
An Automated Technique to Support the Verification and Validation of
Simulation Models

Samuel K. Klock, Peter Kemper
College of William and Mary

Department of Computer Science
Williamsburg, VA 23187, USA

skkloc@wm.edu, kemper@cs.wm.edu

Abstract

Simulation modeling requires model validation and ver-
ification to ensure that computed results are worth being
considered. While we cannot expect a magic solution to
the general problem, automated techniques for particular
aspects of validation and verification are feasible. In this
paper, we propose a technique to deduce model properties
automatically from simulation runs performed for verifica-
tion and validation and to use those properties for runtime
monitoring during production runs. Properties are repre-
sented as formulas in linear temporal logic and are limited
to functional properties. We demonstrate the applicability
of the approach with using an extended version of a stochas-
tic Botnet model originally developed by Van Ruitenbeek
and Sanders.

1. Introduction
Modern modeling frameworks help us to create and an-

alyze detailed models of great complexity. In stochastic
modeling for the dependability and performance assessment
of systems, substantial research has explored the develop-
ment of versatile formalisms, ways to develop accurate sys-
tem models using these formalisms, and methods to effi-
ciently analyze such models. In practice, model analysis
usually boils down to a series of simulation experiments. In
a simulation study, verification and validation (V&V) are
necessary steps to justify confidence in the results of the
study. Validation relates to the question “Did we build the
right system?” while verification addresses the transforma-
tion of a conceptual model into an implemented, executable
model with the question “Did we build the system right?”
See for instance [1, 22]. A valid and verified model is ex-
pected to provide reasonably accurate values for measures
of interest that are consistent with what would be observed
in the system under study.

Verification directly assesses the correctness of an imple-
mentation, where “implementation” can mean many things
– for example, creating a model in a graphical modeling en-
vironment, crafting and combining models from different
simulation environments for an executable overall model,
or implementing a simulation model in a common program-
ming language with or without the support of a simulation
library. Many graphical user interfaces in simulation mod-
eling enable the inclusion of code snippets, illustrating the
close proximity of modeling to programming. In summary,
implementing a conceptual model comes with many chal-
lenges that are seen in software engineering in general.

Related to V&V, testing is broadly applied in software
engineering with substantial support for automated testing
and regression testing. One challenge is to provide the cor-
rect and expected results for non-trivial tests. A recent ap-
proach to this problem is the automatic generation of tests
that characterize and document the behavior of a program in
an executable, testable form as, for example, Agitar’s Ag-
itator software does. For V&V of simulation models, we
will draw from this idea but instead consider the production
of a formal specification in a modal logic. Such a formal
specification can in turn be evaluated on-the-fly at runtime.
The corresponding technique is known as runtime verifica-
tion [17]. It is applied in software engineering, for example,
in the work by Sokolsky [16] or Rosu [19].

Linear temporal logic (LTL) can form the basis of for-
mal specifications for verification, including runtime verifi-
cation. In [11], Dinesh et al. extend LTL to describe regula-
tory texts for business operations and offer a trace-checking
algorithm to evaluate conformance of systems to regulations
by trace analysis. Bauer et al. discuss how to conduct LTL
model checking on traces in [5]. We will follow the latter
approach to achieve runtime monitoring of a distributed set
of simulation runs. Performing monitoring and runtime ver-
ification in a distributed environment has been discussed in
[23], where Zhou et al. describe an extension to their mon-

itoring and checking framework MaC to evaluate network
protocols that are specified with declarative networking. In
our case, the simulation experiments are independent and
communication among clients is not considered.

Given these approaches to performing runtime verifica-
tion, the chief remaining challenge is obtaining a formal
specification that accurately describes the system’s correct
behavior. In [18], Mondragon et al. describe how to clarify
natural language specifications for program behavior and
generate formulas in future interval logic using the Prospec
tool in such a way that those formulas can then be compiled
down to safety properties monitored with the MaC frame-
work for running Java programs. In this paper, we investi-
gate ways to derive a formal specification in an automated
manner on the basis of the routine V&V work an analyst
typically performs.

In software development, generating a formal descrip-
tion of program behavior is supported to a certain extent
by tools that generate so-called likely invariants. The term
likely refers to the fact that the invariant properties are in-
ferred statistically from a finite sample of observations, so
their correctness is accordingly not guaranteed. A well-
established tool in this category is Daikon [12], which de-
rives such invariants as safety properties that hold at method
calls and returns. For readability, we drop the word “likely”
from our discussion and use the term “invariant” with the
understanding that all invariants deduced from finite trace
information are only likely invariants. Very simple invari-
ants, namely ranges of values, are used in [21] to monitor
hardware and to detect permanent hardware faults.

In this paper, we propose a way to enhance the usual pro-
cess of conducting a simulation study of the performance
or dependability of a system in the following way. V&V
requires an analyst to simulate a model for configurations
that a) exercise all aspects of the model (according to a
simple coverage criterion stipulating that relevant pieces of
code that are not executed by tests cannot be considered
sufficiently tested) and that b) enable validation of a model
(i.e., show that the model is able to reproduce known per-
formance or dependability results). If a simulation model
succeeds on those V&V experiments, we can make use of
those V&V experiments to infer correct behavior of a model
and derive a formal specification of LTL formulas.

