

Technical Report 06007

ISSN 1612-1376

Trace Analysis – Gain Insight through
Modelchecking and Cycle Reduction

Teilprojekt M2:

Prof. Dr. Peter Kemper

Teilprojekt M1/M2:

Carsten Tepper

Universität Dortmund

Informatik IV

August-Schmidt-Str. 12

44227 Dortmund

Universität Dortmund

Informatik IV

August-Schmidt-Str. 12

44227 Dortmund

Dortmund, 23. Juni 2006

Trace Analysis - Gain Insight through Modelchecking and Cycle Reduction∗

Peter Kemper, Carsten Tepper
Informatik IV, Universität Dortmund

D-44221 Dortmund, Germany
Email: peter.kemper@udo.edu
carsten.tepper@udo.edu

Abstract

Verification and validation of models are crucial steps
to the success of a model-based development of systems.
Traces are a common and powerful mean to document the
dynamic behavior of a model and are generated from many
sources, ranging from simulation engines to modelcheck-
ers. In this paper, we describe techniques and correspond-
ing tool support that helps a modeler to gain insight in the
dynamic behavior of a complex model based on trace analy-
sis. We propose to visualize traces by message sequence
charts. We use a common modal logic, namely the linear
time logic (LTL), to identify states of interest and develop
a novel technique to reduce the sequence of events leading
to such states. The proposed techniques are implemented
in Traviando, a stand alone tool with an open XML inter-
face to import traces from many modeling environments,
e.g., the APNN toolbox and Mobius among others. A sub-
tle modeling error in a multi-class server system serves as
an application example to illustrate the effectiveness of our
approach in revealing the cause of an observed effect.

Keywords: cycle reduction, modelchecking, debugging
simulation models, visualization and analysis tool

1 Introduction

Traces that document the dynamic behavior of a system
by a sequence of states and events are considered in many
different settings. For instance, they are used as input for
a trace-driven simulation, as data to obtain stochastic rep-
resentations of work load characteristics as distributions,
markovian arrival processes and alike. Traces are also ana-
lyzed with respect to some qualitative behavior in runtime
verification, where a system could be a multi-threaded java
program that is monitored at runtime. Finally traces are

∗This material is based upon work supported in part Deutsche
Forschungsgemeinschaft, SFB 559.

generated from models by a simulator, a model checker, or
some monitoring tool for verification, validation, debugging
or animation purposes.

Traces of interesting systems usually contain large vol-
umes of data, so an automated analysis is important to ex-
tract relevant pieces of information. Qualitative properties
of dynamic behavior are usually described in a modal logic
and much research has gone into the development of a va-
riety of useful and expressive logics for dynamic systems
in general. Common examples are computational tree logic
(CTL) as a branching time logic and linear time logic (LTL)
as a linear time logic, see Clarke et al [5] as a recent text-
book. Since a trace is based on a single and finite sequence
of observations, branching time logics like CTL are not a
natural choice and many concerns with respect to the in-
finite behavior of a system do not matter. For trace ana-
lyis, some work has been done in the area of runtime ver-
ification. Havelund et al describe in [10] how to perform
model checking for linear time logic (LTL) formulae on a
trace by specially adjusted algorithms while Alur and Yan-
nakakis describe in [1] how a canonical LTL modelchecking
approach would assess a trace of a concurrent model.

For practical applications, modelchecking has a number
of challenges. First, a human computer interface is required
that is easy to use and that helps a practitioner to be confi-
dent on the property he or she specified in a formal notation
like LTL. For instance, a formula likeG((q ∧ ¬r ∧ Fr) →
(¬pUr)) with atomic propositionsp, q, andr is not crys-
tal clear to a non-expert1. Dwyer et al. [7, 8] recognized
regularities in the use of logic formulas for modelchecking
and organized those into a pattern system. Second, given a
model and a formula, efficient algorithms are necessary to
decide whether a model fullfills that formula or not. Much
research has gone into that problem and impressive results
have been obtained by so-called symbolic modelchecking
techniques. However, in case of traces, modelchecking re-
tains rather simple from a practical point of view since there

1It describes thatp is false betweenq andr; for the semantics of LTL
operators see Section 3.

1

is only a single and finite sequence that has to be analyzed.
Third, once a result has been obtained, it must be repre-
sented or visualized in a way that maximizes the insight it
may give to a modeller.

In this paper, we contribute to those challenges in the fol-
lowing way. We describe a new tool that visualizes traces by
a variant of message sequence charts (MSCs). It provides
a pattern system with a formula editor for LTL to describe
properties of interest. For a given set of formulas and propo-
sitions, it evaluates which states fulfill which formulas and
visualizes those properties in the MSC representation. In
addition to this basic functionality, we propose a novel re-
duction method based on the identification and removal of
cycles in a trace. This reduction is particularly useful in
models of cyclic communicating processes, which are com-
mon in performability modeling where a finite number of
cyclic workload processes are composed with cyclic fail-
ure and repair models for the availability of resources. The
tool we present has an open XML interface for traces and
has been applied with several modeling frameworks includ-
ing the ProC/B toolset [2], the APNN toolbox [3] and the
multi-paradigm multi-solution framework Mobius [6].

The rest of the paper is structured as follows. In Section
2, we briefly define basic terminology for traces and MSCs.
Section 3 is devoted to LTL modelchecking of traces and
a pattern system for the specification of formulas. Section
4 proposes the new reduction technique and algorithms for
the identification and selection of cycles in traces. We de-
scribe and compare three different greedy algorithms that
select a set of non-intersecting cycles in a trace for subse-
quent reduction. In Section 5 we introduce our new tool for
trace visualization, its architecture and main functionality.
In Section 6, we show how to make good use of our tool
to debug an example performability model of a server with
two classes.

2 Definitions

We are interested in the analysis of finite traces.
Formally, we consider a trace as a sequenceσ =
s0e1s1 . . . ensn of states s0, . . . , sn ∈ S and events
e1, . . . , en ∈ E over some (finite or infinite) setsS, E for
an arbitrary but fixedn ∈ IN. For elements ofS, we assume
an equivalence relation denoted by “=”. For example, if
s ∈ S ⊆ IN is the state of an automaton,= may be the
usual equality among integer values, ifs ∈ S is a marking
of a Petri net, then= is the equality of markings (integer
vectors), ifs ∈ S is the description of a term of a process
algebra, then= may be defined as a weak or strong bisimu-
lation, and similarly for other formalisms with some notion
of bisimulation for states like stochastic well-formed nets
(SWNs), and the multi-paradigm models of Mobius. Note
that events are irrelevant in the following formal treatment,

but events are important pieces of information in a trace in
order to document not only the state of the system but also
what happens. Hence, we keep events within our consider-
ations.

