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Abstract

Among the many stages of a simulation study, debug-
ging a simulation model is the one that is hardly reported
on but that may consume a considerable amount of time
and effort. In this paper, we describe a novel technique
that helps a modeler to gain insight in the dynamic behav-
ior of a complex stochastic discrete event simulation model
based on trace analysis. We propose algorithms to distin-
guish progressive from repetitive behavior in a trace and
to extract a minimal progressive fragment of a trace. The
implied combinatorial optimization problem for trace re-
duction is solved in linear time with dynamic programming.
We present and compare several approximate and one exact
solution method. Information on the reduction operation
as well as the reduced trace itself helps a modeler to rec-
ognize the presence of certain errors and to identify their
cause. We track down a subtle modeling error in a depend-
ability model of a multi-class server system to illustrate the
effectiveness of our approach in revealing the cause of an
observed effect. The proposed technique has been imple-
mented and integrated in Traviando, a trace analyzer to de-
bug stochastic simulation models.

1 Introduction

Discrete event simulation is a common technique in
the performance and dependability assessment of systems.
Many professional and academic tools are available and ap-
plied in practice to make modeling and simulation produc-
tive. Simulation comes with few restrictions so the real
crux in simulation modeling is not to obtain numbers as re-
sults but to achieve valid results. Sadowski [16] discusses
a number of pitfalls in simulation modeling and gives ad-
vice how to avoid them. In particular, she recommends to
review a model and other deliverables early and often and

recommends a structured walk-through with colleagues and
clients as ideal to discover errors in models. Krahl’s tutorial
on debugging simulation models gives further hands-on ad-
vice from a practitioner’s point of view in [13]. A common
technique is to modify the model itself to reveal a particular
behavior, this includes reduction or partition of the model
and to analyze parts as well as modification of rates, tim-
ings, and priorities to see a certain dynamics happen. In
addition, a modeler often enhances the model by assertions
added to the simulation code, that are checked at runtime
and do not contribute to the model itself but help to recog-
nize the presence of errors. Assertions are limited to safety
properties that can be checked as a particular statement in
code, they require a modeler to be aware of such properties
and being able to express them in the input language of a
simulator and to do so, usually in a manual way. Comple-
mentarily to enhancements of a simulation model, profes-
sional simulators like Arena [9], Automod [1] among oth-
ers provide support for animation to check face validity of
a model plus debugging functionality as known from soft-
ware development in general, i.e., step by step computation,
breakpoints, inspecting variables and data structures. This
is all valuable and useful and in addition one can also doc-
ument what happens in a simulation run by writing a trace.
Analysis of simulation traces is usually described as a te-
dious step by step control of what a simulator does [13, 14].
However, an automated trace analysis takes place in many
other fields. For instance in runtime verification, monitoring
software reads a trace to diagnose problems, apply model
checking, or statistical hypothesis testing on the fly, as sup-
ported for instance by the MaC analyzer [17]. However,
in tracing a simulation model, a modeler finds himself in
the situation that it is unclear for what properties to ask
for to be checked by a model checker or what hypothesis
to test for. This is the situation we want to provide sup-
port for. In modeling for performance and dependability
studies, we observed that models are often built from com-



ponents that return to states repeatedly, e.g., a work load
generator typically loops between a load generation phase
and an idle phase, a server loops between different stages
of service and an idle stage, a dependable subsystem may
cycle between different levels of operation, failure and re-
pair stages. Given that simulation is used to feed a statistic
analysis with a set of samples, and if more than one sam-
ple is generated from a single run, it is likely that the model
loops through a potentially large set of states but may oc-
casionally visit certain states again. So a cyclic behavior is
an expected, “good” behavior, while certain errors may dis-
turb that, e.g. by events that make irregular changes to state
variables such that there is no inverse/reverse operation in
the model or a partial deadlock in an open process inter-
action model, where newly arriving entities create events
but certain entities never depart. So, the non-returning, pro-
gressing part of a trace may deserve particular attention.

In this paper, we discuss how to automatically identify
and remove repetition from a simulation trace. The result-
ing fragment sheds light on how a simulation progresses.
The technical contribution of this paper is in the description
and evaluation of heuristic and exact methods to extract and
remove repetitive fragments from a trace. In particular we
derive a linear time algorithm that gives a maximal reduc-
tion and that is novel to the best of our knowledge1. We
also describe two simple approximate algorithms for trace
reduction. We propose to make use of cycle detection and
reduction for the following purposes.
1. to obtain a graph that shows how the length of the min-
imal progressive fragment evolves with the length of the
trace (the prefix considered for reduction). A visual inspec-
tion of that function often helps to recognize irregularities
and pinpoint parts of a trace that deserve a closer look.
2. if a particular state of interest is found, a trace reduction
helps to extract those events that are necessary to reach that
state. This information reduction can be massive and sim-
plifies tracking the cause of the effect that is observed at that
state of interest.
3. to detect a set of cycles and to analyze their properties
(which is not in the focus of this paper).