The class of properties we address in this paper focuses
on purely functional properties of a stochastic model. We
assume that timing requirements are covered sufficiently by
the performance/dependability measures an analyst defines
for a study. The formal specification is derived in an auto-
mated manner, along with a report in a less formal, easier to
read format; we will not discuss details of the latter and re-
fer instead to [14]. An analyst can review both of these out-
puts to recognize incorrect descriptions of parts of the sys-
tem and accordingly add, change, or remove formulas from

the specification. The set of formulas can be used later on to
check further simulation experiments, either to regression-
test a modified model or to monitor production runs. The
main point is that an analyst can learn easily and promptly
if the model is simulated in a way that leaves its range of
verified behavior. Since we focus on untimed behavior, the
set of formulas leaves sufficient room for a performance or
dependability study to be meaningful.

The contribution of this paper is to pave the way for
automated support of V&V testing by means of a formal
specification in LTL that can be generated and monitored
in a completely automated manner. We evaluate the pro-
posed approach using an implementation that extends and
integrates Möbius[10], Traviando [15], and Daikon [12]. In
this paper, we derive various types of invariants, including
several types using an adaptation of Daikon for the analysis
of simulation traces. We formalize all invariants as formu-
las using a state/event linear temporal logic (SE-LTL) and
transform them into finite automata in a three-valued variant
of LTL for subsequent runtime verification.

The rest of the paper is structured as follows. In Section
2, we introduce necessary notation for simulation traces and
SE-LTL. In Section 3, we describe different types of invari-
ants, which we derive via Daikon and Traviando for given
simulation traces. Section 4 describes our tool architecture,
and Section 5 shares an application of our approach to an
extended version of a Botnet model developed originally by
Van Ruitenbeek and Sanders [20].

2. Definitions
We consider a discrete-event system that has a finite set

V of m state variables and a finite set of actions A. A state
s is an m-dimensional vector with a value for each of the
state variables v1, . . . , vm in V . State variables are numeri-
cal variables with a domain in IR, ZZ, or IN. The occurrence
of actions that cause a change in value for state variables
yields dynamic behavior. The occurrence of an action is de-
noted as an event. An event e is labeled with a correspond-
ing action a ∈ A denoted as a(e) and optionally also with a
time stamp t(e) ∈ IR; it changes the state of a model from a
predecessor or starting state (denoted s) to a successor state
(s′).

We are mainly interested in observing the behavior of
a stochastic model from a sequence of state transforma-
tions, which we define as a trace. A trace is a sequence
σ = s0e1s1 . . . ensn of states s0, . . . , sn ∈ S and events
e1, . . . , en ∈ E over some (finite or infinite) sets S and
E for an arbitrary but fixed n ∈ IN, the length of σ. For
those actions that are present in σ, we can observe circum-
stances (states) where they can occur (enabling conditions)
and what changes an action makes to which state variables
(firing effect or state transformation).

Note that the trace neither reveals any reasons why cer-

tain events occur nor why certain others do not. In any
event, it is unclear if choices exist and why the one observed
has been chosen. For instance, the overall dynamic behav-
ior may be purely time-driven and the state information may
just report on measurement data taken over time. However,
our underlying assumption is that the current state informa-
tion is at least partially responsible for enabling or disabling
events and is of relevance for the future behavior of the sim-
ulated model.

In the following, we assume that sets V andA are known,
and a finite trace σ is given such that all variables are as-
signed an initial value in s0. For model-checking pur-
poses, traces are extended with a state-labeling that indi-
cates which elementary propositions hold in a state. We
consider a set of state-based atomic propositions APs and a
set of event-based propositions APe. A state-based atomic
proposition is an (in)equality over functions with state vari-
ables in V as their parameters. A concrete example of a set
of atomic propositions is comprised of (in)equalities relat-
ing arithmetic expressions that are constructed from state
variables, constants (e.g., reals), and arithmetic operations
(such as {+,−, ·,÷}). A state-based atomic proposition
evaluates to true or false for any given state si, 0 ≤ i ≤ n in
a trace σ. Let L(σs(i)) ⊆ APs denote the subset of atomic
propositions that are true at state si.

An event-based atomic proposition is an (in)equality that
evaluates on a triple (s, e, s′) where s denotes the starting
state of an event e that yields s′ as its successor state. A
corresponding set of atomic propositions APe comprises
functions over event labels in A and state variables in V ,
where ′ denotes that a variable refers to the successor state.
Event labels are used to recognize if a considered event cor-
responds to an action of interest. For example, we can for-
mulate that an action inc increments a state variable with
the following implication (a(e) = inc) ⇒ (v′ = v + 1)
where the left-hand side is an atomic proposition that is true
if the considered event has a label inc and the right-hand
side is an atomic proposition that is true if the value of v
in the successor state s′ is an increment of the value of v
in the predecessor state. For readability, we simply use v
instead of v(s) and v′ for v(s′) in formulas. If an event-
based atomic proposition holds for an event ei then a corre-
sponding label is most naturally associated with that event;
however, for notational simplicity it is associated with si
in the logic below. Let L(σe(i)) ⊆ APe denote the subset
of atomic propositions that are true for (si, ei+1, si+1) and
L(σe(n)) = ∅ by definition.

