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ABSTRACT

Generation of traces from a simulation model and their
analysis is a powerful and common mean to debug simulation
models. In this paper, we define a measure of progress for
simulation traces and describe how it can be used to detect
certain errors. We devise a visual inspection technique based
on that measure and discuss several examples to illustrate
how one can distinguish normal behavior from irregular,
potentially erroneous behavior documented in a trace of
a simulation run. The overall approach is implemented
and integrated in Traviando, a trace analyzer for debugging
stochastic simulation models.

1 INTRODUCTION

Discrete event simulation of stochastic models is very use-
ful in the evaluation of real-world systems, be it to address
performance, dependability, performability, survivability or
related issues. Encoding an abstract, conceptual model as
input for some simulation engine is a task that may intro-
duce errors of many kind, so debugging simulation models
becomes an issue very much the same way as in software
development in general. In the modeling and simulation
area, this is part of the verification and validation steps
performed in a simulation study. Errors may be rooted in a
misconception of the original system, a misrepresentation
of a system in a conceptual model, a faulty encoding of the
conceptual model into an executable simulation model, a
faulty implementation of the employed simulation engine,
to name a few. In this paper, we focus on those errors only
that document themselves as irregular, irreversible changes
to the state of a discrete event simulation model, which
are errors typically encountered in the development of an
executable simulation model.

Sadowski (Sadowski 2005) discusses a number of pit-
falls in simulation modeling and gives advice how to avoid
them. In particular, she recommends to review a model
and other deliverables early and often and recommends a

structured walk-through with colleagues and clients as ideal
to discover errors in models. Krahl’s tutorial on debugging
simulation models gives further hands-on advice from a
practitioner’s point of view in (Krahl 2005). A common
technique is to modify the model itself to reveal a particular
behavior for testing purposes. This includes the reduction
or partition of a model and to analyze those parts in isolation
as well as the modification of rates, timings, and prioritiesto
see a certain dynamics happen. In addition, a modeler often
enhances the model by assertions added to the simulation
code, that are checked at runtime and that do not contribute
to the model itself but helps to recognize the presence of
errors. Assertions are limited to safety properties that can
be checked as a particular statement in code; they require
a modeler to be aware of such properties and being able to
express them in the input language of a simulator and to do
so, usually in a manual way. Complementarily to enhance-
ments of a simulation model, professional simulators like
Arena (Kelton et al. 2002), Automod (Banks 2000) among
others provide support for animation to check face validity
of a model plus debugging functionality as known from
software development in general, i.e., step by step compu-
tation, breakpoints, inspecting variables and data structures.
This is all valuable and useful and in addition one can also
document what happens in a simulation run by writing a
trace. Analysis of simulation traces is usually described
as a tedious step by step control of what a simulator does
(Krahl 2005, Law and Kelton 2000) and of course one can
provide support for an automated analysis of traces. Trace
analysis is also an issue in other fields. For instance in
runtime verification, monitoring software reads a trace to
diagnose problems, and applies model checking or statis-
tical hypothesis testing on the fly to identify erroneous
behavior, as supported for instance by the MaC analyzer
(Sammapun et al. 2005).

However, in tracing a simulation model, a modeler
may find himself in the situation that a simulation run gives
somehow obscure results, but it is unclear for what prop-
erties to ask for to be checked by a model checker or what
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hypothesis to test for by some statistical analysis. For this
situation, we propose a simple visual inspection technique
that gives an indication if a particular type of error is present
in a trace. The underlying assumption is (based on an obser-
vation we made for many performance and dependability
models) that a model shows a cyclic behavior, i.e., that
states in a simulation trace are reached repeatedly, and that
certain coding errors disturb this regularity. Surprisingly,
we observed this for models with very large state spaces
or even infinite state spaces (of which a simulator would
explore only a finite subset in finite time). We believe that
the cyclic behavior results from common ways of describing
a simulation model, e.g., a work load generator typically
loops between a load generation phase and an idle phase,
a server loops between different stages of service and an
idle stage, a dependable subsystem may cycle between dif-
ferent levels of operation, failure and repair stages. Given
that simulation is used to feed a statistical analysis with a
set of samples, and if more than one sample is generated
from single run, it is likely that the model loops through
a potentially large set of states but may occasionally visit
certain states again. So a cyclic behavior is an expected,
“good” behavior, while certain errors may disturb that. For
example, an event that makes a faulty increment operation
to a state variable as result of a typing error would disturb
that property. A second example is a model of an open
system where customers arrive, get served and depart, and
that has a partial deadlock. This model will show some
dynamics in a simulation run even after the deadlock has
been reached due to newly arriving entities, but the accu-
mulating effect of blocked entities will prevent the model to
return to previous states of less customers in the system. So,
the non-returning, progressing part of a trace may deserve
particular attention.

