Recent Extensions to Traviando

Peter Kemper
Department of Computer Science
College of William and Mary
Williamsburg, VA, USA
Email: kemper@cs.wm.edu

Abstract—Traviando is a trace analyzer and visualizer for
simulation traces of discrete event dynamic systems. In this
paper, we briefly outline recent extensions of Traviando to-
wards an identification of model invariants and a detection of
partial deadlocks and immediate events. This new functionality
complements an existing model-checker and event browser. In
addition to the graphical user interface, a new command-line
version of the tool allows a user to obtain analysis results being
documented in a set of generated web pages, which minimizes
the learning curve for the use of Traviando to obtain some
feedback on the details of a simulation run.

Keywords-trace analysis; simulation; software tool

1. MOTIVATION

A model-based evaluation of systems or system design is
made possible by powerful modeling environments. A sub-
sequent analysis is often based on simulation. For a discrete
event simulation, a simulation engine generates a sequence
of events that is used to perform some statistical analysis or
to drive an animation of the dynamic behavior. The value
of the outcome of a simulation study relies on the model
being valid, i.e., in close enough correspondence to the real
system with respect to the measures of interest, and on the
correct implementation of the model. Checking the latter is
a step that is called model verification. Traviando supports
this verification step by extracting model characteristics and
by visualizing detailed trace data with message sequence
charts. Traviando is designed to help a modeler find errors
in a simulation run; it cannot help to prove the absence
of errors for a given model. Traviando applies to discrete
event systems in general and is not limited to a particular
modeling formalism. It takes as input a sequence of states
and events obtained from a simulation run and helps a
modeler in recognizing critical behavior. It has been success-
fully used with various simulation frameworks, e.g., Mobius
[2] directly exports trace data for Traviando, while the
network simulator NS2 requires a separate trace formatter
that reformats NS2 Nam traces accordingly [7]. Traviando
was originally designed with a graphical user interface that
offers a selection of features in pull-down menus. Those
features included an event-brower [7], a model-checker, and
trace reduction techniques [4]. In a recent extension, new
functionality has been added that generates a report as a set
of HTML formatted files. The generation of this report is

possible by using command-line parameters. Figure 1 out-
lines the architecture: the input trace has a particular XML
format (see [1] for a DTD), the tool itself is implemented
in Java and uses several libraries like one supporting a SAX
parser, jfreechart for graphics, and commons math library
for statistics. The generated webpages contain links to static
webpages with further explanations for the generated list
of warnings. In this paper, we summarize recently added
features for this report functionality which is described in
more detail in [5].

input output
XML Trace Traviando HTML Files
Static
HTML Files

Commandline version of Traviando

Figure 1.

II. DOCUMENTING OBSERVED BEHAVIOR

One purpose of the generated report document is to
summarize what information can be automatically extracted
from the given trace data. The trace mainly provides events
with time stamps and value settings for state variables. State
variables can be grouped into sets named processes. The
report starts with an overview page that outlines for each
process how many variables are associated with it, how
many actions perform only changes to variables of a single
process (local actions), and how many interactions access
variables of a process. The outline also contains figures for
the number of value assignments to each variable and the
number of occurrences for each action. It provides a figure
that shows for each event if the simulation run reaches a
new state or returns to a previous one and also a figure for
the progress measure as defined in [4]. Similar outlines are
generated for individual processes such that, for instance,
the visual identification of patterns for the progress measure
as suggested in [4] is straightforward.

For state variables, Traviando takes values of variables as
strings by default and then recognizes integer and floating



point variables. For each variable, Traviando reports its type
and for numerical variables it reports the observed range
of values, whether the sequence of values is monotonously
increasing or decreasing, and characteristics like the mean
value, variance and alike. It reports on which action makes
changes to a variable and checks if the state transforma-
tion can be matched with a simple linear transformation
v/ = ¢-v + b where v’ denotes the new value, v the
old value and ¢, b are numerical constants calculated from
observations. If the transformation does not fall into this
category, Traviando reports on the number of assignments
that increase (decrease) the value of a variable and on the
most extreme changes observed. Pages with state variable
information are linked with those for actions. For each
action, the report contains its occurrence statistics and state
transformations it performs to state variables. Traviando
computes a calculation of state variable and action invariants
with respect to numerical state variables, which uses related
concepts in Petri net theory, for details see [6].