Linear Temporal Logic. State/event linear temporal
logic (SE-LTL) [6, 9] comprises a set of operators that
can be used to describe what is expected to occur along a
state-event sequence. SE-LTL expressions take the form
of propositions comprised of the usual Boolean operators

(∨,∧,⇒,⇔,¬), along with a set of temporal operators (G,
F, U, R, X) and a set of atomic propositions. SE-LTL propo-
sitions evaluate to > (true) or ⊥ (false).

Definition 1 (SE-LTL). Let AP = APe ∪ APs be a set of
atomic propositions with two disjoint subsets. The syntax of
SE-LTL formulae is defined inductively as:
φ ::= p|¬φ|φ1 ∧ φ2|φ1Uφ2|Xφ

where p is an element of AP .

Atomic propositions APs are associated with states as is
typical for LTL. For SE-LTL, we follow [6, 9] and associate
action labels with the starting state of a corresponding
event (with the marginal adjustment that action labels are
taken from a set APe). We recall the semantics of LTL for
infinite traces. Let σ∗ denote an infinite trace with finite
prefix σ and let σ∗k = sk, ek+1, sk+1 . . . denote the suffix
of σ∗ that starts at state sk. So, for a given trace σ∗ and
SE-LTL propositions φ and ψ, we can define the semantics
of SE-LTL formulas evaluated at σ∗k in the following way:
σ∗k |= p ⇐⇒ p ∈ L(σ∗s (k)) ∨ p ∈ L(σ∗e(k))
σ∗k |= ¬φ ⇐⇒ σ∗k 6|= φ
σ∗k |= φ ∧ ψ ⇐⇒ σ∗k |= φ and σ∗k |= ψ
σ∗k |= φUψ ⇐⇒ ∃l ≥ k : σ∗l |= ψ

and ∀i, k ≤ i < l : σ∗i |= φ
σ∗k |= Xφ ⇐⇒ σ∗k+1 |= φ

Note that event-based atomic propositions are essentially
associated with the starting state of the event to which they
belong. With these basic operators, we can derive others
to obtain the full set of common Boolean operators (∨,
∧, ⇒, ⇔, ¬), along with a set of temporal operators (G,
F, U, R, X). Globally G φ specifies that φ is true at the
current and all subsequent states. Finally F φ specifies that
φ is eventually true; that is, that φ is true at the current
or some subsequent state. Until φ U ψ specifies that φ is
true at least until ψ is true: φ is true at this state and every
subsequent state until ψ is true, at which point φ may be
false. Release φ R ψ specifies that ψ is true at the current
and all subsequent states until φ is true, at which point
ψ is false. Next X φ specifies that φ is true in the state
immediately following the current state. Formally:
σ∗k |= Gφ ⇐⇒ σ∗k 6|= >U¬φ
σ∗k |= Fφ ⇐⇒ σ∗k |= >Uφ
σ∗k |= φRψ ⇐⇒ σ∗k 6|= (¬φUψ))

Of course, a verification of φ at runtime operates on a
finite prefix σ of any σ∗ such that this definition requires
further adjustments. We briefly recall concepts of runtime
verification from [17]. Runtime verification is a lightweight
verification technique that focuses on checking whether a
run of a system satisfies or violates a given correctness prop-
erty. From a conceptual point of view, runtime verification
answers the word problem (i.e., whether a given trace is an
element of the language of traces that a correct model would
generate). This technique is implemented using the con-

cept of a monitor. A monitor is a device that reads a finite
trace and yields a verdict. A verdict is a truth value from
some truth domain, which can be simply Boolean or en-
riched with further values such as indeterminate. A monitor
corresponds to a particular correctness property and should
adhere to two maxims, namely those of impartiality and an-
ticipation. Impartiality requires the monitor to refuse a defi-
nite answer (true or false) if there are possible continuations
of the given finite trace that may lead to contrary verdicts.
Anticipation requires the monitor to give a definite answer
for the given finite trace if all possible continuations would
yield the same verdict. Since LTL is a well-accepted logic
used for specifying properties with respect to infinite traces,
it is natural to seek an adjustment for the case of runtime
verification where only finite traces are considered. There
are different ways to do so: Bauer et al. derive a three-
valued LTL in [3], a four-valued LTL in [4], and an exten-
sion towards time in [3, 5]. As a first step, we follow [3].

