Sonderforschungsbereich 559
Modellierung groBer
Netze in der Logistik

Technical Report 06007

ISSN 1612-1376

Trace Analysis - Gain Insight through
Modelchecking and Cycle Reduction

Teilprojekt M2: Teilprojekt M1/M2:
Prof. Dr. Peter Kemper Carsten Tepper
Universitat Dortmund Universitat Dortmund
Informatik 1V Informatik 1V
August-Schmidt-Str. 12 August-Schmidt-Str. 12
44227 Dortmund 44227 Dortmund

Dortmund, 23. Juni 2006

Trace Analysis - Gain Insight through Modelchecking and Cyde Reduction*

Peter Kemper, Carsten Tepper
Informatik 1V, Universitat Dortmund
D-44221 Dortmund, Germany
Email: pet er . kenper @udo. edu
carsten. tepper @udo. edu

Abstract generated from models by a simulator, a model checker, or
some monitoring tool for verification, validation, debuggi
Verification and validation of models are crucial steps or animation purposes.
to the success of a model-based development of systems. Traces of interesting systems usually contain large vol-
Traces are a common and powerful mean to document theumes of data, so an automated analysis is important to ex-
dynamic behavior of a model and are generated from manytract relevant pieces of information. Qualitative projesrt
sources, ranging from simulation engines to modelcheck-of dynamic behavior are usually described in a modal logic
ers. In this paper, we describe techniques and correspond-and much research has gone into the development of a va-
ing tool support that helps a modeler to gain insight in the riety of useful and expressive logics for dynamic systems
dynamic behavior of a complex model based on trace analy-in general. Common examples are computational tree logic
sis. We propose to visualize traces by message sequendgCTL) as a branching time logic and linear time logic (LTL)
charts. We use a common modal logic, namely the linearas a linear time logic, see Clarke et al [5] as a recent text-
time logic (LTL), to identify states of interest and develop book. Since a trace is based on a single and finite sequence
a novel technique to reduce the sequence of events leadingf observations, branching time logics like CTL are not a
to such states. The proposed technigues are implementedatural choice and many concerns with respect to the in-
in Traviando, a stand alone tool with an open XML inter- finite behavior of a system do not matter. For trace ana-
face to import traces from many modeling environments, lyis, some work has been done in the area of runtime ver-
e.g., the APNN toolbox and Mobius among others. A sub-ification. Havelund et al describe in [10] how to perform
tle modeling error in a multi-class server system serves asmodel checking for linear time logic (LTL) formulae on a
an application example to illustrate the effectivenessunsf o trace by specially adjusted algorithms while Alur and Yan-
approach in revealing the cause of an observed effect. nakakis describe in [1] how a canonical LTL modelchecking
approach would assess a trace of a concurrent model.
Keywords: cycle reduction, modelchecking, debugging For practical applications, modelchecking has a number
simulation models, visualization and analysis tool of challenges. First, a human computer interface is reduire
that is easy to use and that helps a practitioner to be confi-
dent on the property he or she specified in a formal notation
like LTL. For instance, a formula lik&((¢ A —r A Fr) —
(—pUr)) with atomic proposition®, ¢, andr is not crys-
Traces that document the dynamic behavior of a systemta| clear to a non-expétt Dwyer et al. [7, 8] recognized
by a sequence of states and events are considered in mamggularities in the use of logic formulas for modelchecking
different settings. For instance, they are used as input forand organized those into a pattern system. Second, given a
a trace-driven simulation, as data to obtain stochastie rep model and a formula, efficient algorithms are necessary to
resentations of work load characteristics as distribstion decide whether a model fulffills that formula or not. Much
markovian arrival processes and alike. Traces are also anaresearch has gone into that problem and impressive results
lyzed with respect to some qualitative behavior in runtime have been obtained by so-called symbolic modelchecking
verification, where a system could be a multi-threaded javatechniques. However, in case of traces, modelchecking re-
program that is monitored at runtime. Finally traces are tains rather simple from a practical point of view since éher

1 Introduction

*This material is based upon work supported in part Deutsche 11t describes thap is false betweery andr; for the semantics of LTL
Forschungsgemeinschaft, SFB 559. operators see Section 3.

is only a single and finite sequence that has to be analyzedbut events are important pieces of information in a trace in
Third, once a result has been obtained, it must be repre-order to document not only the state of the system but also
sented or visualized in a way that maximizes the insight it what happens. Hence, we keep events within our consider-
may give to a modeller. ations.

In this paper, we contribute to those challengesinthe fol- Let us define some common operations for sequences.
lowing way. We describe a new tool that visualizes traces by The length ofo is defined aden(speis1...s,) = n.
a variant of message sequence charts (MSCs). It provideShe concatenation of two sequences = speis;...s,
a pattern system with a formula editor for LTL to describe and ¢’ = spe}s]...s,, wheres, = s is defined as
properties of interest. For a given set of formulas and propo coo’ = spey sy .. . s,€}s) ... s.,. Obviously, ife” = oo’
sitions, it evaluates which states fulfill which formulaglan thenlen(c”) = len(o) + len(c’). Foro = spe1s; ... s,
visualizes those properties in the MSC representation. Inand0 < ¢ < j < n, we define a projection or substring
addition to this basic functionality, we propose a novel re- operation asub(c, i, j) = s;ei41 ... s;. If states ofo have
duction method based on the identification and removal of some compositional structure, we may use that for a visual-
cycles in a trace. This reduction is particularly useful in ization as MSCs.
models of cyclic communicating processes, which are com-
mon in performability modeling where a finite number of
cyclic workload processes are composed with cyclic fail-
ure and repair models for the availability of resources. The
tool we present has an open XML interface for traces and
has been applied with several modeling frameworks includ-
ing the ProC/B toolset [2], the APNN toolbox [3] and the
multi-paradigm multi-solution framework Mobius [6].

The rest of the paper is structured as follows. In Section

Message sequence charts.If a trace results from a sdt
of interacting, concurrent processes, we can assume that a
states € S is a vector of local states, € S, of processes
p € P, ie, letS C x,cpS, and events may not nec-
essarily change the state of all processes. Hence we can
distinguish so-called local events that change the state of
only a single process from those that change two or more
2, we briefly define basic terminology for traces and MSCs. processes. By adding more information, we can Fhstmgwsh

; ; i among send and receive events and synchronized events.
Section 3 is devoted to LTL modelchecking of traces and .

For that scenario, message sequence charts (MSCs), [12],

a pattern system for the specification of formulas. Section .
. . . or UML sequence diagrams are common and related graph-
4 proposes the new reduction technique and algorithms for.

. - : : ical representations. In the following, we focus on a vdrian
the identification and selection of cycles in traces. We de- : .

.) . of MSCs that adds (undirected) synchronized events to the
scribe and compare three different greedy algorithms that

. . . usual send, receive and local events of MSCs and that adds
select a set of non-intersecting cycles in a trace for subse-

guent reduction. In Section 5 we introduce our new tool for state information.
trace visualization, its architecture and main functidggal

In Section 6, we show how to make good use of our tool
to debug an example performability model of a server with
two classes.

