with function calls. So the re-
sulting traces make use of send-receive events (representg
as directed actions). This allows us to infer a notion of
population and response times for function calls to (s¢rver
processes. In [10], we describe three additional visualiza
tion operations that are particularly designed to trackmow
what happens in a trace of a ProC/B model and with respect
to time. Highlighting and colorings are useful to illuseat
more information on the empirical distribution of response
times and populations derived from a trace. Visualizing the
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number of open function calls also helps to identify the root
of blocking and deadlock situations in open models.

The most recent advance of Traviando is towards traces
generated from the multi-formalism multi-solution frame-
work Mobius [5]. Models are structured in a hierarchical

Figure 3. Composed Model

manner such that a decomposition into processes according he approach is implemented in Traviando, a new software
to the composition of atomic and composed models is a nat-tool for Trece visualization and aalysis from Datmund

ural choice. Fig. 3 shows a Mobius model of a server with University. More information on Traviando can be found
failure and repair for a performability study. We generated at http://www4.cs.uni-dortmund.de/Traviando/

a trace from this model that serves as a running example for
the visualization in Fig. 1 and and the formula in Fig. 2.

Traviando’s new visualization features include a LTL |
modelchecking of traces that is supported by a pattern sys-
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tem. Atomic propositions are build by arithemic expres- References

sions on state variables and equalities and inequalitiss. A
illustrated in Fig. 2, we combine three descriptions of a for
mula to make LTL modelchecking more accessible to a user.
The upper right window shows the formula in a graphi-
cal, tree-type representation the lower left window démsgi

the formula in technical prose, and the lower right window
gives the common formal representation. Note that those
representations describe the same information, but should
complement each other for human understanding.
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the colors selected in Fig. 2 match those in Fig. 1. Novel
trace reduction techniques, which are not presented here fo
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5 Conclusion

We propose LTL modelchecking for the analysis of
traces in combination with a trace visualization by MSCs.
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