Let us define some common operations for sequences.
The length ofσ is defined aslen(s0e1s1 . . . sn) = n.
The concatenation◦ of two sequencesσ = s0e1s1 . . . sn

and σ′ = s′0e
′
1s

′
1 . . . s′m where sn = s′0 is defined as

σ◦σ′ = s0e1s1 . . . sne′1s
′
1 . . . s′m. Obviously, ifσ′′ = σ◦σ′

thenlen(σ′′) = len(σ) + len(σ′). For σ = s0e1s1 . . . sn

and0 ≤ i < j ≤ n, we define a projection or substring
operation assub(σ, i, j) = siei+1 . . . sj . If states ofσ have
some compositional structure, we may use that for a visual-
ization as MSCs.

Message sequence charts.If a trace results from a setP
of interacting, concurrent processes, we can assume that a
states ∈ S is a vector of local statessp ∈ Sp of processes
p ∈ P , i.e., let S ⊆ ×p∈P Sp and events may not nec-
essarily change the state of all processes. Hence we can
distinguish so-called local events that change the state of
only a single process from those that change two or more
processes. By adding more information, we can distinguish
among send and receive events and synchronized events.
For that scenario, message sequence charts (MSCs), [12],
or UML sequence diagrams are common and related graph-
ical representations. In the following, we focus on a variant
of MSCs that adds (undirected) synchronized events to the
usual send, receive and local events of MSCs and that adds
state information.

Definition 1. An MSC M is defined as a tupleM =
(V, <, P, M, K, N, S, G, s0, m), whereV is a finite set of
events,<⊆ V × V is an acyclic relation,P is a set of
(MSC) processes,M is a set of message names,L : V → P
is a mapping that associates each event with a process,
K : V → {s, r, u, l} is a mapping that describes the
kind of each event as send, receive, synchronized or local,
N : V → M maps every event to a name,m = msr∪mu is
a relation called matching withmsr ⊆ V ×V that pairs send
and receive events. Each send is paired with exactly one re-
ceive and vice versa. Eventsv1 andv2 can be paired, only if
N(v1) = N(v2). mu ⊆ 2V relates up to|P | processes by a
synchronized event.S is a finite set of states withs0 ∈ S as
initial state andG : V → S determines the successor state
after eventv ∈ V .

Note that events cannot repeat due to<, but names of
events and states may occur multiple times in a trace. We
restrict ourselves to well-defined MSCs in the sense that
we assume a total order onV = {v1, v2, . . . , vn} such that
σ = s0v1s1 . . . sn with G(vi) = si that is consistent with
”<”, i.e., if vi < vj theni < j for all i, j ∈ {1, 2, . . . , n}.

2

Figure 1. MSC of Example Trace

The restriction does not exclude any relevant cases in prac-
tice, since we would start from a totally ordered sequenceσ
and represent it by an MSC. Synchronized events are repre-
sented by undirected edges (therefore we chooseu for no-
tation), while send-receive events yield directed arcs. The
definition of MSCs is a union of what is usually needed
by different modeling formalisms. We currently use lo-
cal events, send and receive events for traces generated by
the ProC/B toolset, and local and synchronized events for
traces generated by the APNN toolbox and Mobius. Fig-
ure 1 shows an example trace of six processes with local
and synchronized events, which was generated from a Mo-
bius model for a server system with two customer classes
A and B where the server is subject to failure and repair.
The model is compositional and each submodel matches a
process in the MSC. A process is visualized by a vertical
line with its name on top. Local events are represented by
small dots, synchronized events by horizontal lines, and a
states = G(v) is visualized in an additional window for a
selected eventv. Line thickness and colorings reflect results
of modelchecking a particular formula. The example is dis-
cussed in further detail in Section 6. The vertical order of
events (top-down) follows the order of events in a visualized
sequenceσ.

3 LTL modelchecking

Given a sequenceσ, it is interesting to identify what
properties of the system are present or absent. Modal logics
of various kinds have been developed to analyze dynamic
systems. In our case, a single and finite sequence would
be considered a trivial case in concurreny theory and a lin-
ear time logic like LTL seems a reasonable choice for our
purpose.

We assume a set of atomic propositionsAP , such that
ana ∈ AP : S → {tt, ff} evaluates statess ∈ S to true or
false or in other termss |= a iff a(s) = tt. Since we allow
for a relation= onS, AP has to be consistent with=, i.e.,
we require fors, s′ ∈ S that if s = s′ thena(s) = a(s′)
for all a ∈ AP . This requirement is trivial for equality; it
becomes relevant if some form of bisimulation is considered
as “=”.

LTL considers the behavior of a system as set of se-
quences and has formulas of the formAf where f is a path
formula. Following [5], an LTL path formula can be of two
kinds.

• If p ∈ AP , thenp is a path formla.

• If f and g are path formulas, then¬f , f ∨ g, f ∧
g,Xf ,Ff ,Gf ,fUg, andfRg are path formulas.

The logic connectives implication and equivalence follow
from the boolean operators in the usual manner,f → g ≡
¬f ∨ g andf ↔ g ≡ (f → g) ∧ (g → f).

We mildly adjust the semantics of LTL for the case of
a single finite sequence that is usually a prefix of a poten-
tially much longer or infinite sequence. Hence for opera-
tors that refer to future behavior, we can be optimistic or
pessimistic which we formally address by an additional ar-
tifical pair en+1sn+1 that is attached toσ and we assume
that atomic propositions are defined forsn+1 as well. For
a desired propertyΨ ∈ AP , we say we are optimistic if
we definesn+1 |= Ψ and pessimistic ifsn+1 6|= Ψ. With
that extension we define the semantics of LTL operators for
a sequences0, . . . , sn and statessi, i = 0, 1, ..., n + 1 as
follows:
si |= ¬f iff si 6|= f ,
si |= f ∨ g iff si |= f or si |= g,
si |= f ∧ g iff si |= f andsi |= g.

3

Figure 2. Graphical formula editor with pattern system

If i ≤ n, we define
si |= Xf iff si+1 |= f ,
si |= Ff iff there exists aj, i ≤ j ≤ n + 1 such that

sj |= f ,
si |= Gf iff for all j, i ≤ j ≤ n + 1 holdssj |= f ,
si |= fUg iff there exists ak, i ≤ k ≤ n + 1 such that

sk |= g and for allj , i ≤ j < k holdssj |= f ,
si |= fRg iff for all k, i ≤ k ≤ n + 1, for all j, i ≤ j < k

holdssj 6|= f thensk |= g.
Finally, we define fori = n + 1
sn+1 |= Xf iff sn+1 |= f ,
sn+1 |= Ff iff sn+1 |= f
sn+1 |= Gf iff sn+1 |= f
sn+1 |= fUg iff sn+1 |= g
sn+1 |= fRg iff sn+1 |= f ∧ g

Patterns. Dwyer et al. [8] suggest a pattern system that
integrates several logics and provides a common taxonomy.
It classifies properties into two classes, one foroccurrence
and one forordering(of states or events or properties). Both
classes are further refined into four subclasses each.occur-
rencecontainsabsence, universality, existenceandbounded
existence. orderingconsists ofprecedence, response,chain

precedence, andchain response. Patterns are elements of
those classes and each pattern has a scope that defines where
it applies, i.e., a scope gives the first and last state where a
formula (as a refinement of a corresponding pattern) should
be evaluated. Scopes are categorized into the following
five classes:global, before, after, betweenandafter-until.
Dwyer et al. derived their pattern system from a substantial
empirical study on the use of modal logics in verification
and validation of systems. They analyzed about 500 exam-
ple specifications taken from at least 35 different application
areas and experienced that very few kinds of formulas occur
in practice. They observed that patternsresponse, univer-
sality, andabsence, all with scopeglobal, cover about 80%
of the considered cases.