Definition 1. An MSC M is defined as a tupldl =

(V,<,P,M,K,N,S,G,so,m), whereV is a finite set of

events,<C V x V is an acyclic relationP is a set of

(MSC) processed/ is a set of message nameés,V — P

o is a mapping that associates each event with a process,

2 Definitions K : V. — {s,rul} is a mapping that describes the

kind of each event as send, receive, synchronized or local,

We are interested in the analysis of finite traces. N : V — M maps every eventto a name,= mg,Um,, IS

Formally, we consider a trace as a sequemce = a relation called matching with;, C V xV that pairs send
spe1st...ens, Of statessp,...,s, € S and events and receive events. Each send is paired with exactly one re-
e1,...,en € E over some (finite or infinite) setS, F for ceive and vice versa. Eventsandv, can be paired, only if

an arbitrary but fixedh € IN. For elements of, we assume N (v;) = N(v2). m,, C 2V relates up toP| processes by a
an equivalence relation denoted by™ For example, if synchronized eveng is a finite set of states witky € S as

s € S C N is the state of an automatos, may be the initial state and= : V' — S determines the successor state
usual equality among integer valuessit S is a marking afterevent € V.

of a Petri net, ther= is the equality of markings (integer

vectors), ifs € S is the description of a term of a process Note that events cannot repeat duetpbut names of
algebra, ther= may be defined as a weak or strong bisimu- events and states may occur multiple times in a trace. We
lation, and similarly for other formalisms with some notion restrict ourselves to well-defined MSCs in the sense that
of bisimulation for states like stochastic well-formedsiet we assume a total order 1 = {v;, v, ..., v, } such that
(SWNs), and the multi-paradigm models of Mobius. Note o = sgu1s1 .. .s, With G(v;) = s; that is consistent with
that events are irrelevant in the following formal treatmpen " <", i.e., if v; < v; theni < jforalli,j € {1,2,...,n}.

£ Traviando

File Edit ‘iew Statistic Model Checking Help
L1 -
aBm YW
~
FailureAndRepair | Server | CompleteServer | FullModel | UserA | UserB |
C2StapThinking
C15top Thinking
C2statService
failure l
CZRestartlfF ailed
Repair '
b
< >

Figure 1. MSC of Example Trace

The restriction does not exclude any relevant cases in prac- We assume a set of atomic propositioh®, such that
tice, since we would start from a totally ordered sequence ana € AP : S — {it, f f} evaluates statese S to true or
and represent it by an MSC. Synchronized events are reprefalse or in other terms = « iff a(s) = t¢. Since we allow
sented by undirected edges (therefore we chao®e no- for a relation= on .S, AP has to be consistent with, i.e.,
tation), while send-receive events yield directed arcse Th we require fors, s’ € S that if s = s’ thena(s) = a(s')
definition of M SC's is a union of what is usually needed for all a € AP. This requirement is trivial for equality; it
by different modeling formalisms. We currently use lo- becomesrelevantif some form of bisimulation is considered
cal events, send and receive events for traces generated bgs “=".

the ProC/B toolset, and local and synchronized events for LTL considers the behavior of a system as set of se-
traces generated by the APNN toolbox and Mobius. Fig- quences and has formulas of the forif where f is a path
ure 1 shows an example trace of six processes with localformula. Following [5], an LTL path formula can be of two
and synchronized events, which was generated from a Mo-kinds.

bius model for a server system with two customer classes
A and B where the server is subject to failure and repair.
The model is compositional and each submodel matches a . |t r andg are path formulas, thenf, f Vv g, f A
process in the MSC. A process is visualized by a vertical 9. Xf.Ff,Gf,fUg, andfRg are path formulas.

line with its name on top. Local events are represented by

small dots, synchronized events by horizontal lines, and aThe logic connectives implication and equivalence follow
states = G(v) is visualized in an additional window for a from the boolean operators in the usual mantfier; g =
selected event. Line thickness and colorings reflectresults —f Vgandf < g= (f — g) A (g — f).

of modelchecking a particular formula. The example is dis- ~ We mildly adjust the semantics of LTL for the case of
cussed in further detail in Section 6. The vertical order of & single finite sequence that is usually a prefix of a poten-

events (top-down) follows the order of events in a visualize tially much longer or infinite sequence. Hence for opera-
sequence. tors that refer to future behavior, we can be optimistic or

pessimistic which we formally address by an additional ar-

tifical pair e,,+15,41 that is attached te and we assume

that atomic propositions are defined for, ; as well. For

a desired propertyf € AP, we say we are optimistic if
Given a sequence, it is interesting to identify what we defines,; = ¥ and pessimistic ik, +; = . With

properties of the system are present or absent. Modal logicghat extension we define the semantics of LTL operators for

of various kinds have been developed to analyze dynamica sequencey,...,s, and states;,i = 0,1,....,.n+ 1 as

systems. In our case, a single and finite sequence wouldollows:

be considered a trivial case in concurreny theory and a lin-s; = —f iff s; = f,

ear time logic like LTL seems a reasonable choice for our s; = f VvV giff s; = fors; E g,

purpose. si = fAgiff s; = fands; Eg.

« If p € AP, thenp is a path formla.

3 LTL modelchecking

£ Formula-Editor

File Edit View Evaluste Help
Mot Or And Implication Eguivalence Mext Until Release Globally Finally TRUE FALSE Identifier

|| Property Patterns |
=] Ocourrence
=] sbsence Ciobally
Globally
Before
® After *
® After Urtil
=] Existence
Globally
* Before Implication
* After
® Between | e | .
After Urtil
= (] Bounded Existence / \‘
Globally
#® Before A Uritil
* After
Between
o Ao EAEN 2l
=] Universalty
® Globally / \ / \
® Before [—
® After = | R
Iderttifier And Mot Idertifier
® Betuveen server_taiure server_avail
® After Unti
=] Order /O | !\ *
=] Precedence -/
#® Globslly \. l‘_.
® Before P
® Atter Mot Firally Iddentifier
Userd,
Betuween
® After Unti * *
& [] Response d
[] Chain Precedence
Globally
® Sefare R T B R
. dtier | dentifier | dertifier
® Between server_svai server_aval
& Atter Unti
@ (7] Chain Response
] W 3
|| & 2 |
P is false betyeen Q and R iG ((serwer_failure & ((! server awail] & (F server_avail))) =» ((! Userd) U server_awvail))) |

Figure 2. Graphical formula editor with pattern system

If 2 < n, we define

sif= X[iff siv1 = f,

precedenceandchain response Patterns are elements of
those classes and each pattern has a scope that defines where

s; E Ff iff there exists aj, i < j < n + 1 such that
sj = [

si = Gfiffforall j,i <j <n+1holdss; = f,

s; = fUyg iff there exists ak, i < k < n + 1 such that
sk F=gandforallj,: < j < kholdss; = f,

s; E fRyiffforall k,i <k <n+1,foralj,i<j<k
holdss; (= f thens;, = g.