The general idea of the report is to have an easy-to-read,
easy-to-navigate web report that helps a modeler to confirm
expectations and to recognize obscure and unexpected be-
havior. For example, simple errors based on exceeding the
expected numerical ranges of variables and erroneous state
transformations performed by actions. Traviando’s website
[1] contains an example section with traces and generated
reports.

III. EXTRACT WARNINGS

Traviando also generates a list of warnings that contains
links to static web pages which explain the underlying
rationale for each warning, indicate potential errors in the
simulation and give guidance on how to verify and fix it. The
approach is stimulated by the way software development is
supported by static code analysis, where a software tool gen-
erates a report for a given program code that lists locations
in the code base that require further attention based on a
set of rules that incorporate knowledge on common pitfalls
in programming; see FindBugs as a particular example [3].
Traviando attempts to accumulate knowledge on common
errors and pitfalls in simulation modeling. For instance:

Simultaneous Events. A simulation may reach a time
point where multiple events need to be scheduled. If this
is the case, the order in which events are performed may
be critical for the correctness a model. Since this is a
very special case, it is often difficult to clarify how a
particular simulator schedules events in those cases from
either documentation or results produced by a simulator. If
such situations are reached in a simulation at all, which
actions are involved, and in which order, is reported by
Traviando and given a corresponding warning.

Overflow of Variables. If enabling conditions of ac-
tions are not appropriately specified, actions may accidently
overflow a value range for a numerical variable. Traviando

assumes that if an observed range of values with lower
bound ! and upper bound u is within the range of a common
numerical type like unsigned short or integer then this is
the corresponding type. If it observes state transformations
v" = v+c such that [+ ¢ or u+c would exceed the assumed
type then it creates a corresponding warning.

Deadlocks. A discrete event system model may be subject
to partial or total deadlocks. While the latter is simple for
a simulator to identify, the former is much harder to detect.
Traviando checks certain conditions that indicate a potential
deadlock. A condition for a variable is that it is not changed
for a substantial portion of the trace towards the end of the
trace and that it reaches an extremum in its range of values.
The latter is based on the observation that models where
entities allocate finite resources, a deadlock documents itself
with state variables that describe the availability of resources
being stuck at a value for resource exhaustion. A second
condition is that actions that have been frequently seen
throughout the trace are not seen towards the end of the
trace. Obviously these observations do not prove presence
of a deadlock and thus only create warnings.

The list of warnings gives guidance to a user who is
looking for ideas what may cause a model to be defective.

IV. SUMMARY

We outlined recently added functionality to Traviando, a
software tool to analyze and visualize a simulation trace.
Potential users are modelers who seek support for the
debugging and verification of a simulation model as well
as developers of simulation engines who want to debug and
test simulator code. Traviando is available on request and
free of charge for research and education purposes, for more
information see [1].

REFERENCES

[1] Traviando: www.cs.wm.edu/~kemper/traviando.html,
www.cs.wm.edu/~kemper/traviando/examples.html.

[2] D. D. Deavours, et al. The Mobius framework and its
implementation. /EEE TSE, 28(10):956-969, 2002.

[3] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In Proc. 7th Wshop Program Analysis for
Software Tools and Engineering, 2007.

[4] P. Kemper and C. Tepper. Automated trace analysis of discrete
event system models. IEEE TSE, 35(2), 195-208, 2009.

[5] Peter Kemper. Report generation for simulation traces with
Traviando. In Proc. Dependable Systems and Networks. IEEE
CS, 2009.

[6] Peter Kemper. Recovering model invariants from simulation
traces with Petri net analysis techniques. In Proc. Winter Sim.
Conf., ACM, 2009.

[7] Nathan J. Schmidt and Peter Kemper. Phrase based browsing
for simulation traces of network protocols. In Proc. Winter
Sim. Conf., 2811-2819. ACM, 2008.