Obviously, a trace reduction by removing cycles pre-
serves only those erroneous events that have no inverse
counterpart. Formally, these can be seen as safety proper-
ties that once “something bad has happened” the system (the
model) cannot overcome that bad situation in its future be-
havior. For this type of errors, we consider our trace reduc-
tion approach a useful addition to the existing set of debug-
ging techniques; see [10] for a detailed discussion how to
make use of our technique. The approach (cycle reduction
as well as cycle visualization) is implemented in Traviando
[12], a trace analyzer that tracks performance figures, pro-
vides statistical evaluation of timed and untimed traces as

1We discuss related work at the end of Section 2.

well as model checking functionality.
The rest of the paper is structured as follows. Section

2 gives basic definitions. Section 3 describes how to de-
bug a dependability model of a server with two classes and
failure and repair to motivate the subsequent effort for re-
duction algorithms. Section 4 describes an exact algorithm
that yields an optimal reduction. Section 5 describes ap-
proximate algorithms. Section 6 evaluates those algorithms
with the help of several examples. Section 7 evaluates the
overall approach. We conclude in Section 8.

2 Definitions

A trace is a sequence σ = s0e1s1 . . . ensn of states
s0, . . . , sn ∈ S and events e1, . . . , en ∈ E over some (finite
or infinite) sets S, E for an arbitrary but fixed n ∈ IN. For
elements of S, we assume an equivalence relation denoted
by “=”. For example, if s ∈ S ⊆ IN is the state of an au-
tomaton, = may be the usual equality among integer values,
if s ∈ S is a marking of a Petri net, then = is the equality of
markings (integer vectors), if s ∈ S is the description of a
term of a process algebra, then = may be defined as a weak
or strong bisimulation, and similarly for other formalisms
with some notion of bisimulation for states like stochastic
well-formed nets (SWNs), and the multi-paradigm models
of Möbius. Note that events are irrelevant in the following
formal treatment, but events are important pieces of infor-
mation in a trace in order to document not only the state of
the system but also what happens. Hence, we keep events
within our considerations.

Let us define some common operations for sequences.
The length of σ = s0e1s1 . . . sn is defined as |σ| =
n = #events. The concatenation ◦ of two sequences
σ = s0e1s1 . . . sn and σ′ = s′0e

′
1s

′
1 . . . s′m where sn = s′0

is defined as σ ◦ σ′ = s0e1s1 . . . sne′1s′1 . . . s′m. Obviously,
if σ′′ = σ ◦σ′ then |σ′′| = |σ|+ |σ′|. For σ = s0e1s1 . . . sn

and 0 ≤ i < j ≤ n, we define a projection or substring
operation as sub(σ, i, j) = siei+1 . . . sj . A cycle is a sub-
string sub(σ, i, j) with i < j and si = sj . We use the
notation [i, j] for a cycle in σ. A cycle [i, j] is elemen-
tary if si �= sk for i < k < j. Obviously, for any non-
elementary cycle [i, j] in σ there exists a sequence of m > 1
elementary cycles [i0, i1], [i1, i2], . . . , [im−1, im] in σ with
i = i0, j = im and si = si0 = si1 = · · · = sim = sj

that describes the same substring of σ, i.e., sub(σ, i, j) =
sub(σ, i, i1)◦sub(σ, i1, i2) . . .◦sub(σ, im−1, j). Let Call =
{[i, j]|0 ≤ i < j ≤ n, si = sj} be the set of all cycles of
σ, C = {[i, j]|[i, j] ∈ Call, sk �= si, i < k < j} be the set
of all elementary cycles. Cycles allow us to define a reduc-
tion operation. For a σ = s0e1s1 . . . ensn with cycle [i, j],
we define a reduction operation red(σ, i, j) = sub(σ, 0, i)◦
sub(σ, j, n). The reduction operation is consistent with the
notion of length, |red(σ, i, j)| = |σ| − |sub(σ, i, j)| (given



that [i, j] is cycle of σ).
Let the sequence reduction problem (SRP) denote the

problem to reduce a given σ with the help of the reduction
operation to the shortest possible sequence σ∗ and let C∗

be a set of cycles that yields that reduction. We define this
formally as follows.

Definition 1. SRP is the problem to determine a C∗ ⊆ C,
such that

∑
[i1,i2]∈C∗(i2 − i1) is maximal and for any two

elements [i1, i2], [j1, j2] ∈ C∗ holds that i2 ≤ j1 or j2 ≤ i1.

The former condition ensures that we obtain a maximal re-
duction of σ. The latter condition ensures that we can ap-
ply red(red(σ, j1 , j2), i1, i2) (or vice versa), i.e. the cy-
cles are at most adjacent but do not overlap. Note that
the condition also excludes intervals [i1, i2], [j1, j2] with
i1 < j1 < j2 < i2, however in that case red(σ, i1, i2) =
red(red(σ, j1 , j2), i1, i2), so [j1, j2] is irrelevant for a max-
imal reduction and can safely be excluded. We use the no-
tation of an interval, since it matches what we see as index
values for states in a cycle of σ. Note that C∗ is not nec-
essarily unique, since a non-elementary cycle [i1, i2] ∈ C∗

could be replaced by a set of elementary cycles that form
a sequence that also describes [i1, i2]. In light of this ob-
servation, we can reduce the set of cycles that we need to
consider for SRP from Call to C and still obtain a set C∗

that gives the same maximal reduction of σ. At this point,
we formulated the problem that we address. We claim that
in some stochastic dependability models, such cycles are
indeed present (we give evidence of that with the help of
several examples in Section 6) and that we also observed
|Call| >> |C| (we show this effect for the example dis-
cussed in Section 3) which guides us to develop algorithms
that focus on C.