Finally, we define foi = n + 1

spy1 | Xfiff spp1 = f,

Snt1 = Ffff sp1 = f

snt1 = Gfiff sp1 = f

sny1 = fUgIf snp1 = g

sn+1 = fRyiff s B fAG

Patterns. Dwyer et al. [8] suggest a pattern system that

it applies, i.e., a scope gives the first and last state where a
formula (as a refinement of a corresponding pattern) should
be evaluated. Scopes are categorized into the following
five classesglobal, before after, betweerand after-until.
Dwyer et al. derived their pattern system from a substantial
empirical study on the use of modal logics in verification
and validation of systems. They analyzed about 500 exam-
ple specifications taken from at least 35 different appbcat
areas and experienced that very few kinds of formulas occur
in practice. They observed that patterasponseuniver-
sality, andabsenceall with scopeglobal, cover about 80%

of the considered cases.

This motivated us to integrate that taxonomy into an
editor for LTL formulas. Fig. 2 shows the editor win-
dow in the pattern system of Traviando with 3 represen-

integrates several logics and provides a common taxonomytations of formulaf of patternabsencewith scopebe-

It classifies properties into two classes, onedocurrence
and one foordering(of states or events or properties). Both
classes are further refined into four subclasses eadur-
rencecontainsabsenceuniversality existencendbounded
existence ordering consists ofprecedencgresponsghain

tween Formulaf = G((¢g A —r A Fr) — (—pUr))
has atomic propositions = User_A, ¢ = server_avail,
andr = server_failure that are formulated by equali-
ties/inequalities on arithmetic expressions with state-va
ables, e.g.server_avail is defined aswail = 1 where

avail is a state variable of submod@bmpleteServer. p mula, a red color for the atomic proposition that shows a
is defined a&’1WaitsForServer+C1W aitsForUser+ failure of a server, a green color for the atomic proposition
C1Thinking = 1. So state variables lik€1T hinking are that shows an operational, available server and a blue color
used to make state informatiere S accessible to a specifi- for the atomic proposition that shows that all customers of
cation of properties in atomic propositions. The uppertrigh classA are not present at the server.

window in Fig. 2 shows the formula in a graphical, tree- The modelchecking algorithm computes additional in-
type representation that is used to create and refine formuformation for each node in the tree of a formula. That
las, to assign atomic propositions to the leafs of the struc-information includes the total number of states that fulfill
ture, and to select colors for its graphical representation a (sub)formula as well as the position of first and last oc-
The lower right window gives the common formal repre- currence of those states for ease of navigation. Buttons
sentation for users that are more familiar with that type of are provided that make the visualizer scroll to the first or
notation. Finally, the lower left window describes the for- last occurence. This supports the intended usage of mod-
mula in technical prose that is initially derieved from pre- elchecking: the modeller can specify properties of interes
defined phrases associated with patterns and that can sutand the modelchecker guides the modeller to that particular
sequently be worked on by a user with further comments. fragment of the trace. In that scenario, usually the questio
Note that those representations describe the same informaarises how a particular state could be reached. l§; is

tion, but should complement each other for human under-not located in the beginning of the trageone may want to
standing. The tree-type representation is what is used asave a shorter trac€ that leads te; more directly. This is
input for the modelchecking algorithms. the goal of the reduction operation we introduce next.

Algorithm. ~ Since we consider the special case of asingle 4 Cycle Detection and Reduction

and finiteo, an algorithmic treatment of LTL path formu-

las is straightforward. Atomic propositions are evaluated The operation that we introduce in this section is a
for individual states X, F, G, U, R operators are evaluated reduction operation that removes repetition. For=
backwords starting at statg ;. Note that by definitionthe ~ soe1s1...en,5, With 0 < @ < j < n ands; = s;, we
evaluation ats,,,; for X, F, G, U, R is immediate. With define a reduction operatiored(o,i,j) = sub(o,0,1) o
known results at,,,;, we can make use of the following sub(o, j,n).

properties: The reduction operation is based on the repetition of
siEFfiff s; = forsips =EFf states which can be understood as a cycle or loop. For a
si = Gfiff s; = fandsiy1 = Gf given sequence, we can compute all cycles and subse-
si = fUgiff s; =gor(s; = fands; 1 = fUg) guently remove step by step as many cycles as possible to
si = fRgiff (si = fAg)or(s; =gAsiv1i = fRg) obtain a sequenc€. Sequence’ is obviously shorter than

From an implementation point of view, an evaluation can ¢ and leads tas,, more directly. The potential of this op-
be performed with the help of two arrays in the length of eration to assist a user in his understanding of a trace is
all subformulas and by sweeping througlin a backward twofold, first to recognize cycles and what events give a
manner. A similar approach is presented by Havelund et alcyclic behavior and second why and how a particular state
in [10] for runtime verification of systems. or sequence of states likg can be reached. In this way, we
distinguish between cyclic and progressing fragments of a
trace.

From a modeling point of view, the usefulness of the re-
duction operation is based on a key assumption: the state
of a systems; must be sufficient to define the subsequent
jpehavior that is present in the trace and starting afr his
assumption is usually fulfilled in untimed automata if S
describes the state of an automaton completely and also in
Narkov models since the current state defines the potential

Visualization. Figure 1 presents the visualization of the
formulaf = G((¢A—rAFr) — (-pUr)) as discussed be-
fore. and as specified in the formula editor in Fig. 2. We can
assign a color to each atomic proposition (leafs of the for-
mula tree) and subformulas and use those colors to highligh
in the MSC representation where a formula or subformula
holds. As shown in Fig. 1, highlighting of formulas takes
place atthose processes whose state varibales are used int o o
atomic propositions or subformulas. In case of subformu- [Uturé behavior in a Markov process. However, in discrete
las, all relevant processes must be determined with respec'tave_nt simulation Of_ non-Markowan models'm. general, a se-
to every atomic proposition that is used in a subformula. By lection of state variables is usually not sufficient and eath
coloring each subformula in a different color, it is easy to 1€ current event list — the state of the simulator — would
identify when a subformula is valid across the trace. Note P€ Necessary to describe the state of the simulation, which
that in Fig. 2, we decided to use colors for only 4 nodes of Would obviously minimize the possibility of cycles.

the formula, namely a light blue color for the overall for- 2Colors are visible in the pdf file of this paper.

In the following, we investigate the algorithmic side of = EEH
cycle reduction in three steps, namely detection of all cy-

cles, selection of a subset of cycles for removal and removal -
of those cycles. Itis clear that an on-the-fly approach would =
not necessarily consider all cycles in a trace. Nevertkeles
before we describe solution algorithms, it is worthwhile to
investigate the implications of each of the three steps fora | ;

better understanding.