In this paper, we describe how to measure that pro-
gressing part and by visualizing that measure over the length
of a simulation run, we propose to detect the presence of
events that disturb the cyclic behavior and to give guidance
to a modeler at which parts of a lengthy trace to look for
causes of that effect. The rest of the paper is structured
as follows. Section 2 gives some basic definitions and in
particular defines the measure of progress that we use to
devise the visual inspection technique we discuss with the
help of examples in Section 3. We describe corresponding
tool support in Section 4 and conclude in Section 5.

2 PROGRESSIVE BEHAVIOR IN TRACES

A trace is a sequenceσ = s0e1s1 . . .ensn of statess0, . . . ,sn ∈
Sand eventse1, . . . ,en ∈E over some (finite or infinite) sets
S,E for an arbitrary but fixedn∈ IN. For elements ofS,
we assume an equivalence relation denoted by “=”. For
example, ifs∈ S⊆ IN is the state of an automaton,= may
be the usual equality among integer values, ifs∈ S is a

marking of a Petri net, then= is the equality of markings
(integer vectors), ifs∈ S is the description of a term of a
process algebra, then= may be defined as a weak or strong
bisimulation, and similarly for other formalisms with some
notion of bisimulation for states like the multi-paradigm
models of Möbius (Deavours et al. 2002). In general, it is
to the modeler to decide which fragment of the state of
a simulator (current state and future event list) should be
documented as a states. This allows for abstractions with
the benefit of reducing the considered amount of data and
the risk of missing important details. Note that events are
irrelevant in the following formal treatment, but events are
important pieces of information to document what happens
in a trace. Hence, we keep events within our considerations.
We define some common operations for sequences. The
length ofσ = s0e1s1 . . .sn is defined as|σ | = n = #events.
The concatenation◦ of two sequencesσ = s0e1s1 . . .sn

andσ ′ = s′0e′1s′1 . . .s′m wheresn = s′0 is defined asσ ◦σ ′ =
s0e1s1 . . .sne′1s′1 . . .s′m. Obviously, ifσ ′′ = σ ◦σ ′ then|σ ′′|=
|σ |+ |σ ′|. For σ = s0e1s1 . . .sn and 0≤ i < j ≤ n, we
define a projection or substring operation assub(σ , i, j) =
siei+1 . . .sj . Let σi = sub(σ ,0, i) denote the special case of
a prefix of lengthi of σ . A cycle is a substringsub(σ , i, j)
with i < j andsi = sj . We use the notation[i, j] for a cycle
in σ . A cycle [i, j] is elementary ifsi 6= sk for i < k< j. Let
Call = {[i, j]|0≤ i < j ≤ n,si = sj} be the set of all cycles
of σ , C = {[i, j]|[i, j] ∈ Call ,sk 6= si , i < k < j} be the set of
all elementary cycles. Cycles allow us to define a reduction
operation. For aσ = s0e1s1 . . .ensn with cycle[i, j], we define
a reduction operationred(σ , i, j)= sub(σ ,0, i)◦sub(σ , j,n).
The reduction operation is consistent with the notion of
length,|red(σ , i, j)| = |σ |− |sub(σ , i, j)| (given that[i, j] is
cycle of σ ).