Related work. SRP is related to the problem of cy-
cle detection in periodic functions for which linear time
algorithms with low memory requirements are known for
long [15, 18]. The problem there is to analyze a function
f : D → D on some domain D, for having a finite leader
x, f1(x), f2(x), . . . , f l(x) of length l where all values are
different and a cycle of length c such that f i(x) = f i+c(x)
for all i ≥ l. The problem does not match well with sim-
ulation traces, i.e., if si = si+c, then it is by no means
guaranteed that si+j = si+j+c will hold for j > 0 in a
simulation trace. Note that algorithms for cycle detection
address the problem to determine the starting point l of the
first cycle and the cycle length c while SRP is a selection
problem that selects a particular set of cycles C∗ from the
set of all cycles Call. These problems are different by na-
ture. So classical algorithms like [15, 18] do not solve SRP;
nevertheless it is straightforward to adapt them to compute
an approximate solution of SRP. We demonstrate this for
the algorithm of Nivasch [15] in Section 5. The drawback
is that the approximation error is unknown. With the help of

our exact algorithm we are able to measure the approxima-
tion error of approximate algorithms and we do so for the
two approximate algorithms we describe in Section 5 for a
set of examples we evaluate in Section 6.

There is also work on interval graphs, e.g. [8], which
considers graphs whose vertices can be mapped to distinct
intervals in the real line such that the vertices in the graph
have an edge between them if and only if their correspond-
ing intervals overlap. However, the problems that have been
considered in that area (to the best of our knowledge) did
not match SRP, e.g., the minimum cover problem for node-
weighted interval graphs considers the problem to find a
subset of intervals (with smallest sum of weights) from a
given set of intervals with smallest value lmin and largest
value umax such that the subset covers [lmin, umax], [8].
So, an overlap of intervals is acceptable although not pre-
ferred (minimum sum of weights) in that context, while in
SRP intervals need to be disjoint.

We present an application example to motivate our ap-
proach before we discuss algorithmic solutions for SRP.

3 An Example Dependability Model

We consider a dependability model of a server that is
subject to failure and repair. Failures happen mainly due
to software failures and are handled by rebooting the sys-
tem and restarting tasks that are performed. The workload
can be partitioned into two types of tasks according to their
service demands. The user population is limited, such that
we decide to model the system by a closed model with two
customer classes A and B and corresponding finite popu-
lation N(A) and N(B). Class B is used to describe “nor-
mal” customers that give the baseline utilization and class
A customers are particular ones with different service re-
quirements. For customers of class A, we want to measure
the probability that their service takes place without fail-
ures and in a timely manner to accommodate certain service
level agreements for quality of service. We do not provide
further details of the timing because we will focus on debug-
ging a corresponding simulation model which we develop
with Möbius [6].

We choose the Möbius’ SAN formalism to model each
aspect of our system individually and the composition op-
eration that is based on shared variables to join the individ-
ual atomic models into an overall model. Figure 1 shows
the compositional structure of the model. The FullModel
combines a CompleteServer submodel of the server with
submodels UserA and UserB, which describe the user be-
havior. Users interact with the server by changing val-
ues of variables for input and output buffer occupation at
the server, those variables are shared via the FullModel.
The CompleteServer submodel encapsulates how a service
is performed and a submodel failureAndRepair that mod-



Figure 1. Composed Model

els availability of the server. The failure and repair model
describes a cyclic behavior and switches between “avail-
able” and “failed” states to indicate the status of the server.
It shares a boolean state variable “avail” with the server
model. The server models a queue with random scheduling
and no preemption for two customer classes. If a customer
is served when a failure occurs, its service is interrupted and
it is positioned back into the queue. Its service time is not
memorized. Customers cycle between the server and their
own class-dependent submodel that delays them for a think-
time. A simulation run reveals measures that in the long run
deviate from what is expected. For instance, the throughput
of class B is slightly too low, for A slightly too high. At one
point, we suspect that the model contains an error. Möbius
allows us to generate a trace where variable settings yield
state information and changes yield events. So we down
scale the model, as a first try with respect to populations
N(A) = 1 and N(B) = 1, to check what happens and gen-
erate a trace σ, here with n = 5473 events. The trace seems
correct, but we somehow lack insight what to search for.

Before we address how to find the error by cycle reduc-
tion, let us observe to what extent cycles are indeed present
in the trace. Figure 2 gives the number of occurrences for
certain states in σ. States are ordered by decreasing num-
ber of occurrences. For instance, the first state in the figure
occurs 339 times in σ. The impact on the cardinality of
Call is significant. If a state occurs k times, that state alone
generates k · (k−1)/2 elements of Call. The calculation re-
flects the number of possible selections of two states among
k states where permutations count only once. For k = 339,
that state alone contributes 57291 intervals to Call, 338 to
C. Note that from a conceptual point of view the presence
of cycles is natural in dependability, performability models
with failure and repair. This model is a set of finite sub-
models that communicate via shared state variables. The
behavior of each submodel is cyclic, repetitive, and we are
interested in the behavior of the composed model with re-
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Figure 2. Number of occurrences of states

spect to the timing of certain events.