20

200

100

Detection of Cycles. For a given sequenceof lengthn,
we want to identify a sef of all pairs(i, 7),0 <i < j <n
with s; = s; in 0. 7 contains all cycles of. Entries of 0
7 can be also understood as an interval of integer values on
the index range of states én SetZ could be the basis for a
subsequent selection and removal of cycles. However, cer-
tain states may occur once, twice or many times.ifigure Figure 3. Number of occurrences of states

3 gives the number of occurrences for states of a irdbat

we analyze in more detail in Section 6. States are ordered

by decreasing number of occurences. For instance, the firsment(é, j) € ol, namelyz; + z; < 1. We denote the prob-
state in the graph occurs 339 times. Note that this is urfortu lem of findingC as sequence reduction problem (SRP) for
nate for an explicit enumeration of entriesioflf a state oc- short. Due to the type of restrictions, the SRP is similar but
cursk times, that state alone generate§:—1)/2 elements not necessarily equivalent to the well-known NP-complete
of Z. The calculation reflects the number of possible selec- knapsack problem. In any case, we obtain difficulties in two
tions of 2 states amonk states where permutations count ways. We have to solve a combinatorial optimization prob-

50

H\m

0 Ell El 50

State

24.3903, 268.692

only once. Foik = 339, that state alone contribut6%291 lem and that problem is defined dhwhose cardinality is
intervals toZ. A more concise representationbfis a set subject to a combinatorial explosion as well. In conclusion
J of tuples(s, i, ...,ix) wheres;, = s;, = ...s;, andk we proceed in a pragmatic manner with heuristic and com-

is the number of occurrences ofin . Clearly, the value putationally inexpensive algorithms in the following. We
of k depends or. The generation aff for ¢ is straightfor- propose three heuristic strategies.

ward. Starting from7 = () the generation algorithm runs The first strategy is a gready strategy that selects largest
once through all states efand inserts each stateinto 7. elements first, i.ei = (i1,i2) € Z with maximal value of
There are two cases possible for the insertion operation. Ifi, — ;. For a selected elemeitthe approach iterates on a
no tuple withs = s; exists inJ, a new tuple(s;, i) is cre- reduced sef’ = Z\{j|(i, j) € ol}. Note that identification
ated. Otherwise an existing tuple, i1, . .., i) is extended of large intervals can be implemented efficiently with
to(s,i1,...,ix4+1) andig 1 Storesthe index value 6f The We denote this strategy as greedy by size (GS). It requires
complexity isO(n log n) sincen states are inserted and if knowledge of all intervals, i.e., sgf has to be computed.

we assume that insertion requir@glog n). All elements The second strategy is a greedy strategy that selects cy-

with £ = 1 (states that occur only once) are subsequently cles in the order of occurence, resp. identification. We de-
removed from7. 7 allows for an efficient determination note this strategy as greedy by order (GO). Itis an on-the-fly
of a maximum Interva(zl, Zk) and subintervals that shall fit approach that runs throughfrom the beginning’ creates a

into given limits for the lower or upper index value. setS’” and removes cycles from(and corresponding states
from S’) as soon as a cycle is identified.
Selection of Cycles. Based on a given s&t(possibly im- For the third strategy, we make use of a greedy algorithm

plemented by se¥ that gives access to elementsiof we for a related problem, the minimal weighted vertex cover
consider the problem of selecting a subset of cy€l&s 7 (MWVC), which is NP-complete. We denote this strategy
such that cycles do not overlap and that a maximal numberas greedy by vertex cover (GVC). The MWVC problem is
of states ofS' is covered. Formally, letl C 7 x Z be arela- defined as follows. LeG(V, E) be an undirected graph
tion that indicates which intervals overlap and two intésva with a finite set of noded” and a finite set of edgek.
(i1,12) and(is,i4) are inol, if neitheriy < i3 noriy < iy Letg : V — N be a weight function that assigns positive
holds. The problem of finding a maximal set of cycles can weights to nodes i’. The WMVC problem is to find a
be described agwax), ; gi - ; Whereg; = iy — iy for subset of node¥”’ C V such thaty ., g(v) is minimal
tuplei = (i1, i2) andx; is an indicator variable with values and for all edgegv,w) € E eitherv or w (or both) are

0 and1. The problem has side conditions, one for each ele- an element of”’. We define ar-graph asl’ = 7, edges

E = {(4,4)|(i,4) € ol} and weightsg(i) = iy — iy for
i = (i1,12) € T for a sequence.

Theorem 1. For any given o-graph G(V,E) with
V',V CV andV"” = V\V’ holds that ifV’ is a solution
for WMVC thenV" is a solution for SRP.

Proof. Note thatg((i1,42)) > 0 by definition ofZ. For any
v,we V", (v,w) ¢ E since all edges are covered by if

V' is a valid solution of WMVC. Henc&"' must be a legal
solution of SRP, i.e., no two intervals I’ overlap.

It remains to show that it is maximal. We assume the con-
trary, letv € V' such that” U {v} is a better solution to
SRP due to the positive weight of If v has no edge ad-
jacent to it, therw ¢ V' because it is not necessary for a
solution of WMVC and hence € V" holds already and
the assumed better solution makes no difference: Bast
have at least one edge and= V'. SinceV”’ is a solution

of WMVC each node must be exclusively covering at least
one edge, so there must be an edger) with « ¢ V.
However, that: must be inV”" = V\V’ and thus/” U {v}
cannot be a solution of SRP due(tg x) € E. Hence such

x and alsow can not exist.

The theorem implies that we can use all(!) known algo-
rithms for WMVC to solve our SRP. In this setting, we se-
lect only one and evaluate a simple greedy algorithm that
iterates on two steps. It starts withvagraphG = (V, E)

and sucessively selects an edge (step 1) and removes it to-
gether with its adjacent nodes and edges (step 2). The algo

rith selects an edge = (4, j) (from the remaining edges)
that has minimal weighg(¢) 4+ ¢(j). The GVC algorithm

is the weighted version of a classical greedy algorithm for
WMVC [9]. We avoid the combinatorial explosion in the
generation of = 7 by makeing use of a subsét C 7
instead. We us&’ = {(4;,%4+1)[(s,%1,...,ix) € J,1 <

Jj < k}U{(i1,i)|(s,t1,-..,%) € J}. The subset con-
tains sufficient elements df to retain the correct solution
(the first set of the union of two suffices); the second set of
the union is used to make it simpler for GVC to avoid large
intervals and leave them for the solution of the SRP.

Removal of Cycles. Removal of a set of cyclgs from o

is straightforward. However, note thatdf covers a large
fraction of o and has many elements, it can be simpler and
more efficient to generate a new and reduced teddeom

the few subsequences that retain instead of transforming
by a sequence of removal operations.

Note that all three greedy algorithms GS, GO and GVC
are based on heuristics, are computationally inexpensive
but follow rather different selection strategies. It regsi
some further experimental analysis if those algorithmswor
sufficiently well, if there are significant differences such
that one may be identified as superior or if they are rather

complementary and a tool may apply all and select the best
result for a particular trace.

Evaluation. We exercised the greedy algorithms on a set
of traces taken from a number of different examples. Table
1 gives the resulting values fanax) ;. (i2 — i1) for the
calculated sef.

Row Courierrefers to a trace of length = 1000 that is
generated from a stochastic Petri net model of the Courier
protocol model by Li and Woodside [15]. The model is in-
tended for performance analysis and generates a recurrent,
finite Markov chain. The initial marking is chosen such that
the model has a small state space and is expected to show a
lot of cyclic behavior. We used the APNN toolbox [3] for
modeling the Courier protocol and its simulation engine to
generate the trace. The resulting values do not differ much
and range between 949 for GS, 953 for GO and 949 for
GVC. GVC operates on a graph with 859 nodes and 67445
edges and weights range from 12 to 948 with an average of
168.

Row Serverrefers to a Mobius model of a server with
failure and repair that is considered in detail in Section 6.
The model is intended for performability analysis and has a
cyclic behavior since the workload of the server is given by
a finite number of customers of two classes. However, the
variant of the model we consider has a defect which implies
that the trace can be partitioned into two parts where each
can contain cycles but there is none that overlaps with both
parts. All three algorithms show similar results.