This motivated us to integrate that taxonomy into an
editor for LTL formulas. Fig. 2 shows the editor win-
dow in the pattern system of Traviando with 3 represen-
tations of formulaf of patternabsencewith scopebe-
tween. Formulaf = G((q ∧ ¬r ∧ Fr) → (¬pUr))
has atomic propositionsp = User A, q = server avail,
and r = server failure that are formulated by equali-
ties/inequalities on arithmetic expressions with state vari-
ables, e.g.,server avail is defined asavail = 1 where

4

avail is a state variable of submodelCompleteServer. p
is defined asC1WaitsForServer+C1WaitsForUser+
C1Thinking = 1. So state variables likeC1Thinking are
used to make state informations ∈ S accessible to a specifi-
cation of properties in atomic propositions. The upper right
window in Fig. 2 shows the formula in a graphical, tree-
type representation that is used to create and refine formu-
las, to assign atomic propositions to the leafs of the struc-
ture, and to select colors for its graphical representation.
The lower right window gives the common formal repre-
sentation for users that are more familiar with that type of
notation. Finally, the lower left window describes the for-
mula in technical prose that is initially derieved from pre-
defined phrases associated with patterns and that can sub-
sequently be worked on by a user with further comments.
Note that those representations describe the same informa-
tion, but should complement each other for human under-
standing. The tree-type representation is what is used as
input for the modelchecking algorithms.

Algorithm. Since we consider the special case of a single
and finiteσ, an algorithmic treatment of LTL path formu-
las is straightforward. Atomic propositions are evaluated
for individual states.X, F, G, U, R operators are evaluated
backwords starting at statesn+1. Note that by definition the
evaluation atsn+1 for X, F, G, U, R is immediate. With
known results atsn+1, we can make use of the following
properties:
si |= Ff iff si |= f or si+1 |= Ff
si |= Gf iff si |= f andsi+1 |= Gf
si |= fUg iff si |= g or (si |= f andsi+1 |= fUg)
si |= fRg iff (si |= f ∧ g) or (si |= g ∧ si+1 |= fRg)
From an implementation point of view, an evaluation can
be performed with the help of two arrays in the length of
all subformulas and by sweeping throughσ in a backward
manner. A similar approach is presented by Havelund et al
in [10] for runtime verification of systems.

Visualization. Figure 1 presents the visualization of the
formulaf = G((q∧¬r∧Fr) → (¬pUr)) as discussed be-
fore. and as specified in the formula editor in Fig. 2. We can
assign a color to each atomic proposition (leafs of the for-
mula tree) and subformulas and use those colors to highlight
in the MSC representation where a formula or subformula
holds. As shown in Fig. 1, highlighting of formulas takes
place at those processes whose state varibales are used in the
atomic propositions or subformulas. In case of subformu-
las, all relevant processes must be determined with respect
to every atomic proposition that is used in a subformula. By
coloring each subformula in a different color, it is easy to
identify when a subformula is valid across the trace. Note
that in Fig. 2, we decided to use colors for only 4 nodes of
the formula, namely a light blue color for the overall for-

mula, a red color for the atomic proposition that shows a
failure of a server, a green color for the atomic proposition
that shows an operational, available server and a blue color
for the atomic proposition that shows that all customers of
classA are not present at the server.2

The modelchecking algorithm computes additional in-
formation for each node in the tree of a formula. That
information includes the total number of states that fulfill
a (sub)formula as well as the position of first and last oc-
currence of those states for ease of navigation. Buttons
are provided that make the visualizer scroll to the first or
last occurence. This supports the intended usage of mod-
elchecking: the modeller can specify properties of interest
and the modelchecker guides the modeller to that particular
fragment of the trace. In that scenario, usually the question
arises how a particular statesi could be reached. Ifsi is
not located in the beginning of the traceσ, one may want to
have a shorter traceσ′ that leads tosi more directly. This is
the goal of the reduction operation we introduce next.

4 Cycle Detection and Reduction

The operation that we introduce in this section is a
reduction operation that removes repetition. Forσ =
s0e1s1 . . . ensn with 0 ≤ i < j ≤ n and si = sj , we
define a reduction operationred(σ, i, j) = sub(σ, 0, i) ◦
sub(σ, j, n).

The reduction operation is based on the repetition of
states which can be understood as a cycle or loop. For a
given sequenceσ, we can compute all cycles and subse-
quently remove step by step as many cycles as possible to
obtain a sequenceσ′. Sequenceσ′ is obviously shorter than
σ and leads tosn more directly. The potential of this op-
eration to assist a user in his understanding of a trace is
twofold, first to recognize cycles and what events give a
cyclic behavior and second why and how a particular state
or sequence of states likesn can be reached. In this way, we
distinguish between cyclic and progressing fragments of a
trace.

From a modeling point of view, the usefulness of the re-
duction operation is based on a key assumption: the state
of a systemsi must be sufficient to define the subsequent
behavior that is present in the trace and starting atsi. This
assumption is usually fulfilled in untimed automata ifs ∈ S
describes the state of an automaton completely and also in
Markov models since the current state defines the potential
future behavior in a Markov process. However, in discrete
event simulation of non-Markovian models in general, a se-
lection of state variables is usually not sufficient and rather
the current event list – the state of the simulator – would
be necessary to describe the state of the simulation, which
would obviously minimize the possibility of cycles.

2Colors are visible in the pdf file of this paper.

5

In the following, we investigate the algorithmic side of
cycle reduction in three steps, namely detection of all cy-
cles, selection of a subset of cycles for removal and removal
of those cycles. It is clear that an on-the-fly approach would
not necessarily consider all cycles in a trace. Nevertheless,
before we describe solution algorithms, it is worthwhile to
investigate the implications of each of the three steps for a
better understanding.