Clearly, such a model can contain many types of errors,
and cycle reduction can address only certain ones. Namely
a modeling error that documents itself in state information
and that does not have a complementary activity that resets
or reverses the state change. Examples are actions that as-
sign faulty values to a state variable or deadlocks in models
of open systems where state variables count the number of
customers/entities in the system. If this type of behavior is
present in σ then it remains present in σ∗, the solution of
SRP. Since (hopefully) |σ∗| << |σ| it will be easier to track
the cause of the error. Working with cycle reduction has
two features that we consider useful. One helps us to recog-
nize if an error of the above kind is present in σ, the other
helps us to identify which events are used to reach a partic-
ular state of interest. For the first feature, let sub(σ, 0, i)∗

denote the solution of SRP for sub(σ, 0, i) of σ. We can
plot the length of sub(σ, 0, i)∗ for 0 ≤ i ≤ n. Figure 3
shows this for our example trace. The initial part of the
plot shows that the model proceeds and returns to states in
a cyclic manner for the first 3500 events, then an event cre-
ates a state change that does make a permanent difference
and after that the model proceeds and returns to states in
a cyclic manner as behavior. However that particular state
change is never taken back. Fig. 3 tells us that this trace
contains behavior that is irregular and also where to look for
it, namely around the 3514-th event where the switch took
place. By checking state variables of a state si, i > 3514,
we see that N(A) has increased by 1 which violates that the
model has an invariant customer population for customers
of class A. In addition to this, σ∗ also gives a massive re-
duction, i.e. the algorithm that we will describe next ob-
tains σ∗ with |σ∗| = 7. With those few states and events
it is immediate to recognize the violation of that invariance
and that the reason is an unwanted side effect of the action
that puts a customer of type B back into the queue if the



Figure 3. Length of trace after cycle reduction
as a function of |σ| = n

server fails while serving a customer of class B. The error
was induced when we extended the model from one cus-
tomer class to two customer classes. In what follows, we
investigate algorithms for an exact or approximate solution
of SRP to support this way of debugging stochastic models.

4 Exact Solution of SRP

SRP seems to be one of those NP hard combinatorial
optimization problems but this is not the case. In this sec-
tion, we describe an exact linear time algorithm for SRP
that is based on the following observations. An optimal
solution C∗ is a sequence of non-overlapping cycles. Let
C∗ = {[l1, u1], . . . , [lm, um]} be ordered such that uc−1 <
uc for 1 < c ≤ m (we will use c as an index for cycles and
i as an index for states in σ). Note that uc−1 �= uc since
cycles do not overlap. If we select a cycle [lc, uc] ∈ C∗

then {[l1, u1], . . . , [lc−1, uc−1]} is an optimal solution for
s0, . . . , slc and {[lc+1, uc+1], . . . , [lm, um]} is an optimal
solution for suc , . . . , sn. If we focus on the former, then the
optimal solution on s0, . . . , slc is a subproblem that has an
optimal solution on a set of cycles [lj , uj ] ∈ C with uj ≤ lc.
This observation helps us to sequentially solve a sequence
of SRP problems2 for sequences sub(σ, 0, i) for 0 ≤ i ≤ n.
So we can follow a dynamic programming approach here
and use memoization. Note that for elementary cycles, for
all 0 ≤ i ≤ n exists at most one [lc, uc] ∈ C with uc = i.
We consider all cycles in C in an ordered sequence of in-
creasing values uc, and for each cycle [lc, uc] we base our
decision whether to consider it for the optimal solution of
SRP for sub(σ, 0, uc) by comparing the optimal solution for
sub(σ, 0, uc−1) with the reduction achieved by the optimal

2We also investigated the possibility of a binary partitioning strategy
but did not get a better result.

AOPT(σ)
0 p[0] = u[0] = l[0] = w[0] = c = 0; n = |σ|;
1 h = empty hash map; C′ = ∅; σ′ = σ;
2 for i = 0 to n with stepsize 1
3 if (h contains si)
4 then // cycle identified
5 c = c + 1;
6 u[c] = i;
7 (l[c], k) = getValue(h, si);
8 if (w[c − 1] < w[k] + u[c] − l[c])
9 then // consider new cycle

10 w[c] = w[k] + u[c] − l[c];
11 p[c] = k;
12 else // ignore new cycle
13 w[c] = w[c − 1];
14 p[c] = c − 1;
15 setValue(h, si, (i, c));
16 else // no cycle yet, just add state
17 addValue(h, si, (i, c));
18 while (0 < c)
19 if (w[c] �= w[c − 1])
20 then σ′ = red(σ′, l[c], u[c]); C′ = C′ ∪ {[l[c], u[c]]}
21 c = p[c];
22 return σ′, C′

Figure 4. Algorithm AOPT

solution for sub(σ, 0, lc) plus the contribution of [lc, uc].
We memorize the better variant of the two as solution of
sub(σ, 0, uc). The approach has its fundamentals in a Bell-
man equation [3]. Fig. 4 gives a detailed pseudocode de-
scription of the corresponding algorithm AOPT that solves
SRP and computes σ′ = σ∗ that remains when we remove
all cycles in C′ = C∗ from σ. It uses four arrays (l, u, w, p)
and one hash map h as data structures. Let C be ordered
such that uc−1 < uc, then AOPT stores the c-th elemen-
tary cycle [lc, uc] of σ in l[c] = lc, u[c] = uc. Entry w[c]
gives the weight for the solution of SRP for sub(σ, 0, uc),
i.e., the number of states that can be removed to reduce
s0, . . . , suc . Entries in p[] form chains of downward ref-
erences towards 0, together with entries of w[], they char-
acterize elements of C∗ for the sequence of SRP problems
for sequences sub(σ, 0, i) for 0 ≤ i ≤ n. Note that values
of c only increase in that loop, let cmax denote the maximal
value for c that we observe in AOPT, (c = cmax when the
for-loop in lines 2-17 finishes after i = n = |σ|). Hashmap
h stores tuples (si, (i, k)) with si being key, (i, k) being the
value where k is the index of a cycle that si corresponds
to in arrays w, l, u, p. In line 15, an existing entry in h is
updated, while in line 17 a new entry is added to h.