Row Prodcellrefers to a large model of a production cell
by Heiner et al [11]. The model contains hundreds of places
and transitions and considers control of a production cell
which consists of a feeding belt, a rotating table, a robot
with two arms, a press, a second belt to remove processed
parts and a crane. The crane is used to obtain a closed-
circuit that has a finite number of parts that are processed
over and over again. The model has been imported in the
APNN toolbox and analyzed [4]; we used the APNN sim-
ulator to generate a trace with 1000 events. GS, GO, and
GVC give identical results. GVC operates on a graph with
91 vertices and 3406 edges, weights range from 162 to 810.

Row Storerefers to model of a storage area described in
[13]. It models the transfer of goods into a store and out
of a store by trucks that allocate ramps and that are loaded
or unloaded with the help for forklifts that are manned with
workers. The model describes an open system and is devel-
oped with the ProC/B toolset [2]. The state representation
that is chosen for the trace abstracts from certain dethils o
the ProC/B simulation model. In particular, identities of e
tities are not revealed. The model has a defect in the sense
that it reaches a situation, where the loading/unloadinrg op
erations are all blocked due to a partial deadlock and the
model shows only activites owing to the fact that it is an

open model and new entities can be generated. This modeprocesses, state variables and more. The prefix helps to

shows a significant advantage for GO. keep the sequence of events concise in its description and
also allows for some preprocessing and consistency check
Model | GS | GO | GVC | for the trace based on the given structural information. The
Courier | 949 | 953 | 949 sequence of events in the second part of a trace can be
Server | 5464 | 5466 | 5464 enhanced in many ways by additional information, for in-
Prodcell| 811 | 811 | 811 stance by time stamps and by information on changes to
Store 417 | 506 | 420 state variables.

Traviando is implemented in Java and is able to work
on traces of different kinds and from different sources. It
))) operates on traces generated with the APNN toolbox [3].
Since the differences among algorithms are usually smalltpgse traces result from Petri net models and a notion of
but we would like to gain more empirical data on their per- rcess is introduced by partitioning the set of place éstat
formance, so we currently apply all 3 algorithms in Tra- \4yiaples). Many partitions are possible, the finest partit
viando and then use the most effective for a trace reduction.,55 one place per process, the coarsest has one process with
all places. The APNN toolbox particularly supports super-
5 Tool posed GSPNs that are composed of Petri nets by synchro-
nized transitions; that class of nets comes with a partition
of places and hence has a natural mapping to processes in

traces of interacting processes. The visualization isase MSC?: The resulting MSCs have synchrpnlzed events for
on MSCs and its particular purpose is to make information transﬂpns whose pre- or postset covers dlfferfent Presess
accessible to a human being, information that is otherwise ~ Traviando operates on traces generated with the ProC/B
hidden in large trace file. MSCs are promising since they t00Iset [2] which follows the common process interaction
focus on the interaction of processes and we believe tha@PProach for simulation modeling. The ProC/B notation is
this is crucial: in modeling as well as programming with in- bas_ed on a notion of hierarchy with functlon calls. Sothere-
teracting submodels, components, processes or threads, tHSUlting traces make use of send-receive events (represente
behavior of an individual process is rather simple to analyz @S directed actions). This allows us to infer a notion of
and debug but the overall effect of interactions contrisute POPulation and response times for function calls to (sgrver
much to the complexity of such systems. So the latter re- Processes. In [13], we desgrlbe three ;\ddltlonal visualiza
quires adequate tool support. Traviando supports a numbekion operatlon§ that are particularly designed to tr.ackrmlow
of operations that are helpful for trace analysis. In [14, w Whathappensin a trace of a ProC/B model and with respect
discuss the role and potential of fundamental operations onf© time. Highlighting and colorings are useful to illustat
MSCs for trace analysis in more detail, for instance, the rol More information on the empirical distribution of response
of grouping a subset of processes into a single process tdimes and populat|0n§ derived from a trace.' V|sgaI|2|ng the
manage the level of abstraction and to set a focus on partic'umber of open function calls also helps to identify the root
ular processes (while others are aggregated into one or few?f blocking and deadlock situations in open models.
groups, “environments”). Traviando also supports moder- In this paper, we focus on the most recent advance
ate manipulations on the total order of events which is still of Traviando towards traces generated from the muilti-
consistent with the partial order of an MSCs and which can formalism multi-solution framework Mobius [6]. Models
substantially improve the visualization and make it easier are structured in a hierarchical manner such that a decompo-
to understand for a human observer, see [14] for further de-sition into processes according to the composition of atomi
tails. A key advantage to a direct animation of some mod- and composed models is a natural choice. Note that Mo-
eling formalism is that the MSC visualization in Traviando bius has the option to internally apply bisimulations to mak
allow to track down causes in a backword manner while states appear as equal for trace analysis which is to the bene
retaining an overview of a number of events. Most anima- fit of the cycle reduction approach discussed in the previous
tions of dynamic behavior like the token game for Petri nets, section. In Section 6, we analyze a trace of a Mobius model
some animated simulation model, or some debugging facil-whose structure is shown in Fig. 4.
ity usually do only show the current state and a human user Traviando’s new visualization features include a LTL
is forced to memorize its history while navigating forward. modelchecking of traces that is supported by a pattern sys-
Traviando imports sequences in an open XML format tem. Atomic propositions are build by arithemic expres-
that consists of two parts, namely a prefix and the sequencesions on state variables and equalities and inequalitiss. A
of events that constitutes the trace. The prefix contains defi illustrated in Fig. 2, we combine three descriptions of a
nitions for processes, events, their type and associatithn w formula to make LTL modelchecking more accessible to a

Table 1. Results of Selection Algorithms

Traviando supports the visualization and analysis of

user. First, a graphical, tree-type representation with on athreshold fofV(A) such that the server is not able to com-
node per logical operator and atomic propositions as leafsply with certain quality of service (QoS) for that amount of
is used to derive formulas by refinement. Atomic proposi- customers. QoS is acceptabl®if% of all classA tasks are
tions can be selected by mouse-clicks from a menu that isserved within a given time limit. We do not provide further
derived from a currently defined set atomic propositions. A details of the timing because we will focus on debugging a
set of atomic propositions is defined in an additional editor corresponding model.

window. Colors are associated with nodes in the formula . L .
editor to define the coloring and highlighting used for the W& make use of Mobius and its discrete event simula-
visualization of the modelchecking results on a MSC, for tion engine to model this system and conduct a simulation

instance the colors selected in Fig. 2 match those in Fig. 1_3Ludy. MhObIUS of]fcers s:lgveral mod(;alllng forr]mallsms. fWe
Trace reduction techniques help to separate repetitiva fro choose the SAN formalism to model each aspect of our

progressing parts of a trace and can substantially cut dow ystem individually and the composition operation that is
on the number of events considered for trace analysis ased on shared variables to join the individual atomic mod-

The upper right window shows the formula a graphi- els into an overall model. Figure 4 shows the compositional
cal, tree-type representation the lower left window démsi stlructure of tf;)e mc(j)dlel.f EhEuIIModeI_ chomkglnesd;Com—
the formula in technical prose, and the lower right window P eteServesu. moael o the server wit submo sgrA
gives the common formal representation. Note that thoseandUserB which describe the user behavior. Users interact
representations describe the same information, but should’"Ith the server by putting tokens on input and output places

complement each other for human understanding. of the server, those places are shared viaRb#Model. _
The CompleteServesubmodel encapsulates how a service

is performed and a submodallureAndRepaithat models

6 Example availability of the server. The number of customers of class
A is a parameter that we evaluate over a range of values.