Three-valued LTL. Three-valued LTL (LTL3) is an adap-
tation of LTL to permit an on-the-fly evaluation on state-
event sequences of finite length. It uses the same syntax
definition of LTL, resp. SE-LTL in our case, and we just
need to adjust the semantics. A direct implication of the
impartiality maxim is that there is a need for a third truth-
value, namely indeterminate (denoted ?). For a finite se-
quence σ of length n, let σ∗ denote an infinite trace with
prefix σ and let φ be an SE-LTL proposition. We describe
the semantics of LTL3 in the following way:

φ(σ) =

> if and only if 6 ∃σ∗, σ∗ 6|= φ

⊥ if and only if 6 ∃σ∗, σ∗ |= φ

? otherwise

In other words, φ evaluates to true if there is no way
for φ to become false in states following sn. Similarly, φ
evaluates to false if there is no way for φ to become true in
states following sn. φ evaluates to indeterminate if neither
of the two above cases apply.

For a given LTL3 formula, we need to obtain a moni-
tor that we can then execute to evaluate a simulation run.
In [3, 5], Bauer et al. describe how to transform an LTL3

formula into a deterministic finite state machine with three
output symbols. We follow this approach to obtain a repre-
sentation of a formula φ that allows us to evaluate a trace
by reading its content in a single pass, in a forward manner,
and without a need for storing all input data σ. The monitor
classifies any prefix trace as either as good (>), bad (⊥), or
neither good nor bad (?). The monitor fulfills the anticipa-
tion maxim and gives a definite verdict as early as possible,
i.e., based on the shortest informative prefix of σ.

For runtime verification, mainly safety properties are
monitorable in the sense that a monitor is able to obtain

a definite evaluation > or ⊥. Following [5], the set of for-
mulas that are monitorable is in fact larger than just safety
properties, but many interesting properties are not moni-
torable, including the send/receive property we discuss in
Section 3. Bauer et al. propose a four-valued logic that re-
fines ? further to obtain more specific results; however, we
will focus on the simpler logic LTL3, which suffices for the
set of formulas we can generate in an automated manner.

3. Derivation of Properties
This section discusses different types of properties and

how to derive them in an automated manner. We assume
that we are given a set of traces Σ as input, and we expect
Σ to correspond to verification runs that cover pathological
cases and exercise all actions of a model. The properties we
identify are intended to help us distinguish faulty runs from
those that are performed correctly. Σ provides us with an
incomplete set of runs that the modeler considers correct. In
general, we have far too little information to draw the line
between the superset of correct runs that includes Σ and
all other possible traces that are considered faulty. What
we can do is identify certain properties that are based on
the fact that performance and dependability models are not
arbitrary programs but have certain common characteristics.
We classify these properties into the following types.

Type 1: Finite Set of Values. We first consider a single
state variable v for which Σ indicates a distribution of val-
ues with a finite range lv ≤ vv ≤ uv , with lower bound
lv , upper bound uv , and data on sequences of values of v
as projections from elements of Σ. If the number of differ-
ent values is reasonably small and fragmented, an explicit
enumeration (v ∈ {c1, . . . , ck}) can be useful. However,
an explicit enumeration, like other statistical characteristics
of the distribution of values like mean, mode, and median,
seems to be very sensitive to changes in a model configura-
tion. Furthermore, the length of the formula grows with the
number of different values. Therefore, we expect bounds
to be a coarser but more applicable representation. In [21],
bounds on variables are the only property considered for
runtime monitoring of hardware faults.

Type 2: Monotonicity. From the sequences of values,
we can distinguish variables that fluctuate in value ver-
sus variables that are monotonously non-decreasing/non-
increasing. The latter are used in models to count the num-
ber of times a particular event has happened – for example,
a variable that is used to measure an impulse reward or the
number of operational components in a transient simulation
study for the mean time to failure. Monotonicity can be ex-
pressed as v ./ v′ with ./∈ {<,≤, >,≥} . If monotonicity
is not an artifact of a too short trace σ, then we can expect
this to hold throughout a series of experiments.

Type 3: Constant Weighted Sums. Considering sets of
variables, a natural question concerns which subsets belong
together. In many dependability models, we find a finite au-
tomaton with c states being encoded with c state variables,
such that the sum of their corresponding values is always 1,
since the automaton has to reside in one of its states, (i.e.,
to describe the different operational stages of a component).
In performance models of closed systems, we have a finite
number of customers switch positions between a finite set
of c locations being encoded with c state variables, such
that the sum of their values is always the number of cus-
tomers. The particular number of customers may vary in a
series of experiments but is constant in each individual ex-
periment. In [13], we describe a method to calculate state
variable invariants from a set of state transformation vectors
∆(σ) = {si+1 − si|0 ≤ i < n}. The resulting set of vec-
tors W ∈ IRm has the property that

∑m
i=1 wi · vi = const

for w ∈ W, s ∈ {s0, . . . , sn}. Since the constant value
depends on s0 or, respectively, the model configuration, a
formulation like the formula

∑m
i=1 wi · vi =

∑m
i=1 wi · v′i

is advisable. W is derived in a manner that obtains a mini-
mal generating set of vectors, which implies that no relevant
invariant is missed.