Let the sequence reduction problem (SRP) denote the
problem to reduce a givenσ with the help of the reduction
operation to the shortest possible sequenceσ∗ and letC ∗

be a set of cycles that yields that reduction. We define this
formally as follows.

Definition 1 For a traceσ , SRP is the problem to
determine aC ∗ ⊆C , such that∑[i1,i2]∈C ∗(i2− i1) is maximal
and for any two elements[i1, i2], [ j1, j2] ∈ C ∗ holds that
i2 ≤ j1 or j2 ≤ i1.

The former condition ensures that we obtain a maximal
reduction ofσ . The latter condition ensures that we can apply
red(red(σ), j1, j2), i1, i2) (or vice versa), i.e. the cycles are at
most adjacent but do not overlap. Note that the conditionalso
excludes intervals[i1, i2], [ j1, j2] with i1 < j1 < j2 < i2, how-
ever in that casered(σ , i1, i2) = red(red(σ , j1, j2), i1, i2), so
[ j1, j2] is irrelevant for a maximal reduction and can safely be
excluded. Sinceσi is a trace as well, letσ∗

i = (sub(σ ,0, i))∗

denote the shortest possible sequence for a prefix of length
i of σ that is obtained as a solution of SRP forσi . We
use a solution of SRP to define a measure of progress for
a trace.



Kemper

Table 1: A traceσ with σ∗
i , and pσ (i), i ∈ {0,1, . . . ,12}

σ = A0eB1eC2eD3eC4eE5eF6eE7eG8eD9eH10eG11eI12

σ∗
0 = A0 pσ (0) = 0

σ∗
1 = A0eB1 pσ (1) = 1

σ∗
2 = A0eB1eC2 pσ (2) = 2

σ∗
3 = A0eB1eC2eD3 pσ (3) = 3

σ∗
4 = A0eB1eC2 pσ (4) = 2

σ∗
5 = A0eB1eC2eE5 pσ (5) = 3

σ∗
6 = A0eB1eC2eE5eF6 pσ (6) = 4

σ∗
7 = A0eB1eC2eE5 pσ (7) = 3

σ∗
8 = A0eB1eC2eE5eG8 pσ (8) = 4

σ∗
9 = A0eB1eC2eD3 pσ (9) = 3

σ∗
10 = A0eB1eC2eD3eH10 pσ (10) = 4

σ∗
11 = A0eB1eC2eE5eG8 pσ (11) = 3

σ∗
12 = A0eB1eC2eE5eG8eI12 pσ (12) = 4

Definition 2 For a trace σ , we define pσ :
{0,1, . . . , |σ |} → {0,1, . . . , |σ |} with pσ (i) = |σ∗

i | as the
progress ofσ .

pσ is well-defined since the length|σ∗
i | that is achieved

by a maximal reduction is unique even if the SRP for
σi has several solutions. Table1 illustrates the concept
for a traceσ with S being capital letters,E = {e} and
C = {[2,4], [3,9], [5,7], [8,11]}. The progress ofσ has a
number of obvious properties. The following equations are
mainly based on the observation that SRP ofσi+1 can use
a solution of SRP ofσi , so any reduction ofσi+1 removes
at least as many states the reduction ofσi .

For any traceσ and 0≤ i ≤ n,

0≤ pσ (i) ≤ i (1)

0≤ pσ (i +1)≤ pσ (i)+1≤ i +1 (2)

pσ (i)+c= i ⇒ pσ ( j)+c≤ j ∀i ≤ j ≤ n (3)

An algorithm to solve SRP is described in
(Kemper and Tepper 2007), namely algorithm AOPT,
which has linear time and space complexity and is im-
plemented within Traviando (Kemper and Tepper 2005a,
Kemper and Tepper 2006). It is immediate to use algorithm
AOPT to computepσ . Since the algorithm is based on
dynamic programming and makes use ofσ∗

0 ,σ∗
1 , . . . ,σ∗

i−1
for the computation ofσ∗

i , we can computepσ (i), 0≤ i ≤ n
with a single application of AOPT. So for anyσ , we can
compute all values ofpσ in O(n). In the following, we
discuss whatpσ is able to reveal for a simulation trace.