_ In the following, we briefly describe the individual atomic
Bl eryeZcimassh: server Alasses EE® models and their compaosition, namely the atomic model for

File Edt Wiew Elsments Help

= E failure and repair, the atomic model for the server, and the

3 two atomic models customer classésand B. The failure

and repair model describes a cyclic behavior and switches
between “available” and “failed” states to indicate thdista

of the server. It shares a boolean state variable “availi wit
the server model. The server models a queue with random

"""""""" Submadel Submode 1 1
e i ey e L schedullng and no preemption for 2 customer chssgs_. If a
T s customer is served when a failure occurs, its service is-inte
MOh Méhius RepiJoin Model Editar 1.8.2 R rupted and it is positioned back into the queue. Its service
jobius
g, Model serveriCizsses Version & (Modfiec) * time is not memorized. Customers cycle between their own

class-dependent submodel that delays them for a thinktime

and the server. A simulation run reveals performance mea-
Figure 4. Composed Model sures that in the long run deviate from what is expected. In

particular the throughput of clag3 is slightly too small,

As an example application, we consider a performability for A slightly too high. At one point, we suspect that the
model of a server that is subject to failure and repair. Fail- model contains an error. Clearly, there is a variety of op-
ures happen mainly due to software failures and are han-ions for debugging simulation models. In this context, we
dled by rebooting the system and restarting tasks that arfocus on the use of trace analysis and the visualization of
performed. The workload can be partitioned into two types MSCs. We first check traces fa¥(A) = 1, N(B) = 0
of tasks according to their service demands. The user pop{and vice versa) to see whether the one-class case works,
ulation is limited, such that we decide to model the system but could not find any error. We select a minimal popu-
by a closed model with two customer classes A and B andlation N(A) = N(B) = 1 next to check for functional
corresponding finite populatioN (4) and N(B). Class B correctness for the case of two classes and make the server
is used to describe “normal” customers that give the base-failure free. For that case, we cannot find any error. Fi-
line utilization and class A customers are particular ones nally, we generate a trace of some thousand events for the
with different service requirements. We adjust a thinktime complete model including failures. We first check individ-
between end of service and next service request for tasks ofial processes if all transitions in fact occur. For rare &ven
each class to match the interarrival times between regéiest olike failures, we use a coloring mechanism to simplify their
the system under study. The goal of the study is to identify identification. We start with short traces and increase its

= Traviando
Fle Edit Wiew Statistic Model Checking Help

a0mW T E S &P

4 C2StopThinking A

I C15tadThinking
oo

C2RestarifFailed

e -

C15tadSenice

CiFinishService oK . .

CzHtadSenice

C15tad Thinking

C2FinishSenice oK

C25tanThinking
4 CzstopThinking

C18tadSenice

I C:15top Thinking
CAFinishSenvice oK

C25taSenioe

C2FinishSemica Ok v

Figure 5. Results for LTL modelchecking ahead of cycle reduction

length if appropriate. A trace of 5475 elements happensately sees simpler ways for its identification, for instance
to be long enough to contain all events and three failuresby defining invariants on the customer populations. Never-
with subsequent repair. We suspect that failures may be aheless, at first hand, any automated supported that is able
cause of the problem and formulate different properties tha to guide a user to critical fragments of a trace is a produc-
should hold during a failure and repair cycle. We make usetivity enhancer in the debugging process. Finally, we want
of LTL to formulate that if a server fails, all customers dhal to explicitly note that the type of error we identified could
be either in the queue or located in their corresponding sub-happen in any modeling environment and that it is in no
model and thinking. Since we want to be warned if that way related to the fact that we use Mobius as a modeling
constraint is violated, we formulate the negated propesty a and analysis framework.

a formula of the patterabsencavith scopebetweerthat is
shown in Fig. 2; the formula has been discussed in Section
3 in the paragraph on patterns for illustration purposes. In
particular, a light blue coloring indicates if the popudsti

of customers of class A outside the server is not matching
N(A), i.e. the class A population would be corrupted. Fig.
5 shows the relevant fragment of the trace to which the LTL ~ We propose LTL modelchecking for the analysis of
modelchecking and coloring of the MSC traces guides us.traces in combination with a trace visualization by MSCs.
We check the state information that is displayed in an addi- In addition to that, we introduce a reduction operation dase
tional window which is not shown here and recognize that on the removal of cycles and algorithms for the detection
the number of customers increases for that class. We usé@nd selection of cycles for removal. The overall approach
the cycle reduction on the prefix of the trace that leads to IS implemented in Traviando, a new software tool forcea
this situation (where the overall formula is true for thetfirs Visualization and aadysis from_Datmund University. We
time) and automatically obtain the trace represented in Fig demonstrate the usefulness of the approach by detecting a
1. By following the few events and checking the state vari- subtle modeling error in a performability model of a server
ables, we recognize that the removal of a class B customesystem with 2 classes. More information on Traviando can
from service back into the queue in case of a server failurebe found at http://www4.cs.uni-dortmund.de/Traviando/
creates an additional class A customer in the queue. The Acknowledgements We would like to thank W.H.

error was introduced when class B was added to the modelsanders and his student Michael Mc Quinn for supporting
as a copy of class A. By knowing the error, one immedi- 5 with an appropriate XML trace output of Mobius.

7 Conclusion

10

References

[1] R. Alur and M. Yannakakis. Model checking of message
sequence charts. IRAroc. 10th Intl. Conf. on Concurrency
Theory pages 114-129. Springer Verlag, 1999.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Vilke
The ProC/B toolset for the modelling and analysis of process
chains. In T. Field, P.G. Harrison, J. Bradley, and U. Harder
editors,Computer Performance Evaluation, Modelling Tech-
niques and ToolsSpringer LNCS 2324, pages 51-70, 2002.

[3] Falko Bause, Peter Buchholz, and Peter Kemper. A tool-
box for functional and quantitative analysis of DEDS. In
Ramon Puigjaner, Nunzio N. Savino, and Bartomeu Serra,
editors,Computer Performance Evaluation (Toglsplume
1469 ofLecture Notes in Computer Scienpages 356—359.
Springer, 1998.

[4] Peter Buchholz and Peter Kemper. On generating a higyarc
for GSPN analysisSIGMETRICS Performance Evaluation
Review 26(2):5-14, 1998.

[5] E. M. Clarke, Jr. O. Grumberg, and D. A. Peled/odel
checking MIT Press, 1999.

[6] Daniel D. Deavours, Graham Clark, Tod Courtney, David
Daly, Salem Derisavi, Jay M. Doyle, William H. Sanders,
and Patrick G. Webster. The Mobius framework and its im-
plementation.|IEEE Trans. Software Eng28(10):956—-969,
2002.