Detection of Cycles. For a given sequenceσ of lengthn,
we want to identify a setI of all pairs(i, j), 0 ≤ i < j ≤ n
with si = sj in σ. I contains all cycles ofσ. Entries of
I can be also understood as an interval of integer values on
the index range of states inσ. SetI could be the basis for a
subsequent selection and removal of cycles. However, cer-
tain states may occur once, twice or many times inσ. Figure
3 gives the number of occurrences for states of a traceσ that
we analyze in more detail in Section 6. States are ordered
by decreasing number of occurences. For instance, the first
state in the graph occurs 339 times. Note that this is unfortu-
nate for an explicit enumeration of entries ofI. If a state oc-
cursk times, that state alone generatesk·(k−1)/2 elements
of I. The calculation reflects the number of possible selec-
tions of 2 states amongk states where permutations count
only once. Fork = 339, that state alone contributes57291
intervals toI. A more concise representation ofI is a set
J of tuples(s, i1, . . . , ik) wheresi1 = si2 = . . . sik

andk
is the number of occurrences ofs in σ. Clearly, the value
of k depends ons. The generation ofJ for σ is straightfor-
ward. Starting fromJ = ∅ the generation algorithm runs
once through all states ofσ and inserts each statesi intoJ .
There are two cases possible for the insertion operation. If
no tuple withs = si exists inJ , a new tuple(si, i) is cre-
ated. Otherwise an existing tuple(s, i1, . . . , ik) is extended
to (s, i1, . . . , ik+1) andik+1 stores the index value ofi. The
complexity isO(n log n) sincen states are inserted and if
we assume that insertion requiresO(log n). All elements
with k = 1 (states that occur only once) are subsequently
removed fromJ . J allows for an efficient determination
of a maximum interval(i1, ik) and subintervals that shall fit
into given limits for the lower or upper index value.

Selection of Cycles. Based on a given setI (possibly im-
plemented by setJ that gives access to elements ofI), we
consider the problem of selecting a subset of cyclesC ⊆ I
such that cycles do not overlap and that a maximal number
of states ofS is covered. Formally, letol ⊆ I ×I be a rela-
tion that indicates which intervals overlap and two intervals
(i1, i2) and(i3, i4) are inol, if neitheri2 ≤ i3 nor i4 ≤ i1
holds. The problem of finding a maximal set of cycles can
be described asmax

∑
i∈I

gi · xi wheregi = i2 − i1 for
tuplei = (i1, i2) andxi is an indicator variable with values
0 and1. The problem has side conditions, one for each ele-

Figure 3. Number of occurrences of states

ment(i, j) ∈ ol, namelyxi + xj ≤ 1. We denote the prob-
lem of findingC as sequence reduction problem (SRP) for
short. Due to the type of restrictions, the SRP is similar but
not necessarily equivalent to the well-known NP-complete
knapsack problem. In any case, we obtain difficulties in two
ways. We have to solve a combinatorial optimization prob-
lem and that problem is defined onI whose cardinality is
subject to a combinatorial explosion as well. In conclusion,
we proceed in a pragmatic manner with heuristic and com-
putationally inexpensive algorithms in the following. We
propose three heuristic strategies.

The first strategy is a gready strategy that selects largest
elements first, i.e.i = (i1, i2) ∈ I with maximal value of
i2 − i1. For a selected elementi, the approach iterates on a
reduced setI ′ = I\{j|(i, j) ∈ ol}. Note that identification
of large intervals can be implemented efficiently withJ .
We denote this strategy as greedy by size (GS). It requires
knowledge of all intervals, i.e., setJ has to be computed.

The second strategy is a greedy strategy that selects cy-
cles in the order of occurence, resp. identification. We de-
note this strategy as greedy by order (GO). It is an on-the-fly
approach that runs throughσ from the beginning, creates a
setS′ and removes cycles fromσ (and corresponding states
from S′) as soon as a cycle is identified.

For the third strategy, we make use of a greedy algorithm
for a related problem, the minimal weighted vertex cover
(MWVC), which is NP-complete. We denote this strategy
as greedy by vertex cover (GVC). The MWVC problem is
defined as follows. LetG(V, E) be an undirected graph
with a finite set of nodesV and a finite set of edgesE.
Let g : V → IN be a weight function that assigns positive
weights to nodes inV . The WMVC problem is to find a
subset of nodesV ′ ⊆ V such that

∑
v∈V ′ g(v) is minimal

and for all edges(v, w) ∈ E eitherv or w (or both) are
an element ofV ′. We define aσ-graph asV = I, edges

6

E = {(i, j)|(i, j) ∈ ol} and weightsg(i) = i2 − i1 for
i = (i1, i2) ∈ I for a sequenceσ.

Theorem 1. For any given σ-graph G(V, E) with
V ′, V ′′ ⊆ V andV ′′ = V \V ′ holds that ifV ′ is a solution
for WMVC thenV ′′ is a solution for SRP.

Proof.Note thatg((i1, i2)) ≥ 0 by definition ofI. For any
v, w ∈ V ′′, (v, w) 6∈ E since all edges are covered byV ′ if
V ′ is a valid solution of WMVC. HenceV ′′ must be a legal
solution of SRP, i.e., no two intervals inV ′′ overlap.
It remains to show that it is maximal. We assume the con-
trary, letv ∈ V ′ such thatV ′′ ∪ {v} is a better solution to
SRP due to the positive weight ofv. If v has no edge ad-
jacent to it, thenv 6∈ V ′ because it is not necessary for a
solution of WMVC and hencev ∈ V ′′ holds already and
the assumed better solution makes no difference. Sov must
have at least one edge andv ∈ V ′. SinceV ′ is a solution
of WMVC each node must be exclusively covering at least
one edge, so there must be an edge(v, x) with x 6∈ V ′.
However, thatx must be inV ′′ = V \V ′ and thusV ′′ ∪ {v}
cannot be a solution of SRP due to(v, x) ∈ E. Hence such
x and alsov can not exist. ⊓⊔
The theorem implies that we can use all(!) known algo-
rithms for WMVC to solve our SRP. In this setting, we se-
lect only one and evaluate a simple greedy algorithm that
iterates on two steps. It starts with aσ-graphG = (V, E)
and sucessively selects an edge (step 1) and removes it to-
gether with its adjacent nodes and edges (step 2). The algo-
rith selects an edgee = (i, j) (from the remaining edges)
that has minimal weightg(i) + g(j). The GVC algorithm
is the weighted version of a classical greedy algorithm for
WMVC [9]. We avoid the combinatorial explosion in the
generation ofV = I by makeing use of a subsetI ′ ⊆ I
instead. We useI ′ = {(ij, ij+1)|(s, i1, . . . , ik) ∈ J , 1 ≤
j < k} ∪ {(i1, ik)|(s, i1, . . . , ik) ∈ J }. The subset con-
tains sufficient elements ofI to retain the correct solution
(the first set of the union of two suffices); the second set of
the union is used to make it simpler for GVC to avoid large
intervals and leave them for the solution of the SRP.

Removal of Cycles. Removal of a set of cyclesC from σ
is straightforward. However, note that ifC covers a large
fraction ofσ and has many elements, it can be simpler and
more efficient to generate a new and reduced traceσ′ from
the few subsequences that retain instead of transformingσ
by a sequence of removal operations.

Note that all three greedy algorithms GS, GO and GVC
are based on heuristics, are computationally inexpensive,
but follow rather different selection strategies. It requires
some further experimental analysis if those algorithms work
sufficiently well, if there are significant differences such
that one may be identified as superior or if they are rather

complementary and a tool may apply all and select the best
result for a particular traceσ.