3 VISUAL INSPECTION

In this section we discuss typical patterns we observed for
pσ by evaluating a number of example traces generated
from a variety of stochastic models for performance and

Table 2: Set of Example Models

Model Tool |SV| |ET|
Models without errors
Courier APNN 45 34
ProdCell APNN 231 202
MM1,λ < µ APNN 1 2
DinPhil ProC/B 56 95
MultiProc Möbius 11 16
Conveyor Möbius 6 8
Database Möbius 19 18
Models with errors
Courier, Bug I-III APNN 45 34
MM1,λ ≥ µ APNN 1 2
Store ProC/B 20 36
Server Möbius 11 12

dependability assessments.pσ turns out to be useful to rec-
ognize a failure of a safety property, that informally denotes
that ”once something bad has happened, the system/model
is unable to recover from that event”.

3.1 Set of Example Models

We analyze traces of several example models. Table2
gives a brief summary of their characteristics; it gives the
name of the model in the first column, the modeling and
simulation framework used to generate traces in column
Tool, the number of state variables|SV| and the number of
different types of events|ET| in columns three and four.
Note that eventsE that are present in a traceσ are typically
generated from a much smaller set of ”types of events”
described by a modeler in the model itself. We consider
traces of different lengths for those models.

Courier is a stochastic Petri net model of a Courier
protocol taken from (Woodside and Li 1991). The APNN
toolbox (Bause et al. 1998) is used to model and simulate
it to obtainσ . The model has a non-trivial amount of state
variables, i.e. a statesin the trace is a vector of length 45, and
contains a non-trivial amount of different types of events
(i.e., transitions in Petri net terminology) that transform
states into successor states. We analyzed the effect of three
different errors, that we injected by manipulating incidence
functions of certain transitions (Bugs I-III). For Bug I, we
release a previously allocated shared resource more than
once. For Bug II, we increase the number of packets that
are send at a lower level of the protocol. For Bug III, we
repeatedly increase the window size. Note thatCourier is
an example of a closed model where the correct version
has a finite state space.

ProdCell is a model of a production cell developed
by Heiner et al (Heiner and Deussen 1996). The original
model has been imported into the APNN toolbox. The trace
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Figure 1: Progresspσ for a σ of the MultiProc model

has been generated from a discrete event simulation. This
model is the largest we consider with respect to the number
of state variables and types of events.MM1 is a stochastic
Petri net model of the classical queueing model (arrival rate
λ , service rateµ). We consider this model to illustrate the
effect of overload (casesλ = µ andλ > µ) in a model of
an open system versus a stable configuration (λ < µ).

We also consider example models from the Möbius
framework (Deavours et al. 2002), a multi-formalism
multi-solution framework for stochastic modeling of systems
for performance and dependability studies. The simulation
engine of Möbius can be configured to generate traces.
MultiProc is a stochastic model of a fault-tolerant multi-
processor system,Conveyormodels conveyorsandDatabase
models dependability of a data base system. Those models
are available with the Möbius distribution, they are correct
models which are modest in the number of state variables
and types of events.Serveris a Möbius model discussed in
(Kemper and Tepper 2007). It contains an error that rarely
takes place and that increases the number of customers in
a system that is supposed to be closed and to have a fixed
population of customers.

DinPhil is a non-traditional model of the classical
dining philosophers developed with the ProC/B toolset
(Bause et al. 2002), which is intended to model open sys-
tems with a process interaction approach. This model
is merely a demonstration model how to model closed
models instead of open models within ProC/B. A more
typical model for this framework is theStore model
(Kemper and Tepper 2005a), which describes how goods
are delivered and taken away from a storage area. The
model follows a process interaction approach to simula-
tion modeling, where entities are trucks that transfer goods
from and to a storage area where loading and unloading
operations are performed by manned forklifts.Store is an

Figure 2: Progresspσ for a σ of the Conveyormodel

example of a model that contains a partial deadlock; the
simulation reaches a situation where no trucks can be un-
loaded or loaded for either lack of storage space or lack
of goods. The deadlock is only partial since new entities
(trucks) can always enter the system.