Lemma 1. Algorithm AOPT terminates.

The proof for termination is straightforward.



Correctness. In order to prove the correctness of AOPT,
we factor out several properties and prove them separately.
We start with the observation that AOPT indeed removes
cycles in line 20 of the algorithm.

Lemma 2. Value pair l[c] and u[c] in line 20 of AOPT de-
scribes a cycle.

Proof. If for all 0 < c ≤ cmax, 0 ≤ l[c] < u[c] ≤ n and
slc = suc then the statement is obviously true since only a
subset of those values for c are considered in line 20. Note
that u and l only obtain values in lines 6 and 7 of AOPT.
Hashmap h stores tuples (si, (i, k)) with si being key, (i, k)
being the value. The condition of line 3 ensures that there
is a state sj in subsequence s0, . . . , si−1 with sj = si and
(j, k) = getV alue(h, si) when values are assigned in lines
6, 7. Since that value must have been stored in an afore-
going iteration (line 15 or 17) we have l[c] = j < i = u[c]
and [l[c], u[c]] ∈ Call. �	

Lemma 3. AOPT computes all elementary cycles in arrays
l[], u[], i.e., C = {[l[c], u[c]]|0 < c ≤ cmax}

Proof. Based on Lemma 2 we know that AOPT generates
{[lc, uc]|0 < c ≤ cmax}. We prove {[l[c], u[c]]|0 < c ≤
cmax} ⊆ C first. Assume the contrary and [lc, uc] ∈ Call\C
with sk = slc and lc < k < uc. In iteration i = k (line
2), AOPT has h containing slc = sk (line 3), so u[c] = k
and k = uc. Furthermore, line 15 updates the entry of h
at i = k with (k, c), such that a subsequent hit for suc at
i = uc would pull l[c] = k in line 7 at i = uc which yields
a different, second elementary interval inside [lc, uc] so the
assumed [lc, uc] cannot be in {[l[c], u[c]]|0 < c ≤ cmax}.
Secondly, we prove C ⊆ {[l[c], u[c]]|0 < c ≤ cmax}.
We assume the contrary and from all counterexamples, let
[lc, uc] ∈ C be the cycle with smallest index c in C that
is not an element of {[l[c], u[c]]|0 < c ≤ cmax}. Since
lc < uc, the iteration in lines 2-17 reaches i = lc before
i = uc. At i = lc, let c′ denote the current value of variable
c, then the entry with key slc in h is either updated in line 15
by setValue(h, slc, (lc, c′) or a new entry with key slc with
value (lc, c′) is added to h (line 17). Since [lc, uc] is elemen-
tary, the next time in the iteration where we have si = slc

is for i = uc and in that situation condition of line 3 is sat-
isfied and u[c] = uc, (l[c], k) = (lc, c′) =getValue(h, suc).
So [lc, uc] ∈ {[l[c], u[c]]|0 < c ≤ cmax}. �	

Next we recognize that elements of C′ are all non-
overlapping.

Lemma 4. For any two intervals [lx, ux], [ly, uy] ∈ C′

holds a) [lx, ux] �= [ly, uy] and b) ux ≤ uy =⇒ ux ≤ ly ,
i.e. the intervals of C′ do not overlap.

Proof. [lx, ux] �= [ly, uy] must hold since the assignment
u[c] = i in line 6 gives a unique value to u[c] and since

the loop in lines 18-21 follows a monotonously decreasing
sequence of values for c (p[c] < c for 0 < c), no interval is
considered twice. For the second property, we assume the
contrary, i.e., ly < ux ≤ uy. Since ux < uy (unique values
stored in u), x < y and [ly, uy] is removed in line 20 before
[lx, ux]. In that case, c = p[y]. Due to condition w[c] �=
w[c − 1] (line 19), the value of p[y] cannot result from line
14, which in turn implies that p[y] = k = max{c′|0 ≤ c′ <
c, u[c′] ≤ l[c]} (line 11 and 7,15,17) which immediately
implies that the next interval k must obey uk ≤ ly , so k �=
x. Since uk ≤ ly and for any x < k we have ux < uk, the
assumed interval [lx, ux] cannot exist. �	

So we recognize that AOPT computes all elementary cy-
cles and a set C′ ⊆ C of non-overlapping intervals such that
the sequence of reduction operations in the loop in lines 19-
21 is at least defined.

Lemma 5. Set C′ gives a maximal reduction.

Proof. by induction over the length n of σ.

Theorem 1. AOPT computes a solution C′ = C∗ for SRP
and σ′ = σ∗.

Proof. Follows from the fact AOPT only removes cycles
(Lemma 2), that it considers all cycles in C (Lemma 3),
that C is sufficient to consider for finding C∗ (discussed
in Section 2), that all removed cycles are non-overlapping
(Lemma 4), so the reduction is valid, and it is maximal
(Lemma 5). �	

Lemma 6. The worst case time complexity of AOPT is in
O(n) for |σ| = n if search, insert and change operations on
a hash map are in O(1).

Proof. The time complexity follows from the observation
that n states are considered, cmax ≤ n cycles are identified.
The removal of at most cmax non-overlapping intervals in a
decreasing order can be performed in O(n) with one itera-
tion through the array of n states of σ, e.g. by copying all
remaining elements to a new array of length n−w[cmax] (if
σ is stored in an array), or by removing a sequence of indi-
vidual elements in decreasing order (if σ is stored in double
linked list) with constant removal costs for a single si. �	

The space complexity is n(5 + size(s)) where size(s)
is the space needed to represent a single state and integer in
the hash map h and 5n reflects on the 4 integer arrays plus
one hash map that are used.