Type 4, 5: Pre- and Postconditions of an Action. Con-
sidering events (s, e, s′) and individual actions, it is inter-
esting to determine what the preconditions P ⊂ APs are
that hold for any state s to enable an action a ∈ A, what
the postconditions Q ⊂ APs are that hold in s′, and what
transformation functions ∆ action a performs to transform
s into s′. We formulate a precondition as particular ranges
of values

∧
v∈V(lv ≤ v ≤ uv) or as relations among vari-

ables, e.g. as v1 ≤ v2. In order to make a precondition
hold only for a particular action a, the overall formula is
G((a(e) = a) =⇒ P) where P ⊆ APs is an atomic
proposition of the starting state s. Analogously, we can de-
fine postconditions by considering v′ instead of v. Postcon-
ditions hold for variable settings after the occurrence of a
particular action.

Type 6: State Transformation Function of an Action.
An action a that occurs as event ei, i.e., a(ei) = a, per-
forms a state transformation δ(ei) = si+1 − si. The state
transformations a particular action a performs in Σ cre-
ate a set of vectors ∆(a) =

⋃
σ∈Σ{δ(ei)|a(ei) = a, 0 ≤

i < n}. We can build formulas that describe ∆(a) in
at least two ways: G((a(e) = a) =⇒ D) where
D =

∨
d∈∆(a)

∧
v∈V(v′ − v = d(v)) and simply enumer-

ate all entries of ∆(a), or we can aggregate the possible
ranges of values we observe for v′ − v by setting D =∧
v∈V(lv ≤ v′−v ≤ uv) where lv = min{d(v), d ∈ ∆(a)}

and uv = max{d(v), d ∈ ∆(a)}. The latter formula has a
length that is bounded by V , while the length of the for-

mer depends on V and ∆(a). We can expect that each ac-
tion manipulates only very few variables and leaves most
variables unchanged. A formal integration of an inertia rule
that requires that variables remain unchanged if changes are
not explicitly mentioned substantially shortens the length of
most formulas in practice. Formulas for state transforma-
tion functions correspond to a code coverage criterion for
testing program code: the given set of tests Σ must cover
each action and the derived set of formulas covers all ac-
tions for subsequent monitoring (testing) simulation runs.

Type 7: Successor Events to an Action An action a
that occurs will enable a particular set of possible actions
succ(a) to occur next. From Σ, we can derive succ(a) =⋃
σ∈Σ{a(ei+1)|a(ei) = a}. Since simulation models of-

ten contain concurrency, the actions that are observed fol-
lowing action a in succ(a) need not be causally dependent
on a at all. Nevertheless, a model will imply that cer-
tain combinations may not legally occur. So the follow-
ing formula aims at characterizing legal successor events
for any given action a as G((a(e) = a) =⇒ XB)
where B =

∨
b∈succ(a)(a(e) = b). Alternatively one

can evaluate the complementary set A\succ(a) with B =∧
b∈A\succ(a)(a(e) 6= b). For an implementation, one may

select the representation that is shorter in length. If these
formulas are generated for all actions in A, then they check
all possible bigrams (words of two literals) in the language
generated by the simulation runs of a given model. This
type of formula relates to a coverage criterion on branch
coverage in software testing in that the formulas consider
all possible successors to an action that may create a choice
of several successors.

Type Formula where
1 G(v ∈ {c1, . . . , ck}) {c1, . . . , ck} ⊂ IR
1 G(lv ≤ v ≤ uv) lv, uv ∈ IR
2 G(v ./ v′) ./∈ {<,≤, >,≥}
3 G(

∑m
i=1 wi · vi

=
∑m
i=1 wi · v′i) w ∈ IRm

4 G((a(e) = a) =⇒ P) P precondition
5 G((a(e) = a) =⇒ Q) Q postcondition
6 G((a(e) = a) =⇒ D) D change
7 G((a(e) = a) =⇒ XB) B successors

Table 1. Types of generated formulas.

More complex formulas. Table 1 summarizes the formu-
las considered so far, which are mainly safety properties
that can be evaluated at any state. Of course, SE-LTL al-
lows us to define much more complex formulas with the
help of the U operator and other derived operators. The
U operator allows us to recognize particular sequences of

actions or states. For instance, a formulation that a mes-
sage that is sent is finally received can be formulated as
G((a(e) = a) =⇒ X(φUψ)) where a is the send oper-
ation, φ describes the intransmission part, and ψ describes
the receiving action. In existing models, we often find that
individual messages are not distinguished, which implies
that any receiving action would make the formula valid even
though messages do not correspond. In case of concurrent
messages, a single receive action would make all formulas
valid that are initiated by a sequence of send actions before
the receive action. As such, formulas of this kind are dif-
ficult to construct from scratch. In the example model we
consider in Section 5, we will add a separate submodel that
models an individual object such that these formulas can be
created. However, we believe that these kinds of formu-
las are too model-specific for an automated derivation; we
instead enable modelers to manually specify SE-LTL for-
mulas.

Automated Derivation of Formulas of Type 1-7. We
briefly discuss automated techniques and tools for the
derivation of formulas of type 1-7. In particular, we discuss
approaches implemented by Daikon and Traviando.