[7] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Property specification patterns for finite-statefieeri
tion. In Mark A. Ardis and Joanne M. Atlee, editoFAMSP,
pages 7-15. ACM, 1998.

[8] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Patterns in property specifications for finite-statefi
cation. InICSE pages 411-420, 1999.

[9] M. R. Garey and David S. JohnsonComputer and In-
tractability: A Guide to the Theory of NP-Completeneds.
H. Freeman, 1979.

[10] Klaus Havelund and Grigore Rosu. Synthesizing mositor
for safety properties. Iiools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’02), LNCS 2@8@es
342-356. Springer Verlag, 2002.

[11] M. Heiner and P. Deussen. Petri net based design ang-anal
sis of reactive systems. IRAroc. 3rd Workshop on Discrte
Event Systems (WoDES9pages 308—-313, 1996.

[12] ITU-T Recommendation Z.120Message Sequence Charts
(MSC’96) 1996.

[13] P. Kemper and C.Tepper. Trace based analysis of process
interaction models. IfProc. of the 2005 Winter Simulation
Conferencepages 427-436, 2005.

[14] P. Kemper and C. Tepper. Visualizing the dynamic betravi
of ProC/B models. In T. Schulze et al., editSBmmulation und
Visualisierung pages 63-74. SCS Publishing House, 2005.

[15] C. Murray Woodside and Yao Li. Performance Petri net
analysis of communications protocol software by delay-
equivalent aggregation. RNPM pages 64—73, 1991.

11

A Document Type Definition (DTD) of trace

<!ELEMENT Trace (Comment, Process+, Interactions*, Sequence+)>
<VATTLIST Trace model CDATA #IMPLIED>
<IATTLIST Trace generator CDATA #IMPLIED>

<!ELEMENT

Comment (#PCDATA)>

<!-- Process section -->

<!ELEMENT
<VATTLIST
<IATTLIST

<!ELEMENT
<VATTLIST
<IATTLIST

<!ELEMENT
<IATTLIST
<VATTLIST

Process (Action*, Varx)>
Process id CDATA #REQUIRED>
Process name CDATA #REQUIRED>

Action EMPTY>
Action id CDATA #REQUIRED>
Action name CDATA #REQUIRED>

Var EMPTY>
Var id CDATA #REQUIRED>
Var name CDATA #REQUIRED>

<!-- Interactions section —-->

<!ELEMENT
<!ELEMENT
<VATTLIST
<IATTLIST
<!ELEMENT
<!ELEMENT
<IATTLIST
<VATTLIST

<!ELEMENT

<!ELEMENT

Interactions (Diraction*, Undiractionx)>
Undiraction (Touch+)>

Undiraction id CDATA #REQUIRED>
Undiraction name CDATA #REQUIRED>

Touch (#PCDATA)>

Diraction (From, To)>

Diraction id CDATA #REQUIRED>

Diraction name CDATA #REQUIRED>

From (#PCDATA)>

To (#PCDATA)>

<l-- Sequence section -->

<!ELEMENT
<IATTLIST

<!ELEMENT

Sequence (S,Ax*)>
Sequence type CDATA #IMPLIED>

S (V+)>

12

<!ELEMENT
<IATTLIST
<VATTLIST
<IATTLIST

<!ELEMENT
<IATTLIST
<VATTLIST

(V) >

id CDATA #REQUIRED>
time CDATA #IMPLIED>
inst CDATA #REQUIRED>

EMPTY>

id CDATA #REQUIRED>
val CDATA #REQUIRED>

13

B Superposed Generalized Stochastic Petri net model

The first example is a model of the APNN-Toolbox. The APNN-Toolbox
allows the modelling of Generalized Stochastic Petri nets (GSPNs). It is
possible to specify partitions on the places, so that the model is divided into
partitions.

1/1 0/0
pl p3
t1l t2 t3
0/0 1/1
p2 p4

Figure 1: SGSPN model

The example in Fig. [contains two partitions P! = {p;,p2} and P? =
{p3,p4}. Partition P! contains the two variables (Var) pl — v_1, p2 — v_2
and Partition P? p3 — v_3, p4 — v_4. Both partitions contain one local
activity (Action) t1, respectively t3. The transition t2 is a synchronized
transition which regards both partitions (Interactions). The interaction is
undirected (Undiraction) because it is not clear which partition is the sender
or receiver.

The example trace contains first a specification block which is not conform
to the XML standard. Due to the size of the trace we have decided to speci-
fiy first the structural part of the model followed by the dynamical part
(Sequence). The structural part contains the definition of processes (Pro-
cess) and interactions (Interactions) between the processes. The dynamical
part is sequence (Sequence) of events. Every event (A) has a time stamp
which is specified as global time and a list of variables which values have
changed. The order of the list of variables is arbitrary.

Example trace for model in Fig. [T}

<?xml version="1.0" encoding="utf-8" 7>

<!-- Trace file of model SGSPN -->

<Trace model="SGSPN" generator="APNNsim" >

<Comment> Purpose of this trace: demonstration </Comment>

14

<l-- declaration of processes -->
<Process id="0" name="P1" >
<Action id="a_1" name="t1" />
<Var id="v_1" name="pl" />

<Var id="v_2" name="p2" />
</Process>

<Process id="1" name="P2" >
<Action id="a_3" name="t3" />
<Var id="v_3" name="p3" />

<Var id="v_4" name="p4" />
</Process>

<Interactions>

<Undiraction id="a_2" name="t2">
<Touch>0</Touch><Touch>1</Touch></Undiraction>
</Interactions>

<l-- process sequence -->
<Sequence type="StateActionType">
<S>

<V id="v_1" val="1" />
<V id="v_2" val="0" />
<V id="v_3" val="0" />
<V id="v_4" val="1" />
</S>

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

<V id="v_2" val="0" />
<V id="v_1" val="1" />

<V id="v_3" val="0" />
<V id="v_4" val="1" />

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

15

<V id="v_3" wval="0" />
<V id="v_4" val="1" />

<V id="v_2" val="0" />
<V id="v_1" val="1" />

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

</Sequence>
</Trace>

£ jMSCVis

File Edit Wiew Stakiskic Help
| | "
& E W@ s 5 6 W] &
A
t2
+* t1
- 13
t2
] B
+ t1
2
bt
< >

Figure 2: MSC of example trace

16

C ProC/B model

A modelling language which is especially designed to the needs of logistic
networks is the ProC/B formalism, which is accompanied by a corresponding
software toolset including a graphical interface for specification and a set of
analysis tools.

The main structuring elements of ProC/B models are Functional Units
(FUs), which encapsulate one or more Chains. A chain can be viewed as
a structured and measured set of activities starting with Sources for pro-
cess creations (demand), denoted by a circle with midpoint (), followed
by a chronological sequence of Process Chain Elements (PCEs) describing
activities, denoted by arrow-like hexagons, and the chain is accomplished
by a sink, denoted by . Horizontal connections between PCEs indicate
a sequential behavioural pattern of processes. Branches into and merges
from alternative sub-chains are allowed and represented by vertical b ars.
Process Chains can be hierarchically structured. PCEs may invoke sub-
chains from so-called subordinated FUs. Subordinated FUs and sub-chains
are described in the same manner as their super-ordinated FUs and chains
(self-similarity). Actually, two types of subordinated FUs are distinguished:
user-defined FUs and simple, predefined FUs of type Server or Counter.
Servers are used to model active, possibly shared resources, i.e. machines,
assembly lines, workers. In principle, servers correspond to single stations
in queueing networks. Counters are used to describe passive resources, i.e.
stores and waiting areas of usually restricted capacity.