3.2 Behavior of Correct Models

We begin with a visual inspection of plots forpσ generated
from traces of correct models to obtain a baseline for our
observations.

Figure1 showspσ for a trace of lengthn= 20,000 that
has been generated from theMultiProc model1. Note that
pσ is a discrete function but the plot in the figure connects
points (i, pσ (i)) to stress how the function evolves. We
can interpret this function as if it oscillates in a regular
manner with some random noise added to it. The function
occasionally but repeatedly reachespσ (i) = 0 for some
0≤ i ≤ n which means that the model returns to the initial
state. Its maximum value is in the lower 30s, which indicates
that the simulation explores a part of the state space of the
model that is rather shallow than deep.

A similar pattern is observed for a trace of|σ |= 20,000
for the Conveyormodel. The model is described in a
stochastic process algebra, so the modeling formalism is
quite different to the SAN formalism used for the fault
tolerant multiprocessor model. Figure2 showspσ for this
trace and the plot has similar characteristics as the previous
one. Both show a function that oscillates in a rather limited
range of values. The plot in Fig.2 initially reaches some
maximal height that it does not reach afterwards anymore.

Fig. 3 shows a plot from a trace we generated from a
correctCourier model, which again yields a similar curve.

1The pdf file of this paper contains graphics in color and zooming
in helps to make fonts more readable.
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Figure 3: Progresspσ for a σ of the correctCourier model

If we fit a linear regression modelr(x) = a+b·x to pσ then
the slope is close to zero for the curves of all three models.
Table3 gives values for interceptiona and slopeb for an
ordinary least square fitting for traces of different lengthn
from the variety of models we consider. The first column
gives the name of the model, the second the length of the
trace, column three and four give the interception and slope
of the fitted linear regression model. If we consider the
slope of correct models, we recognize that in most cases
the slope is close to zero and for those cases where it is not
(Courier with n = 100 andProdCell with n = 1000), the
slope decreases with an increasing lengthn. So a normal
behavior over this range of correct models is thatpσ oscillates
without any significant trend. TheMM1 models with no
stable solutions due to overload are deliberately put into
the category of models with errors. An overload scenario
is expected to create a positive slope.

3.3 Effect of Frequent Errors

In this section, we discuss how to recognize if a model con-
tains a safety property violation of the kind discussed above,
namely that an error happens that yields an irreversible
state change. More formally letAP : {s0, . . . ,sn}→ {tt, f f}
be a boolean function for an atomic proposition such that
∃si ∈ {s0, . . . ,sn} with AP(sj) = b for 0≤ j < i, b∈ {tt, f f}
and AP(sj) = ¬b for i ≤ j ≤ n then si will be present in
all σ∗

j for i ≤ j ≤ n and pσ (i −1) < pσ ( j) for i ≤ j ≤ n.
So, in this casec= pσ (i−1) becomes an additive constant
to the normal range of values observed forpσ when the
erroneous event does not take place. For this type of error,
we expect the long range visual perception ofpσ be that
of a discrete monotonously non-decreasing function with
some additive noise, i.e.,pσ (i)+ε(i) = i with 0≤ i ≤ n and
0≤ ε(i) << i being relatively small in value for large values

Figure 4: Progresspσ for Storemodel (with error). Plots
for Courierwith Bug I, II, and III have same characteristics.

of i. In particular, if the erroneous event occurs frequently,
the slope ofpσ is expected to be significant and close to 1.