Daikon [12] is a tool designed to produce likely in-
variants from running programs. These invariants are in-
tended to comprise a specification of the program’s behav-
ior, which can then be compared against expected proper-
ties or implemented as assertions that are checkable at run-
time. While Daikon is primarily intended for use in con-
ventional computer programs (with native support supplied
for C/C++, Java, and other languages), it has been applied
elsewhere; see, for example, [2] (using Daikon-generated
invariants to detect rootkits).

We developed a transformer to translate simulation
traces into formatted files of the sort produced by instru-
mented programs for Daikon. Since Daikon searches for
invariants centered around program points (i.e., objects,
method entries, method exits, etc.), we had to adapt the enti-
ties in simulation traces into types that Daikon understands.
In the simulation trace format we use, variables are parti-
tioned into processes corresponding to components of the
model. We treat these processes as objects and actions as
methods. This view provides a suitable means of enabling
Daikon to search for invariants at the process level (i.e., in-
variants that apply to a component of the model) and for ac-
tions (pre- and post-conditions; properties of state transfor-
mations). Daikon-generated invariants can be used to pro-
duce formulas of types 1-2 and 4-6, but it does not provide
support for formulas of type 3 (it does occasionally output
sums of variables, but only occasionally and in an insuffi-
cient way) and formulas of type 7.

Algorithmically, Daikon starts with a very large set of
candidate formulas that is reduced while scanning through

its input data. Candidates are removed if they turn out to be
false. The final set of invariants is sanitized of formulas that
other valid formulas imply or for which there is insufficient
statistical evidence to justify claiming that they hold.

In Traviando [15], we implemented an automated for-
mula generator that explicitly targets types 1-7. Recogniz-
ing the corresponding properties from trace files is algorith-
mically straightforward for all types but for type 3. The
derivation of a generating set of weight vectors w such that∑m
i=1 wi · vi = const is performed by computing solutions

for wM = 0 where M is an integer or real-valued matrix
of columns taken from sets ∆(a) for all a ∈ A. So M
has dimensions V ×k where k = |

⋃
a∈A∆(a)|. The corre-

sponding approach has been published in [13], and example
results demonstrate that it is helpful for recovering common
invariants on states of a system component (in dependability
models) and finite sets of customers (in performance mod-
els of closed systems).

4. Tool Support
We implemented our approach by extending and com-

bining three different tools, namely Möbius [10] for mod-
eling and simulation, Traviando [15] for the generation of
formulas and for runtime monitoring, and Daikon [12] for
the generation of formulas. The approach consists of three
separate steps: 1) the generation of Σ with Möbius, 2) the
offline derivation of formulas from Σ with Daikon and Tra-
viando, and 3) the online, on-the-fly runtime verification of
formulas for a running Möbius simulation by Traviando.

Modeling and Simulation. Möbius is a modeling frame-
work for the dependability and performance assessment of
systems developed by W. H. Sanders et al. at the Univer-
sity of Illinois at Urbana-Champaign. It supports multi-
paradigm modeling where an overall model is composed of
submodels formulated in one of several formalisms, most
notably Stochastic Activity Networks (SANs). The Möbius
simulator supports the generation of trace files for simu-
lation runs that include information on state variables and
actions as well as detailed sequential data on which action
takes place, when, and what changes it makes to state vari-
ables. The simulation engine is able to distribute a series of
individual simulation experiments over a network, which is
tremendously helpful for conducting an industrial-strength
simulation study in practice. We extended the Möbius sim-
ulator to communicate trace data with our runtime verifier
software via sockets.

Generation of Formulas. We generate formulas from a
set of simulation traces obtained from Möbius simulation
runs. We implemented a transformer that translates a trace
file into the expected input format for Daikon. Daikon gen-

erates formulas that are then reformatted to work with Tra-
viando, a trace analyzer that we use for runtime monitoring.
In addition to Daikon, we extended Traviando to derive SE-
LTL formulas of types 1-7 on its own. The types of formulas
generated that way are focused on functional properties of
simulation models as discussed in Section 3. In addition to
the automated generation of formulas, Traviando supports
manual specification of formulas, which we use to obtain
more specific and more complicated formulas for a given
model. All these formulas can then be evaluated at runtime.

Runtime Monitoring. Figure 1 illustrates how a dis-
tributed set of simulation experiments conducted by Möbius
is monitored by Traviando and a distributed set of Tra-
viando client evaluators that digest trace data generated by
Möbius simulators. We extended Traviando with a module
that transforms SE-LTL formulas into LTL3 formulas and
corresponding finite automata, the monitors. On each host
that runs a Möbius simulation experiment, we launch a Tra-
viando runtime verifier client that communicates via sock-
ets with Möbius and evaluates a Möbius simulation trace
on-the-fly and with respect to a set of monitors that the cen-
tral Traviando instance has sent to it. If a monitor verdict
is ⊥, a short witness trace of the last k ≈ 150 events is
sent to the central Traviando instance (the value of k is con-
figured when clients are launched). Traviando makes these
short witness traces available for further visualization and
inspection by a human analyst.