Evaluation. We exercised the greedy algorithms on a set
of traces taken from a number of different examples. Table
1 gives the resulting values formax

∑
i∈C

(i2 − i1) for the
calculated setC.

Row Courier refers to a trace of lengthn = 1000 that is
generated from a stochastic Petri net model of the Courier
protocol model by Li and Woodside [15]. The model is in-
tended for performance analysis and generates a recurrent,
finite Markov chain. The initial marking is chosen such that
the model has a small state space and is expected to show a
lot of cyclic behavior. We used the APNN toolbox [3] for
modeling the Courier protocol and its simulation engine to
generate the trace. The resulting values do not differ much
and range between 949 for GS, 953 for GO and 949 for
GVC. GVC operates on a graph with 859 nodes and 67445
edges and weights range from 12 to 948 with an average of
168.

Row Serverrefers to a Mobius model of a server with
failure and repair that is considered in detail in Section 6.
The model is intended for performability analysis and has a
cyclic behavior since the workload of the server is given by
a finite number of customers of two classes. However, the
variant of the model we consider has a defect which implies
that the trace can be partitioned into two parts where each
can contain cycles but there is none that overlaps with both
parts. All three algorithms show similar results.

RowProdcellrefers to a large model of a production cell
by Heiner et al [11]. The model contains hundreds of places
and transitions and considers control of a production cell
which consists of a feeding belt, a rotating table, a robot
with two arms, a press, a second belt to remove processed
parts and a crane. The crane is used to obtain a closed-
circuit that has a finite number of parts that are processed
over and over again. The model has been imported in the
APNN toolbox and analyzed [4]; we used the APNN sim-
ulator to generate a trace with 1000 events. GS, GO, and
GVC give identical results. GVC operates on a graph with
91 vertices and 3406 edges, weights range from 162 to 810.

Row Storerefers to model of a storage area described in
[13]. It models the transfer of goods into a store and out
of a store by trucks that allocate ramps and that are loaded
or unloaded with the help for forklifts that are manned with
workers. The model describes an open system and is devel-
oped with the ProC/B toolset [2]. The state representation
that is chosen for the trace abstracts from certain details of
the ProC/B simulation model. In particular, identities of en-
tities are not revealed. The model has a defect in the sense
that it reaches a situation, where the loading/unloading op-
erations are all blocked due to a partial deadlock and the
model shows only activites owing to the fact that it is an

7

open model and new entities can be generated. This model
shows a significant advantage for GO.

Model GS GO GVC
Courier 949 953 949
Server 5464 5466 5464
Prodcell 811 811 811
Store 417 506 420

Table 1. Results of Selection Algorithms

Since the differences among algorithms are usually small
but we would like to gain more empirical data on their per-
formance, so we currently apply all 3 algorithms in Tra-
viando and then use the most effective for a trace reduction.

5 Tool

Traviando supports the visualization and analysis of
traces of interacting processes. The visualization is based
on MSCs and its particular purpose is to make information
accessible to a human being, information that is otherwise
hidden in large trace file. MSCs are promising since they
focus on the interaction of processes and we believe that
this is crucial: in modeling as well as programming with in-
teracting submodels, components, processes or threads, the
behavior of an individual process is rather simple to analyze
and debug but the overall effect of interactions contributes
much to the complexity of such systems. So the latter re-
quires adequate tool support. Traviando supports a number
of operations that are helpful for trace analysis. In [14], we
discuss the role and potential of fundamental operations on
MSCs for trace analysis in more detail, for instance, the role
of grouping a subset of processes into a single process to
manage the level of abstraction and to set a focus on partic-
ular processes (while others are aggregated into one or few
groups, “environments”). Traviando also supports moder-
ate manipulations on the total order of events which is still
consistent with the partial order of an MSCs and which can
substantially improve the visualization and make it easier
to understand for a human observer, see [14] for further de-
tails. A key advantage to a direct animation of some mod-
eling formalism is that the MSC visualization in Traviando
allow to track down causes in a backword manner while
retaining an overview of a number of events. Most anima-
tions of dynamic behavior like the token game for Petri nets,
some animated simulation model, or some debugging facil-
ity usually do only show the current state and a human user
is forced to memorize its history while navigating forward.

Traviando imports sequences in an open XML format
that consists of two parts, namely a prefix and the sequence
of events that constitutes the trace. The prefix contains defi-
nitions for processes, events, their type and association with

processes, state variables and more. The prefix helps to
keep the sequence of events concise in its description and
also allows for some preprocessing and consistency check
for the trace based on the given structural information. The
sequence of events in the second part of a trace can be
enhanced in many ways by additional information, for in-
stance by time stamps and by information on changes to
state variables.

Traviando is implemented in Java and is able to work
on traces of different kinds and from different sources. It
operates on traces generated with the APNN toolbox [3].
Those traces result from Petri net models and a notion of
process is introduced by partitioning the set of place (state
variables). Many partitions are possible, the finest partition
has one place per process, the coarsest has one process with
all places. The APNN toolbox particularly supports super-
posed GSPNs that are composed of Petri nets by synchro-
nized transitions; that class of nets comes with a partition
of places and hence has a natural mapping to processes in
MSCs. The resulting MSCs have synchronized events for
transitions whose pre- or postset covers different processes.

Traviando operates on traces generated with the ProC/B
toolset [2] which follows the common process interaction
approach for simulation modeling. The ProC/B notation is
based on a notion of hierarchy with function calls. So the re-
sulting traces make use of send-receive events (represented
as directed actions). This allows us to infer a notion of
population and response times for function calls to (server)
processes. In [13], we describe three additional visualiza-
tion operations that are particularly designed to track down
what happens in a trace of a ProC/B model and with respect
to time. Highlighting and colorings are useful to illustrate
more information on the empirical distribution of response
times and populations derived from a trace. Visualizing the
number of open function calls also helps to identify the root
of blocking and deadlock situations in open models.

In this paper, we focus on the most recent advance
of Traviando towards traces generated from the multi-
formalism multi-solution framework Mobius [6]. Models
are structured in a hierarchical manner such that a decompo-
sition into processes according to the composition of atomic
and composed models is a natural choice. Note that Mo-
bius has the option to internally apply bisimulations to make
states appear as equal for trace analysis which is to the bene-
fit of the cycle reduction approach discussed in the previous
section. In Section 6, we analyze a trace of a Mobius model
whose structure is shown in Fig. 4.

Traviando’s new visualization features include a LTL
modelchecking of traces that is supported by a pattern sys-
tem. Atomic propositions are build by arithemic expres-
sions on state variables and equalities and inequalities. As
illustrated in Fig. 2, we combine three descriptions of a
formula to make LTL modelchecking more accessible to a

8

user. First, a graphical, tree-type representation with one
node per logical operator and atomic propositions as leafs
is used to derive formulas by refinement. Atomic proposi-
tions can be selected by mouse-clicks from a menu that is
derived from a currently defined set atomic propositions. A
set of atomic propositions is defined in an additional editor
window. Colors are associated with nodes in the formula
editor to define the coloring and highlighting used for the
visualization of the modelchecking results on a MSC, for
instance the colors selected in Fig. 2 match those in Fig. 1.
Trace reduction techniques help to separate repetitive from
progressing parts of a trace and can substantially cut down
on the number of events considered for trace analysis.