We begin with theCourier model as an example of a
closed system and observe a significant difference between
the progress for a trace of the correct model in Fig.3 and
the progress seen for traces of variants of theCouriermodel
where we injected Bug I, II, or III, which all three give plots
of pσ of same characteristics as the one in Fig.4. The three
errors differ in their interpretation from a modeling pointof
view (as discussed in Section 3.1) but their common effect
is to add additional tokens on certain places of the Petri
net. We evaluated three variants to see if the impact onpσ
is consistent. Table3 gives the corresponding values for
the linear regression with a slope consistently close to 1
for faulty models and close to 0 for traces of the correct
model if the length of the trace is significant (n > 100).

For models of open systems, where entities arrive and
depart, we consider theStoremodel and anMM1 queue.
TheStoremodel has a deadlock but retains some dynamics
since there is an unlimited stream of newly arriving entities
over time, that enter the model, traverse a service network
and then get blocked at some resource inside. Figure4
showspσ for a trace of the model where the deadlock is
reached. Again, the plot appears as a rather straight line,
the regression function has a slope close to 1.

Note that the relation between erroneous behavior and
the characteristics ofpσ is not one to one. For instance, if
a state variable is used to measure the dynamics, e.g., to
count the number of failures, or the number of customers
served on time, or the number of packets lost due to buffer
overflows, then that variable - if taken into consideration
- will disturb the observation of cycles in a trace and the
resulting pσ may be misleading. This is an example of a
false-positive, a non-fault, for the visualization technique.
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Figure 5: Progresspσ for MM1 for stable caseλ < µ , II

For the case of such a counter variable, one needs to restrict
the state variables that are either exported into the trace
by the simulation engine or to refine the notion of equality
= used to compare states ofσ accordingly. In addition,
overload scenarios in models of open systems will give
plots of pσ that appear as a straight line. To illustrate the
point, we exercise the classical MM1 queueing model with
different degrees of load. Figure5 shows the stable case,
where arrival rateλ is less than the departure rateµ . Figure
6 shows the caseλ = µ , Figure7 a case ofλ > µ which are
both not stable. An overload situation in an open system
yields a temporarily delay of individual entities which we
cannot distinguish from a permanent blocking of entities in
a deadlocking situation by considering a finite traceσ .

In summary,pσ can give an indication of violations
of the type of safety property discussed above for open
and closed models and in addition to that also indicate
extensive blocking (deadlocking or overload) situations for
open models. The cases we considered so far are of the kind
that erroneous events are present frequently in the trace.
This is key to the observed effect of a steady increase inpσ .
In the next section, we investigate how to detect infrequent
or rare erroneous events.

3.4 Effect of Rare Errors

TheServermodel is an example of a model, where an error
takes place rarely. Fig.8 showspσ for a traceσ where the
erroneous event takes place only once and aroundi = 3500.
If we compare states ati < 3400 andi > 3600, we recognize
that an event caused an increase of an otherwise invariant
number of customers in a closed system. The large amount
of events between the beginning and the occurrence of the
error and the end of the trace allows us to easily detect
phases of normal oscillating behavior and the sudden discrete

Table 3: Parameters of a fitted linear regression

Model n slope intercept
Models without errors
Courier 100 0.3928 14.4650
Courier 1000 0.0022 36.3960
Courier 10000 -0.0002 38.5363
ProdCell 1000 0.0551 100.5734
ProdCell 10000 -0.0023 366.2974
MM1,λ < µ 1000 0.0005 1.1887
DinPhil 67744 -0.0002 32.6560
MultiProc 4368 -0.0004 15.4978
MultiProc 20961 0.0000 14.2705
Conveyor 5391 -0.0088 76.1606
Conveyor 20160 -0.0004 48.0984
Database 4732 0.0000 0.5052
Database 19974 0.0000 0.5037
Models with errors
Courier, Bug I 10000 0.9964 0.5863
Courier, Bug II 10000 1.000 0.0000
Courier, Bug III 10000 1.000 0.0000
Store 6140 0.9932 -35.7567
Server 5473 0.0018 0.4516
MM1,λ = µ 1000 -0.0027 16.7332
MM1,λ > µ 1000 0.3902 -3.5411