Figure 1. Architecture for Runtime Verifica-
tion of Distributed Simulation Runs

5. Evaluation of Peer-to-Peer Botnet Model
In this section, we discuss an extension of a peer-to-peer

botnet model [20]. Van Ruitenbeek and Sanders developed
a stochastic model to examine how different factors impact
the growth of a botnet which in turn provides guidance for
defense tactics and for the design of future anti-malware
systems. The model itself can be understood as an open

system with an arrival stream of attacks that go through dif-
ferent stages when attacking a network. A single successful
attack transforms a network node either into a propagation
bot that will initiate further attacks or into a working bot
that will perform work for the overall botnet. Propagation
bots and working bots alternate between an active and an
inactive mode. The model also includes the effects of de-
fense mechanisms: during the infection phase, an attack
may be unsuccessful to move from one stage to the next,
which means it is destroyed and removed. Similar for the
propagation and working bots, they can be identified and
removed. Van Ruitenbeek and Sanders study the effect of
varying infection probabilities and of varying bot removal
rates. They show how prevention measures as well as de-
tection and disinfection methods can effectively fight back
botnet growth.

When running the corresponding Möbius model, we
were interested in the average lifespan of a bot. Since the
original model accounts for the number of bots being in a
particular state, we need to extend the model. Our exten-
sion uses the concept of a tagged customer, such that we
can measure the lifespan of a particular tagged bot. We also
realized that the simulations were computationally expen-
sive to run. So we generated a web report for a sample sim-
ulation trace as described in [14] and recognized that the
simulator is mostly simulating events for an unsuccessful
initial infection. So in what follows, we discuss two model
modifications: a) an extension with a tagged customer, i.e.,
a distinct submodel that models the behavior of a single bot
after an initially successful infection, and b) a modification
of the arrival model such that we generate the same stream
of successful bot infections but omit all those infections that
are unsuccessful in reaching even the first stage of a bot in-
fection. In addition to these conceptual changes, we also
reorganize the model into a composed model with separate
submodels for the arrival process, the botnet and the tagged
bot. Figure 2 shows the overall composed model in Möbius.
We also add a state variable to the botnet submodel that en-
forces an upper bound on the maximum number of bots. We
use a bound of 231−1 to avoid the otherwise possible over-
flow of integer state variables. Finally, we introduce three
global boolean variables, one for each submodel, and add
one to the enabling condition of each activity such that we
can disable a complete submodel for test runs.

Remodeling the arrival stream. In [20], initial bot in-
fections occur with an exponentially distributed arrival rate
whose value is a function of the number of active propa-
gation bots. An initial bot infection when it occurs has a
fixed probability p to successfully enter the system. With
probability 1 − p, it is unsuccessful and has no further ef-
fect. So, whenever the number of active propagation bots
is set to a particular value, we will see a sequence of expo-

Figure 2. Extended P2P Botnet Model

nentially distributed interarrival times till the first success-
ful infection. A new sequence starts if the number of active
propagation bots is changed or an initial infection succeeds.
So the number of attempts for a successful initial bot in-
fection is a geometric random variable K with parameter
p and P{K = n} = (1 − p)n−1p is its distribution. The
distribution of the time from a restart with a newly assigned
number of active propagation bots to a first successful ini-
tial bot infection is the same as the distribution of the time
between two successful initial bot infections, namely an Er-
lang distribution with rate λ (which depends on the number
of active propagation bots) and K as the number of stages.

Modeling this in Möbius is possible. The delay of
the activity that corresponds to the initial bot infection is
defined as an Erlang distribution with parameters settings
of M as return(K->Mark()) ;
and Beta as return(K->Mark()/RateOfAttack*

(ActivePropagationBot->Count->Mark());
This activity has an input gate with predicate
ActivePropagationBot->Count->Mark()
== ErlangMemory->Count->Mark()

and input function
K->Mark() = TheDistribution->Geometric
(ProbInstallInitialInfection)+1 ;

The input predicate checks if the number of active prop-
agation bots equals a memorized value currently in use
for the Erlang distribution. If those two differ, another
activity updates the ErlangMemory variable, which in turn
restarts the Erlang arrival activity. The input function is
evaluated before the activity performs, which we use to
update K, the number of stages used when sampling from
an Erlang distribution to determine the overall delay. We
checked the consistency of the original arrival stream and
our new version by running copies of both in a separate test
model and measured the generated arrival rates for various
configurations.

Adding a Tagged Bot. When one wants to measure per-
formance characteristics of an individual object, while the
overall model only considers totals of those objects, the
tagged customer pattern applies. The approach itself is a
classic in performance modeling, in particular for an er-
godic queueing system that can be analyzed by studying a

single customer (the tagged customer) that enters the system
according to an initial distribution representing the state of
the system just after the arrival of a customer. For a recent
publication, see [8]. In our case, we are mainly interesting
in the modeling approach. We reorganize the existing bot-
net model of Van Ruitenbeek and Sanders into a composed
Möbius model that consists of three atomic models as in
Fig. 2: one that captures the dynamics of the arrival stream
of successful initial bot infections as described above, one
that describes the botnet SAN model as in [20] but with an
upper bound to the number of bots, and finally a copy of the
botnet SAN for the tagged bot, where the number of bots is
set to be at most one. The arrival stream delivers a new bot
either to submodel Botnet or TaggedBot with a preference
for the latter. We measure the lifespan of an individual bot
by measuring the time the tagged bot SAN is not idle and
how often a new tagged bot is created. The model contains
six ways to remove an existing bot in TaggedBot (and same
for Botnet).