Example_ProC/B

process

PCE1
(negexp(5.0))

0
EVERY negexp(1.0) DELAY

Necez \ N\ pees
(negexp(15.0))
FU

DELAY

FU

(Tj_ Service ?o

Figure 3: ProC/B model

17

FU

N PCE4
® 2% > (negexp(100.0))

DELAY

Figure 4: FU of ProC/B model in Fig.

In this example trace the sender and receiver can be dedicated. Therefore the
interactions between the processes are directed (Diraction). Variables are
the PCEs PCE1 — v_11, PCE3 — v_19 and PCE4 — v_28. Theses variables
count the number of process instances which are waiting for proceed at these
PCEs. The last differnce to the example trace of the SGSPN model is that
the actions in the squence have the optinal attribute 7. This attribute is
necessary for identifing the process instance which has generated the event.
The encoding of this attribute is the id of the process instance followed by
a dot plus the id of the PCE where the process instance has waited before
proceeding.

Example trace for model in Fig. [3

<?xml version="1.0" encoding="utf-8" 7>

<!-- Trace file of model Example_ProC/B -->

<Trace model="Example_ProC/B" generator="ProcessVis" >
<Comment> Purpose of this trace: demonstration </Comment>
<!-- declaration of processes -->

<Process id="0" name="process" >

<Action id="a_5" name="Source_process" />

<Action id="a_10" name="PCE1" />

<Action id="a_18" name="PCE3" />

<Action id="a_21" name="Sink_process" />

<Var id="v_11" name="PCE1" />

<Var id="v_23" name="PCE2" />

18

£ jMSCVis
Fil= Edit “iew Statiskic Help

E

Y

b Source_process

FY

b Source_process
FCEA
PCEA

FCEZ

i

b Source_process

WirSink_Senrice

FCEZ

£

Figure 5: MSC of example trace

<Var id="v_19" name="PCE3" />

</Process>

<Process id="1" name="Service" >

<Action id="a_25" name="PCE4" />

<Action id="a_30" name="Sink_Service" />
<Var id="v_28" name="PCE4" />

</Process>

<Interactions>

<Diraction id="a_15" name="PCE2">
<From>0</From><To>1</To></Diraction>
<Diraction id="a_16" name="VirSink_Service">
<From>1</From><To>0</To></Diraction>
</Interactions>

19

<l-- process sequence -->

<Sequence type="StateActionType">

<S>

<V id="v_11" val="0" />

<V id="v_19" val="0" />

<V id="v_28" val="0" />

</S>

<V id="v_11" val="1" />

<V id="v_11" val="2" />

<V id="v_11" val="1" />
<V id="v_23" val="1" />

<V id="v_11" val="0" />
<V id="v_23" val="2" />

<V id="v_23" val="1" />
<V id="v_28" val="1" />

<V id="v_11" val="1" />

<V id="v_28" val="0" />

<V id="v_23" val="0"/>
<V id="v_28" val="1"/>

</Sequence>

</Trace>

20

D Mobius: Join model

The 3 atomic models in Fig. [6] has two shared variables/places p2 and p3.
The place pl contains one intinial token.

|§| Exzample_Moebius: modell

File Edit “iew Elements Help

a|»

@ Mobius SAN Editor 1.5, Mébius SAN Editor 1.6.0 @ 1itbius SAN Editoy

Mébius . . Mdbius Gbius
Model modell Version Model model2 Version: 4 Model model3 ¥

Figure 6: 3 atomic models

In Fig. [Mis depicted the hierarchy of the composed model. In this example,
every node contains one variable. It is possible that a node has more than
one or zero variables. If a node has zero variables then this node must not
described as a process because the node cannot have any interactions with
other processes.

Joinl p2
Join2 p3
modell | pl
model2 | p4
model3 | p5

Example trace for model in Fig. [Tt

<?xml version="1.0" encoding="utf-8" 7>

<!-- Trace file of model Example_Moebius -->

<Trace model="Example_Moebius" generator="manually_generated" >
<Comment> Purpose of this trace: demonstration </Comment>

<!l-- declaration of processes -->

<Process id="0" name="Joinl" >

<Var id="v_2" name="p2" />

</Process>

<Process id="1" name="Join2" >

21

[@] Example Moebius: composed]

File Edit ¥iew Elements Help

Jain

............ Submodel e

Figure 7: Composed model

<Var id="v_3" name="p3" />

</Process>

<Process id="2" name="modell" >

<Action id="a_1" name="t1" />

<Var id="v_1" name="p1" />

</Process>

<Process id="3" name="model2" >

<Action id="a_4" name="t4" />

<Var id="v_4" name="p4" />

</Process>

<Process id="4" name="model3" >

<Action id="a_6" name="t6" />

<Var id="v_5" name="p5" />

</Process>

<Interactions>

<Undiraction id="a_2" name="t2">
<Touch>0</Touch><Touch>1</Touch><Touch>2</Touch></Undiraction>
<Undiraction id="a_3" name="t3">
<Touch>0</Touch><Touch>3</Touch></Undiraction>
<Undiraction id="a_5" name="t5">

22

<Touch>0</Touch><Touch>4</Touch></Undiraction>
</Interactions>

<l-- process sequence -->
<Sequence type="StateActionType">
<S>

<V id="v_1" val="1" />

<V id="v_2" val="0" />

<V id="v_3" val="0" />

<V id="v_4" val="0" />

<V id="v_5" val="0" />

</S>

<V id="v_1" val="0" />
<V id="v_2" val="1" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />

<V id="v_2" val="0" />
<V id="v_5" val="1" />

<V id="v_5" val="0" />
<V id="v_2" val="1" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="2" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

23

<V id="v_4" val="0"
<V id="v_2" val="1"
<V id="v_3" val="3"

<V id="v_2" val="0"
<V id="v_4" val="1"

<V id="v_4" val="0"
<V id="v_2" val="1"
<V id="v_3" val="3"

<V id="v_2" val="0"
<V id="v_5" val="1"

<V id="v_b5" val="0"
<V id="v_2" val="1"

<V id="v_2" val="0"
<V id="v_3" val="2"
<V id="v_1" val="1"

<V id="v_1" val="0"
<V id="v_2" val="1"

</Sequence>

</Trace>

/>
/>
/>

/>
/>

/>
/>
/>

/>
/>

/>
/>

/>
/>
/>

/>
/>

24

2 JMSCYis

File Edit ‘iew Statistic Help
| | .
S W~ Wl &R & P
-
* t1
<
+*
*
L 3]
2
+ 14
2
* 14
<
+*
*
+ i B
2
+ 1
bt
< >

Figure 8: MSC of example trace

25

	ADP44.tmp
	Document Type Definition (DTD) of trace
	Superposed Generalized Stochastic Petri net model
	ProC/B model
	Möbius: Join model