increase topσ as abnormal behavior. This is different at
a smaller scale, since a temporary increase ofpσ is also
observed with a correct model. In particular in an initial
phase, we frequently observe a large increase ofpσ . If we
try to formalize what is particular about Fig.8, the linear
regression model does not(!) give us a good indication.
The increase ofpσ is there and imposes a positive slope,
however the length of the trace drags the value down to
a marginal amount that is in the same range as values
observed for correct models in Table3. Note that the
significant piece of information is the minimum ofpσ that
we observe for a certain range of values. Sincepσ (0)= 0, we
define a measure for the observed minimum in a backward
manner. Letbmin : {0, . . . ,n} → {0, . . . ,n} be defined as
bmin(i) = min{pσ( j)|i ≤ j ≤ n}. Figure 9 showsbmin()
computed for several traces of correct models and theServer
model. Note that all curves have a sharp increase at the end,
some also at the beginning, andServeras well asCourier
have a step in an otherwise flat lengthy middle part. The
step inServer guides us to the erroneous event, the step
in Courier is a false-positive, that points us to a particular
region in the trace of a correct model. Obviously,bmin() is
helpful, but not as clear aspσ itself. Figure3 showpσ and
the linear regression for that trace ofCourier. By visual
inspection, we do not think thatpσ is in fact increasing in
the long run forCourier. So at this point we conclude that
the visual inspection ofpσ helps us to identify rare errors
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Figure 6: Progresspσ for MM1 for borderline caseλ = µ

Figure 7: Progresspσ for MM1 for overload caseλ > µ

in a sufficiently long trace, sufficiently long to contain the
erroneous event and sufficiently long to avoid the distraction
of an initial phase that often shows a stepwise increase of
pσ without giving the right impression on the “normal”
oscillating behavior.

3.5 Decomposition

Large and complex simulation models are often composed of
submodels. For example, theProdCell model is composed
of submodels for individual components of the modeled
production cell, namely a press, a robot with two arms, 2
conveyor belts, a table and a crane. This is common for
most models and modeling tools typically support this, for
example, Möbius provides ways to compose submodels by

Figure 8: Progresspσ for Servermodel (with error)

Figure 9: Functionbmin() for several models.

action sharing and sharing of state variables. This compo-
sition usually implies a states being a vectors= (s1, . . . ,m)
of states ofm submodels and allows us to project a state
s to a substatesi for some submodeli. In this case, we
can modify our notion of equality “=” among states to
focus on certain submodel states or certain state variables
only. Consequently, we can obtain different functionspi

σ ()
for submodelsi = 1, . . . ,m and use that decomposition to
investigate in the cyclic behavior of individual submodels.

For example, the Möbius model ofServer consists
of submodelsFailureAndRepair, Service, CompleteServer,
UserA, UserB and FullModel based on a rep/join state
variable sharing composition, for details on composition
of models see (Deavours et al. 2002). FailureAndRepair
describes details of when the server fails and how long it
takes to become operational again. The projectedpi

σ () for
this submodel shows a cyclic behavior of a correct model
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with no indication of an error. The projectedpi
σ () for the

FullModel submodel shows a similar pattern as in Fig.8
and guides us to investigate in that part of the model. This
decomposition can help a modeler to identify submodels
that deserve more attention than others. However, we should
also note that the error in fact is in submodelServicewhere
in case of a failure a customer returns to the waiting queue.
The error is that an additional, second customer of the other
customer class is created that also returns to the queue.
So the effect of the error can be observed inFullModel
andUserAbut the cause of that effect is located inService
which interacts with the other submodels. An alternative to
a top-down approach is to use the evaluation of submodels
with respect topi

σ () in a bottom-up approach to recognize
irregular behavior for submodels and how this impacts the
overall behavior.