5 Approximate Solution of SRP

Since AOPT’s time complexity is linear and one cannot
do less than reading σ for an optimal reduction, we only
look for approximate solutions of SRP that result in a valid
reduction but not necessarily a maximal reduction of σ and



AC(σ)
0 h = empty hash map;
1 for i = 0 to n with stepsize 1
2 if (h contains si)
3 then
4 j= getValue(h, si);
5 C′ = C′ ∪ {[j, i]};

6∗ update(h, si, i)
7 else
8 add(h, si, i);
9 return C′;

Figure 5. Algorithm to generate C′ ⊆ C

that perform with at most same time complexity but less
space.

It is fairly straightforward to come up with an algorithm
that detects cycles and creates a set C′ ⊆ Call. Fig. 5 gives
the pseudocode of an algorithm that iterates through states
in σ, adds tuples (si, i) to a hash map h with si being the
key, i being the value of that mapping which is returned by
getValue in line 4. The step in line 6 is optional. If it is
performed, C′ will contain elementary cycles only, due to
the change of value for entry (si, i) in h (as in AOPT). If
it is skipped, C′ may contain non-elementary cycles and in
particular the largest non-elementary cycles in Call. Due
to its simplicity, we do not formally prove termination and
correctness. Based on C′, we immediately obtain two ap-
proximate solutions of SRP.

The first solution is a greedy strategy that removes cy-
cles by weight. Given C′, it sorts elements [i, j] of C′ by
weight j − i, iterates through C′ in decreasing order and
successively removes cycles [i, j] from σ if possible, i.e.
σ = red(σ, i, j) if si and sj are still present in the current
σ (and none of them have been removed in a previous re-
duction). The time complexity is at least O(n) for creating
C′ and O(|C′|log|C′|) for sorting C′. Hence, we consider
this approach inferior to AOPT and do not investigate this
algorithm any further.

The second strategy is a greedy strategy that selects cy-
cles in the order of occurrence (first come first served), resp.
identification, which we denote as AFCFS. It is an on-the-
fly approach that runs through σ from the beginning, cre-
ates a set C′ and removes cycles from σ (and corresponding
states from hashmap h) as soon as a cycle is identified. So
we formally introduce σc to denote the reduced sequence.

Due to the simplicity of the concept, we do not formally
prove the approach. Compared to AOPT, AFCFS uses the
same detection mechanism for cycles, but there is no need
for arrays and we can reduce σ and hashmap h on-the-fly.
The obvious benefit is the immediate reduction of the space
for σ and the entries in the hashtable.

A third approach is based on the work of Nivasch [15],

AFCFS(σ)
0 i = c = 0; σc = σ
1 h = empty hashmap;
2 while (i ≤ |σc|)
3 i++;
4 if (h contains si)
5 then // interval identified, remove
6 c = c + 1;
7 lc = getValue(h, si);
8 for j = lc + 1 to i − 1 with stepsize 1
9 removeByValue(h, j) ;

10 σc = red(σc−1, lc, i);
11 C′ = C′ ∪ {[lc, i]};
12 i = lc;
12 else
13 add(h, si, i);
14 return σc, C′;

Figure 6. Algorithm AFCFS

which focuses on the detection of cyclic functions (se-
quences). The main argument is that if a sequence be-
comes cyclic and repeats a loop, i.e. σ = s0, . . . , sn with
i < j < k such that sub(σ, i, j) = sub(σ, j, k) then it is
sufficient to focus on sm = min{sl|i ≤ l ≤ j} and there
is a cycle [sm, sm+j−i]. Note that we can define a total or-
der on states to establish a minimum for a set of states in
the following way. If si = (si0, . . . , sim) happens to be a
vector where entries sij have a total order, we define the fol-
lowing order for states: si < sj if ∃k such that sil = sjl for
0 ≤ l < k and sik < sjk for k ≤ m, i.e., we use a lexico-
graphic order. Given such an order, a stack of states is suf-
ficient to memorize the min value. Fig. 7 describes the al-
gorithm in pseudocode and adapted to solve SRP. Nivasch’s
approach is particularly dedicated to identify cyclic func-
tions and to determine cycle length, e.g. for random number
generators, where it is very promising. For SRP, ASTACK
delivers a valid reduction but not necessarily an optimal so-
lution. The algorithm makes use of a stack q and a total
order of states. The stack contains a sequence of states in
an monotonously increasing order, function peek(q) reads
the top element (sj , j) from stack q but does not remove
it, push and pop are the usual stack operations, state(sj , j)
returns sj , index(sj, j) returns j. For considerations with
respect to correctness, time and space complexity details
we refer to [15]. Analogously to the adaptation of Nivasch’
algorithm, one could adapt the algorithm by Sedgewick et
al [18] which we do not follow here.