The upper right window shows the formula a graphi-
cal, tree-type representation the lower left window describes
the formula in technical prose, and the lower right window
gives the common formal representation. Note that those
representations describe the same information, but should
complement each other for human understanding.

6 Example

Figure 4. Composed Model

As an example application, we consider a performability
model of a server that is subject to failure and repair. Fail-
ures happen mainly due to software failures and are han-
dled by rebooting the system and restarting tasks that are
performed. The workload can be partitioned into two types
of tasks according to their service demands. The user pop-
ulation is limited, such that we decide to model the system
by a closed model with two customer classes A and B and
corresponding finite populationN(A) andN(B). Class B
is used to describe “normal” customers that give the base-
line utilization and class A customers are particular ones
with different service requirements. We adjust a thinktime
between end of service and next service request for tasks of
each class to match the interarrival times between request of
the system under study. The goal of the study is to identify

a threshold forN(A) such that the server is not able to com-
ply with certain quality of service (QoS) for that amount of
customers. QoS is acceptable if90% of all classA tasks are
served within a given time limit. We do not provide further
details of the timing because we will focus on debugging a
corresponding model.

We make use of Mobius and its discrete event simula-
tion engine to model this system and conduct a simulation
study. Mobius offers several modeling formalisms. We
choose the SAN formalism to model each aspect of our
system individually and the composition operation that is
based on shared variables to join the individual atomic mod-
els into an overall model. Figure 4 shows the compositional
structure of the model. TheFullModel combines aCom-
pleteServersubmodel of the server with submodelsUserA
andUserB, which describe the user behavior. Users interact
with the server by putting tokens on input and output places
of the server, those places are shared via theFullModel.
TheCompleteServersubmodel encapsulates how a service
is performed and a submodelfailureAndRepairthat models
availability of the server. The number of customers of class
A is a parameter that we evaluate over a range of values.
In the following, we briefly describe the individual atomic
models and their composition, namely the atomic model for
failure and repair, the atomic model for the server, and the
two atomic models customer classesA andB. The failure
and repair model describes a cyclic behavior and switches
between “available” and “failed” states to indicate the status
of the server. It shares a boolean state variable “avail” with
the server model. The server models a queue with random
scheduling and no preemption for 2 customer classes. If a
customer is served when a failure occurs, its service is inter-
rupted and it is positioned back into the queue. Its service
time is not memorized. Customers cycle between their own
class-dependent submodel that delays them for a thinktime
and the server. A simulation run reveals performance mea-
sures that in the long run deviate from what is expected. In
particular the throughput of classB is slightly too small,
for A slightly too high. At one point, we suspect that the
model contains an error. Clearly, there is a variety of op-
tions for debugging simulation models. In this context, we
focus on the use of trace analysis and the visualization of
MSCs. We first check traces forN(A) = 1, N(B) = 0
(and vice versa) to see whether the one-class case works,
but could not find any error. We select a minimal popu-
lation N(A) = N(B) = 1 next to check for functional
correctness for the case of two classes and make the server
failure free. For that case, we cannot find any error. Fi-
nally, we generate a trace of some thousand events for the
complete model including failures. We first check individ-
ual processes if all transitions in fact occur. For rare events
like failures, we use a coloring mechanism to simplify their
identification. We start with short traces and increase its

9

Figure 5. Results for LTL modelchecking ahead of cycle reduction

length if appropriate. A trace of 5475 elements happens
to be long enough to contain all events and three failures
with subsequent repair. We suspect that failures may be a
cause of the problem and formulate different properties that
should hold during a failure and repair cycle. We make use
of LTL to formulate that if a server fails, all customers shall
be either in the queue or located in their corresponding sub-
model and thinking. Since we want to be warned if that
constraint is violated, we formulate the negated property as
a formula of the patternabsencewith scopebetweenthat is
shown in Fig. 2; the formula has been discussed in Section
3 in the paragraph on patterns for illustration purposes. In
particular, a light blue coloring indicates if the population
of customers of class A outside the server is not matching
N(A), i.e. the class A population would be corrupted. Fig.
5 shows the relevant fragment of the trace to which the LTL
modelchecking and coloring of the MSC traces guides us.
We check the state information that is displayed in an addi-
tional window which is not shown here and recognize that
the number of customers increases for that class. We use
the cycle reduction on the prefix of the trace that leads to
this situation (where the overall formula is true for the first
time) and automatically obtain the trace represented in Fig.
1. By following the few events and checking the state vari-
ables, we recognize that the removal of a class B customer
from service back into the queue in case of a server failure
creates an additional class A customer in the queue. The
error was introduced when class B was added to the model
as a copy of class A. By knowing the error, one immedi-

ately sees simpler ways for its identification, for instance
by defining invariants on the customer populations. Never-
theless, at first hand, any automated supported that is able
to guide a user to critical fragments of a trace is a produc-
tivity enhancer in the debugging process. Finally, we want
to explicitly note that the type of error we identified could
happen in any modeling environment and that it is in no
way related to the fact that we use Mobius as a modeling
and analysis framework.

7 Conclusion

We propose LTL modelchecking for the analysis of
traces in combination with a trace visualization by MSCs.
In addition to that, we introduce a reduction operation based
on the removal of cycles and algorithms for the detection
and selection of cycles for removal. The overall approach
is implemented in Traviando, a new software tool for Trace
visualization and analysis from Dortmund University. We
demonstrate the usefulness of the approach by detecting a
subtle modeling error in a performability model of a server
system with 2 classes. More information on Traviando can
be found at http://www4.cs.uni-dortmund.de/Traviando/

Acknowledgements We would like to thank W.H.
Sanders and his student Michael Mc Quinn for supporting
us with an appropriate XML trace output of Mobius.

10

References

[1] R. Alur and M. Yannakakis. Model checking of message
sequence charts. InProc. 10th Intl. Conf. on Concurrency
Theory, pages 114–129. Springer Verlag, 1999.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker.
The ProC/B toolset for the modelling and analysis of process
chains. In T. Field, P.G. Harrison, J. Bradley, and U. Harder,
editors,Computer Performance Evaluation, Modelling Tech-
niques and Tools, Springer LNCS 2324, pages 51–70, 2002.

[3] Falko Bause, Peter Buchholz, and Peter Kemper. A tool-
box for functional and quantitative analysis of DEDS. In
Ramón Puigjaner, Nunzio N. Savino, and Bartomeu Serra,
editors,Computer Performance Evaluation (Tools), volume
1469 ofLecture Notes in Computer Science, pages 356–359.
Springer, 1998.