4 TOOL SUPPORT

Traviando is a software tool that analyzes and visualizes
traces. It provides a variety of analysis techniques including
statistical analysis, model checking, bottleneck and dead-
lock detection and the visual inspection technique presented
in this paper. Its particular purpose is to make information
accessible to a human being, that is otherwise hidden in a
large trace file. Traviando visualizes a trace as a variant
of message sequence charts (MSCs) much similar to UML
sequence diagrams. Figure10 shows the reduced traceσ∗

for model Serveras an MSC where each submodel is an
MSC process and where time proceeds from top to bottom.
For this example, the interaction is undirected, for oth-
ers Traviando supports directed arcs with a distinguished
sender and receiver as well. MSCs are promising since
they focus on the interaction of processes and we believe
that this is crucial: in modeling with interacting submodels,
the behavior of an individual submodel is rather simple
to analyze and debug but the overall effect of interactions
contributes much to the complexity of such models. For
further information on trace visualization features, we re-
fer to (Kemper and Tepper 2005b). Traviando supports a
number of operations that are helpful for trace analysis.

Cycle visualization and reduction. In addition to the
visual inspection technique discussed in this paper with
screen shots of Traviando’s presentation ofpσ , the tool is
able to remove cycles from a trace to obtain the reduced
traceσ∗. For example, Fig.10 shows the resultingσ∗ of
a cycle reduction of a traceσ of the Servermodel with
|σ |= 5473 events. With few states inσ∗, it is much simpler
to track state information (which is displayed in a separate
window) and to recognize if there is an error and which
event introduced it.

Model checking. Traviando provides LTL model
checking on traces to identify states and trace fragments that
fulfill or not fulfill certain properties and thus deserve the

modeler’s attention. The model checker is enhanced with a
user interface that provides commonly applied patterns for
specifying real world properties in a modal logic like LTL.

Statistical evaluation.Traviando implements a number
of statistical measures that can be evaluated and graphically
visualized, e.g. the number of occurrences for actions, the
empirical distributions for time distances between occur-
rences and delays, to name a few.

Bottleneck analysis, deadlock detection.Certain for-
malisms, like the ProC/B modeling notation for process
interaction models, allow us to analyze an empirical dis-
tribution of life spans of entities as well as population and
utilization of resources and response times. We make use of
those distributions to identify regions of heavy utilization,
bottlenecks and deadlocks. For further details, we refer to
(Kemper and Tepper 2005a).

Trace format and supporting simulators. Traviando
imports sequences in an open XML format that consists of
two parts, a prefix and the sequence of events that consti-
tutes the trace. The prefix contains definitions for processes,
events, their type and association with processes, state vari-
ables and more. The prefix helps to keep the sequence
of events concise in its description and also allows for
some preprocessing and consistency checks for the trace
based on the given structural information. The sequence
of events in the second part of a trace can be enhanced in
many ways by additional information, for instance by time
stamps, information on entities and changes to state vari-
ables. Traviando’s trace interface is currently supportedby
the APNN toolbox (Bause et al. 1998), the ProC/B toolset
(Bause et al. 2002) and Möbius (Deavours et al. 2002).

5 CONCLUSION

We presented a visual inspection technique to identify errors
in stochastic discrete event simulation models with the help
of trace analysis. The type of error recognized documents
itself as changes to the state of a model that are not taken
back afterwards. These are safety properties of the kind
that “once a bad thing happened, the system is unable
to recover from that.” The type of models that benefit
from our approach are models of open or closed systems
with an inherently cyclic behavior as it is often the case
in dependability and performance modeling. We define a
measure of progresspσ that applies to a traceσ and a plot
of pσ shows particular distinct characteristic that help us to
identify traces with errors. We discuss characteristics ofpσ
with the help of a rich set of examples obtained from different
modeling formalisms and tools, of different topic areas and
different levels of complexity. We consider the proposed
visual inspection technique as a useful complement to the
existing set of debugging techniques for simulation models.
Information on corresponding tool support can be found at
<www.cs.wm.edu/˜kemper/Traviando.html>.

http://www.cs.wm.edu/~kemper/Traviando.html
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Figure 10: MSC Representation of reduced traceσ∗ for the server model with 2 customer classes
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