6 Evaluation of algorithms

In this section, we compare the 3 algorithms we consid-
ered in detail. AOPT, AFCFS, and ASTACK have all linear
time but differ in the quality of results and in their space



ASTACK(σ)
0 q = empty stack;σ′ = σ; C′ = ∅;
1 for i=0 to n with stepsize 1
2 while (si <state(peek(q))
3 pop(q) ;
3 if (si == state(peek(q))
4 then // interval found
5 C′ = C′ ∪ {[index(peek(q)),i]}
5 σ′ = red(σ′,index(peek(q)),i);
6 else
7 push(q, (si, i));
8 return σ′, C′;

Figure 7. Nivasch’ Algorithm

requirements, AOPT delivers an exact solution for SRP, the
other two deliver valid reductions but not necessarily max-
imal ones and with less memory. In particular, ASTACK is
extremely memory efficient. According to [15], the space
complexity of ASTACK is logarithmic with high probabil-
ity. We evaluate the performance of those algorithms on a
number of traces taken from various example models, gen-
erated with various simulators, and in various lengths. Table
1 gives the resulting values for max

∑
[i1,i2]∈C′(i2− i1) for

the calculated set C′ for algorithms AOPT, AFCFS, and AS-
TACK. For example, AOPT achieves a value of 54 in line
3, column 3 for model Courier with |σ| = n = 100 that is
|σ∗| = 100 − 54 = 46. Since AOPT guarantees to achieve
a maximal reduction for σ, i.e., it yields the maximal pos-
sible reduction values in the table. Column n describes |σ|
and column Model denotes which model has produced that
trace. Models are sorted according to the generating envi-
ronment.

Models entitled with APNN are generalized stochastic
Petri net models, whose traces are generated with the simu-
lator of the APNN toolbox [5]. Traces for rows Courier are
generated from a stochastic Petri net model of the Courier
protocol model by Li and Woodside [19]. The model is in-
tended for performance analysis and generates a recurrent,
finite Markov chain. The initial marking is chosen such that
the model has a small state space and is expected to show a
lot of cyclic behavior. Traces for rows Prodcell result from
a large model of a production cell by Heiner et al [7]. The
model contains hundreds of places and transitions and con-
siders control of a production cell which consists of a feed-
ing belt, a rotating table, a robot with two arms, a press, a
second belt to remove processed parts and a crane.

Models entitled with ProC/B are simulation models
based on a process interaction approach, the modeling for-
malism is supported by the ProC/B toolset [2]. Row Din-
Phils refers to a model of the classical dining philosophers.
Row Store refers to model of a storage area described in
[11]. It models the transfer of goods into a store and out

Model n AOPT AFCFS ASTACK
APNN
Courier 100 54 54 0
Courier 1000 948 948 882
Courier 5000 4938 4938 4860
Courier 10000 9966 9966 9912
Prodcell 1000 810 648 486
Prodcell 10000 9720 9720 1944
ProC/B
DinPhils 67744 67721 67721 66441
Store 6140 65 65 65
Möbius
Server 5473 5466 5462 5252
FaultyProc 4368 4352 4345 2687
FaultyProc 10595 10586 10575 8460
FaultyProc 20961 20952 20952 16167
Conveyor 5391 5361 5334 1874
Conveyor 10578 10520 10428 10302
Conveyor 20160 20084 20048 19805
Database 4732 4732 4732 4698
Database 10170 10170 10170 10100
Database 19974 19974 19974 19926

Table 1. Reduction achieved for examples

of a store by trucks that are allocated to ramps and that
are loaded or unloaded with the help of forklifts that are
manned with workers. The model describes an open sys-
tem. The state representation that is chosen for the trace ab-
stracts from certain details of the ProC/B simulation model.
In particular, identities of entities are incorporated only as
attributes of actions. The model has a defect in the sense
that it reaches a situation, where the loading/unloading op-
erations are all blocked and the only remaining activities are
arrivals of newly generated entities, resp. trucks (since it is
an open model).

Models entitled with Möbius are simulation models de-
veloped with the multi-paradigm, multi-solution framework
Möbius [4]. Row Server refers to the Möbius model of a
server with failure and repair that we discussed in Section
3. Rows FaultyProc is a failure model of a fault tolerant
computer system that is part of a set of example models
available with the Möbius distribution [4]. Similar to this,
rows Conveyor refer to a model of a conveyor belt that is
described in a process algebra supported by Möbius. Rows
Database refer to a model of a database system.

In summary, we selected a set of models with significant
variation in |S|, |E|, |σ|, the modeling formalism, the gen-
erating simulator, the application area, and whether an error
is present or not. Considering the reduction achieved by
the different algorithms in Table 1, we observe a substantial
reduction for all but the Store example. Store is a model
of an open system where the population grows due to an



AFCFS ASTACK
Model n max avg max avg
Courier 10000 66 3.81 174 65.28
Prodcell 10000 324 44.46 7776 3890.99
DinPhils 67744 210 50.57 3060 1517.13
Store 6140 0 0.00 36 0.12
Server 5473 16 1.79 342 115.66
FaultyProc 20961 66 11.23 4956 2442.20
Conveyor 20160 198 45.89 4050 1460.97
Database 19974 2 0.00 94 46.73

Table 2. Approximation error

internal deadlock for resource allocation and the absence
of cycles indicates this problem. For other models, AOPT
achieves a substantial reduction, AFCFS often gets results
that are equal or reasonably close, e.g. for the Möbius mod-
els. However, for Prodcell we can recognize that the length
σ may have an influence as well, e.g., AFCFS does well for
n = 10, 000 but not at all for n = 1, 000. It seems that dif-
ferences get less for longer traces in the considered exam-
ples. So, we measured the approximation error of AFCFS
and ASTACK for all examples. We compare solutions for
any prefix of a trace to also see how much of the differences
varies depending on the length of the trace. Note that the
minimal difference is always 0 (at sub(σ, 0, 0)). Table 2
lists the maximum and average difference (rounded to two
digits) we observe between sub(σ, 0, i)∗ for i = 0, . . . , n as
computed by AOPT and approximate algorithms ASTACK
and AFCFS. Small values indicate a good approximation.
We also measured the standard deviation, for AFCFS (AS-
TACK) it ranges between 0 (2.05) for Store and 73.97
(2396.89) for Prodcell. The experimental results indicate
that AFCFS performs consistently better than ASTACK for
all examples wrt to the approximation error measured as
max, mean, and standard deviation of the difference to the
result of AOPT.