[4] Peter Buchholz and Peter Kemper. On generating a hierarchy
for GSPN analysis.SIGMETRICS Performance Evaluation
Review, 26(2):5–14, 1998.

[5] E. M. Clarke, Jr. O. Grumberg, and D. A. Peled.Model
checking. MIT Press, 1999.

[6] Daniel D. Deavours, Graham Clark, Tod Courtney, David
Daly, Salem Derisavi, Jay M. Doyle, William H. Sanders,
and Patrick G. Webster. The Möbius framework and its im-
plementation.IEEE Trans. Software Eng., 28(10):956–969,
2002.

[7] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Property specification patterns for finite-state verifica-
tion. In Mark A. Ardis and Joanne M. Atlee, editors,FMSP,
pages 7–15. ACM, 1998.

[8] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Patterns in property specifications for finite-state verifi-
cation. InICSE, pages 411–420, 1999.

[9] M. R. Garey and David S. Johnson.Computer and In-
tractability: A Guide to the Theory of NP-Completeness.W.
H. Freeman, 1979.

[10] Klaus Havelund and Grigore Rosu. Synthesizing monitors
for safety properties. InTools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’02), LNCS 2280, pages
342–356. Springer Verlag, 2002.

[11] M. Heiner and P. Deussen. Petri net based design and analy-
sis of reactive systems. InProc. 3rd Workshop on Discrte
Event Systems (WoDES96), pages 308–313, 1996.

[12] ITU-T Recommendation Z.120.Message Sequence Charts
(MSC’96), 1996.

[13] P. Kemper and C.Tepper. Trace based analysis of process
interaction models. InProc. of the 2005 Winter Simulation
Conference, pages 427–436, 2005.

[14] P. Kemper and C. Tepper. Visualizing the dynamic behavior
of ProC/B models. In T. Schulze et al., editor,Simulation und
Visualisierung, pages 63–74. SCS Publishing House, 2005.

[15] C. Murray Woodside and Yao Li. Performance Petri net
analysis of communications protocol software by delay-
equivalent aggregation. InPNPM, pages 64–73, 1991.

11

A Document Type Definition (DTD) of trace

<!ELEMENT Trace (Comment, Process+, Interactions*, Sequence+)>
<!ATTLIST Trace model CDATA #IMPLIED>
<!ATTLIST Trace generator CDATA #IMPLIED>

<!ELEMENT Comment (#PCDATA)>

<!-- Process section -->
<!ELEMENT Process (Action*, Var*)>
<!ATTLIST Process id CDATA #REQUIRED>
<!ATTLIST Process name CDATA #REQUIRED>

<!ELEMENT Action EMPTY>
<!ATTLIST Action id CDATA #REQUIRED>
<!ATTLIST Action name CDATA #REQUIRED>

<!ELEMENT Var EMPTY>
<!ATTLIST Var id CDATA #REQUIRED>
<!ATTLIST Var name CDATA #REQUIRED>

<!-- Interactions section -->
<!ELEMENT Interactions (Diraction*, Undiraction*)>

<!ELEMENT Undiraction (Touch+)>
<!ATTLIST Undiraction id CDATA #REQUIRED>
<!ATTLIST Undiraction name CDATA #REQUIRED>

<!ELEMENT Touch (#PCDATA)>

<!ELEMENT Diraction (From, To)>
<!ATTLIST Diraction id CDATA #REQUIRED>
<!ATTLIST Diraction name CDATA #REQUIRED>

<!ELEMENT From (#PCDATA)>

<!ELEMENT To (#PCDATA)>

<!-- Sequence section -->
<!ELEMENT Sequence (S,A*)>
<!ATTLIST Sequence type CDATA #IMPLIED>

<!ELEMENT S (V+)>

12

<!ELEMENT A (V*)>
<!ATTLIST A id CDATA #REQUIRED>
<!ATTLIST A time CDATA #IMPLIED>
<!ATTLIST A inst CDATA #REQUIRED>

<!ELEMENT V EMPTY>
<!ATTLIST V id CDATA #REQUIRED>
<!ATTLIST V val CDATA #REQUIRED>

13

B Superposed Generalized Stochastic Petri net model

The first example is a model of the APNN-Toolbox. The APNN-Toolbox
allows the modelling of Generalized Stochastic Petri nets (GSPNs). It is
possible to specify partitions on the places, so that the model is divided into
partitions.

t1

1/1

p1

0/0

p2

0/0

p3

1/1

p4

t2 t3

Figure 1: SGSPN model

The example in Fig. 1 contains two partitions P 1 = {p1, p2} and P 2 =
{p3, p4}. Partition P 1 contains the two variables (Var) p1 → v 1, p2 → v 2
and Partition P 2 p3 → v 3, p4 → v 4. Both partitions contain one local
activity (Action) t1, respectively t3. The transition t2 is a synchronized
transition which regards both partitions (Interactions). The interaction is
undirected (Undiraction) because it is not clear which partition is the sender
or receiver.
The example trace contains first a specification block which is not conform
to the XML standard. Due to the size of the trace we have decided to speci-
fiy first the structural part of the model followed by the dynamical part
(Sequence). The structural part contains the definition of processes (Pro-
cess) and interactions (Interactions) between the processes. The dynamical
part is sequence (Sequence) of events. Every event (A) has a time stamp
which is specified as global time and a list of variables which values have
changed. The order of the list of variables is arbitrary.
Example trace for model in Fig. 1:

<?xml version="1.0" encoding="utf-8" ?>
<!-- Trace file of model SGSPN -->
<Trace model="SGSPN" generator="APNNsim" >
<Comment> Purpose of this trace: demonstration </Comment>

14

<!-- declaration of processes -->
<Process id="0" name="P1" >
<Action id="a_1" name="t1" />
<Var id="v_1" name="p1" />
<Var id="v_2" name="p2" />
</Process>
<Process id="1" name="P2" >
<Action id="a_3" name="t3" />
<Var id="v_3" name="p3" />
<Var id="v_4" name="p4" />
</Process>
<Interactions>
<Undiraction id="a_2" name="t2">
<Touch>0</Touch><Touch>1</Touch></Undiraction>
</Interactions>
<!-- process sequence -->
<Sequence type="StateActionType">
<S>
<V id="v_1" val="1" />
<V id="v_2" val="0" />
<V id="v_3" val="0" />
<V id="v_4" val="1" />
</S>

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

<V id="v_2" val="0" />
<V id="v_1" val="1" />

<V id="v_3" val="0" />
<V id="v_4" val="1" />

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

15

<V id="v_3" val="0" />
<V id="v_4" val="1" />

<V id="v_2" val="0" />
<V id="v_1" val="1" />

<V id="v_1" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />
<V id="v_4" val="0" />