We measured computation times on a Pentium PC with 2
CPUs (3.4GHz), 2MB cache, 2GB main memory, running
Linux. On all given examples (cf. table 1) our implementa-
tion usually needed less than 1 second and in the DinPhils
example it slightly exceeded this bound. Only in the case of
applying AOPT to the largest Database example our imple-
mentation needed 6.39 seconds.

Although the quality of ASTACK falls back, note that
the maximal stack height and thus the space requirements
are extremely small. Table 3, column Stacksize gives the
maximal stack height for the examples. This motivates us
to consider combinations of algorithms. The idea is to apply
a space efficient heuristic first to reduce most of a trace and
the exact algorithm to squeeze remaining cycles out of the
resulting sequence. AFCFS+AOPT did not yield any im-
provement. Table 3 gives results for the combination of AS-

Model n AOPT(2) Total Stacksize
APNN
Courier 100 54 54 3
Courier 1000 66 948 9
Courier 5000 66 4926 5
Courier 10000 54 9966 7
Prodcell 1000 324 810 8
Prodcell 10000 7776 9720 13
ProC/B
DinPhils 67744 1260 67701 12
Store 6140 0 65 1013
Möbius
Server 5473 214 5466 13
FaultyProc 4368 1665 4352 19
FaultyProc 10595 2126 10586 19
FaultyProc 20961 4785 20952 21
Conveyor 5391 3487 5361 51
Conveyor 10578 153 10455 54
Conveyor 20160 1252 20057 54
Database 4732 34 4732 8
Database 10170 70 10170 8
Database 19974 48 19974 8

Table 3. Reduction by ASTACK+AOPT

TACK+AOPT, namely column AOPT(2) gives the reduc-
tion achieved by AOPT when applied 2nd and column To-
tal gives the total reduction obtained by the combination of
both algorithms. Note that the combined method achieves
optimal values for all experiments but for Courier 5000,
DinPhils, Conveyor 10578 and 20160 where the achieved
reductions are nevertheless near the optimum. Given that
the height of the stack is less than 60 states for all experi-
ments but for the Store examples (which has a deadlock in
an open system where newly arriving customers are counted
and thus state vectors can give a monotonously growing se-
quence), ASTACK is performing extremely well in terms
of space which makes ASTACK favorable to reduce long
traces where memory consumption is a concern with the op-
tion to improve the total reduction subsequently with AOPT
if considered necessary.

7 Evaluation of overall approach

In general, the usefulness of the reduction operation is
based on a key assumption: the state of a system si must be
sufficient to define the subsequent behavior that is present in
the trace and starting at si. The validity of this assumption
depends on the modeling formalism in use and the amount
of information exported by the simulator into the trace file.
It is usually fulfilled in untimed automata if s ∈ S charac-
terizes the state of an automaton and also in Markov models
since the current state defines the potential future behav-



ior in a Markov process. For Petri nets, state information
is given by the markings of all places, possibly extended
by some supplementary variables depending on the kind of
Petri net employed. For process algebras, one would docu-
ment the state as a textual description of the algebraic term
for the state of each individual agent (process) and define
“=” by some bisimulation. In the general case, i.e., discrete
event simulation of non-Markovian models, the state of a
simulator rather takes the current event list, which is not
necessarily represented in full in a trace file and is likely
to show no repetitive behavior. However, exporting a trace
from a simulator allows for abstractions. It comes with the
degree of freedom to select which parts of a state descrip-
tion are considered relevant or of interest to a modeler.

As indicated in Section 3, a plot of sub(σ, 0, i)∗ can be
helpful to identify if an error of the kind that is preserved
by the reduction operation is present in the trace. We do
not claim that our technique is a silver bullet to all errors,
however, we consider it an advantage that it can be applied
for visual inspection without any further input by a modeler,
i.e. no particular invariant, safety property has to be known,
specified and evaluated for a first hand visual inspection of
the cyclic behavior to decide which piece of a trace shall
obtain further attention, see [10] for further details.

Trace reduction is also useful if a modeler wants to fo-
cus on how a particular state in a trace is reached and what
events are necessary for that. This reduces the amount of
events one needs to look at to identify the cause of an er-
ror. Trace reduction can also be used in combination with
model checking of traces, to reduce subsequences in which
a formula of interest is constantly true (resp. false).

8 Conclusion

We propose a technique that identifies and removes cy-
cles from a simulation trace. The separation of progressive
from cyclic and repetitive fragments of a trace helps to iden-
tify errors in simulation models, in particular for depend-
ability models that are composed of submodels that have
a cyclic behavior. The proposed exact reduction algorithm
has linear time and space complexity and achieves a maxi-
mal reduction for a given trace. Additional approximate al-
gorithms are discussed that save on memory requirements.
All techniques have been implemented in Traviando [12], a
software tool for trace visualization and analysis and eval-
uated on a range of example models. For further details on
how to apply the approach see [10], here we demonstrate
its usefulness by detecting a subtle modeling error in a de-
pendability model of a server system with two classes.
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