</Sequence>
</Trace>

Figure 2: MSC of example trace

16

C ProC/B model

A modelling language which is especially designed to the needs of logistic
networks is the ProC/B formalism, which is accompanied by a corresponding
software toolset including a graphical interface for specification and a set of
analysis tools.
The main structuring elements of ProC/B models are Functional Units
(FUs), which encapsulate one or more Chains. A chain can be viewed as
a structured and measured set of activities starting with Sources for pro-
cess creations (demand), denoted by a circle with midpoint

⊙
, followed

by a chronological sequence of Process Chain Elements (PCEs) describing
activities, denoted by arrow-like hexagons, and the chain is accomplished
by a sink, denoted by

⊗
. Horizontal connections between PCEs indicate

a sequential behavioural pattern of processes. Branches into and merges
from alternative sub-chains are allowed and represented by vertical b ars.
Process Chains can be hierarchically structured. PCEs may invoke sub-
chains from so-called subordinated FUs. Subordinated FUs and sub-chains
are described in the same manner as their super-ordinated FUs and chains
(self-similarity). Actually, two types of subordinated FUs are distinguished:
user-defined FUs and simple, predefined FUs of type Server or Counter.
Servers are used to model active, possibly shared resources, i.e. machines,
assembly lines, workers. In principle, servers correspond to single stations
in queueing networks. Counters are used to describe passive resources, i.e.
stores and waiting areas of usually restricted capacity.

EVERY negexp(1.0)

1
process

()

DELAY

PCE1
(negexp(5.0))

FU.
Service

PCE2

DELAY

PCE3
(negexp(15.0))

FU

Service

Example_ProC/B

Figure 3: ProC/B model

17

DELAY

PCE4
(negexp(100.0))

Service

()

FU

Figure 4: FU of ProC/B model in Fig. 3

In this example trace the sender and receiver can be dedicated. Therefore the
interactions between the processes are directed (Diraction). Variables are
the PCEs PCE1 → v 11, PCE3 → v 19 and PCE4 → v 28. Theses variables
count the number of process instances which are waiting for proceed at these
PCEs. The last differnce to the example trace of the SGSPN model is that
the actions in the squence have the optinal attribute i. This attribute is
necessary for identifing the process instance which has generated the event.
The encoding of this attribute is the id of the process instance followed by
a dot plus the id of the PCE where the process instance has waited before
proceeding.
Example trace for model in Fig. 3:

<?xml version="1.0" encoding="utf-8" ?>
<!-- Trace file of model Example_ProC/B -->
<Trace model="Example_ProC/B" generator="ProcessVis" >
<Comment> Purpose of this trace: demonstration </Comment>
<!-- declaration of processes -->
<Process id="0" name="process" >
<Action id="a_5" name="Source_process" />
<Action id="a_10" name="PCE1" />
<Action id="a_18" name="PCE3" />
<Action id="a_21" name="Sink_process" />
<Var id="v_11" name="PCE1" />
<Var id="v_23" name="PCE2" />

18

Figure 5: MSC of example trace

<Var id="v_19" name="PCE3" />
</Process>
<Process id="1" name="Service" >
<Action id="a_25" name="PCE4" />
<Action id="a_30" name="Sink_Service" />
<Var id="v_28" name="PCE4" />
</Process>
<Interactions>
<Diraction id="a_15" name="PCE2">
<From>0</From><To>1</To></Diraction>
<Diraction id="a_16" name="VirSink_Service">
<From>1</From><To>0</To></Diraction>
</Interactions>

19

<!-- process sequence -->
<Sequence type="StateActionType">
<S>
<V id="v_11" val="0" />
<V id="v_19" val="0" />
<V id="v_28" val="0" />
</S>

<V id="v_11" val="1" />

<V id="v_11" val="2" />

<V id="v_11" val="1" />
<V id="v_23" val="1" />

<V id="v_11" val="0" />
<V id="v_23" val="2" />

<V id="v_23" val="1" />
<V id="v_28" val="1" />

<V id="v_11" val="1" />

<V id="v_28" val="0" />

<V id="v_23" val="0"/>
<V id="v_28" val="1"/>

</Sequence>
</Trace>

20

D Möbius: Join model

The 3 atomic models in Fig. 6 has two shared variables/places p2 and p3.
The place p1 contains one intinial token.

Figure 6: 3 atomic models

In Fig. 7 is depicted the hierarchy of the composed model. In this example,
every node contains one variable. It is possible that a node has more than
one or zero variables. If a node has zero variables then this node must not
described as a process because the node cannot have any interactions with
other processes.
Join1 p2
Join2 p3
model1 p1
model2 p4
model3 p5

Example trace for model in Fig. 7:

<?xml version="1.0" encoding="utf-8" ?>
<!-- Trace file of model Example_Moebius -->
<Trace model="Example_Moebius" generator="manually_generated" >
<Comment> Purpose of this trace: demonstration </Comment>
<!-- declaration of processes -->
<Process id="0" name="Join1" >
<Var id="v_2" name="p2" />
</Process>
<Process id="1" name="Join2" >

21

Figure 7: Composed model

<Var id="v_3" name="p3" />
</Process>
<Process id="2" name="model1" >
<Action id="a_1" name="t1" />
<Var id="v_1" name="p1" />
</Process>
<Process id="3" name="model2" >
<Action id="a_4" name="t4" />
<Var id="v_4" name="p4" />
</Process>
<Process id="4" name="model3" >
<Action id="a_6" name="t6" />
<Var id="v_5" name="p5" />
</Process>
<Interactions>
<Undiraction id="a_2" name="t2">
<Touch>0</Touch><Touch>1</Touch><Touch>2</Touch></Undiraction>
<Undiraction id="a_3" name="t3">
<Touch>0</Touch><Touch>3</Touch></Undiraction>
<Undiraction id="a_5" name="t5">

22

<Touch>0</Touch><Touch>4</Touch></Undiraction>
</Interactions>
<!-- process sequence -->
<Sequence type="StateActionType">
<S>
<V id="v_1" val="1" />
<V id="v_2" val="0" />
<V id="v_3" val="0" />
<V id="v_4" val="0" />
<V id="v_5" val="0" />
</S>

<V id="v_1" val="0" />
<V id="v_2" val="1" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="1" />

<V id="v_2" val="0" />
<V id="v_5" val="1" />

<V id="v_5" val="0" />
<V id="v_2" val="1" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="2" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

23

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="3" />

<V id="v_2" val="0" />
<V id="v_4" val="1" />

<V id="v_4" val="0" />
<V id="v_2" val="1" />
<V id="v_3" val="3" />

<V id="v_2" val="0" />
<V id="v_5" val="1" />

<V id="v_5" val="0" />
<V id="v_2" val="1" />

<V id="v_2" val="0" />
<V id="v_3" val="2" />
<V id="v_1" val="1" />

<V id="v_1" val="0" />
<V id="v_2" val="1" />

</Sequence>
</Trace>

24

Figure 8: MSC of example trace

25

	ADP44.tmp
	Document Type Definition (DTD) of trace
	Superposed Generalized Stochastic Petri net model
	ProC/B model
	Möbius: Join model