Generation of Sample Traces Σ. Sample traces should
be representative for the functional behavior. So they should
cover the behavior of all activities and the range of values
for all state variables. Since timing is not reflected by our
LTL formulas, we can adjust rates to reduce the effect of
different time scales that are present in the model. In order
to observe all activities, we consider two particular model
configurations, one exercises only the arrival and tagged bot
submodel, the other exercises only the arrival and botnet
submodel. We obtain two sample traces, which in combi-
nation cover all activities of the overall model. In order to
exercise ranges of values, we consider an additional set of
six configurations in which all submodels are enabled, but
the initial number of bots differs: one configuration has a
minimal initial number of a single active propagation bot
to start with, one has a medium initial total number of 500
bots and the remaining three configurations have a maxi-
mum initial number of 231 − 1 bots and differ only in the
specific initial state of those bots. This set up is inspired by
the general recommendations in software testing on how to
test a finite range of values. In total, we obtain eight sample
traces of length 1640 ≤ n ≤ 376878. We use Traviando’s
reporting functionality [14] to check that all activities occur
and that ranges of values are sufficiently covered.

Derivation of Formulas Running Daikon and Traviando
on this set Σ of traces, we obtain 1815 formulas with
Daikon, 169 with Traviando. We will go through the differ-
ent types of formulas we described in Section 3 and high-
light specific properties to illustrate our experiences.

Type 1. Daikon rightly produces a discrete set of values
for all state variables of the tagged bot submodel, which

only take values in {0, 1}. Daikon also produces lower
bounds for 15 variables as well as relative upper bounds for
3 variables, e.g., that the total number of active propagation
bots is an upper bound for the number of active propaga-
tion bots in the botnet submodel. It does not produce any
absolute upper bounds. Traviando produces lower and up-
per bounds for all 33 variables. Since our set of test runs
Σ was selected to cover borderline cases for ranges of val-
ues so the computed upper bounds (even if not exactly at
the maximum legal value 231 − 1 for all state variables) are
high enough to cover experiments of interest. In this way,
a formal specification generated from Σ will let an analyst
know during a runtime verification if the exercised range of
values in Σ is insufficient and thus the testing phase was not
rigid enough.

Type 2. Monotonicity is not observed for any variables
in this model and hence Σ does not rise to such formu-
las. However, both Daikon and Traviando would be able to
recognize these properties. A combination of monotonicity
and bounds of type 1 raises the question of what the model
does if a bound is reached. If both observations are valid,
then the only legal behavior for the model is to keep the
value of that variable constant for the rest of the simulation
run. When generating these formulas, feedback to an ana-
lyst must be given to consider this case.

Type 3. Daikon only obtains very simple equations for
weighted sums, e.g., that the total number of initial bot in-
fections is the sum of those at Botnet and TaggedBot or spe-
cial cases such as x = y. Traviando recognizes invariants
from an invariant computation that solves a linear equation
system. For the botnet model, we obtain invariants for the
tagged bot submodel as well as for the botnet submodel
since both models are closed subsystems (closed due to the
idle respectively capacity variable which limit the number
of tagged bots to one and the number of bots in the botnet
submodel to 231 − 1). Since we added state variables that
give the total number of bots in a particular state (by adding
those in the botnet submodel and the tagged bot subodel),
the model set of weight vectors W that is computed con-
tains eight different vectors due to the possibility to replace
a particular variable by a sum of two others. The number
of invariants as well as some of Daikon’s equations may
alert an analyst to clean up the model description to obtain
a parsimonious model if desired. There is no such equation
for variables of the submodel that models the arrivals, be-
cause variables represent data values that are changed in an
irregular manner. The activities that modify these variables
are challenging for an invariant calculation, e.g., Σ yields
|∆(initialbotinfection)| = 379 for the activity that mod-
els the Erlang distribution for arrivals.

Type 4, 5, and 6. The characterization of when an action
occurs, what it does and what the resulting state is, this is
the strength of Daikon. Daikon generates hundreds of equa-
tions, inequalities and value sets for combinations of vari-
ables, be it with values of variables referring to the starting
state for preconditions, referring to the successor state for
postconditions or mixtures of both for state transformation
functions. Daikon recognizes relationships among differ-
ent variables, e.g., x ≤ y, x′ = y, or x′ > y′ for the
occurrence of some action a. Traviando generates formu-
las for each action, but it is not checking relations between
different variables. It solely recognizes preconditions as a
conjunction of ranges of values of individual variables. For
state transformation functions, it creates two formulas for
each action a. One lists all observed cases in ∆(a). The
other consists only of a conjunction over all variables v ∈ V
that gives bounds for the observed difference v′ − v. The
latter is particularly useful for the action of the initial bot
infection that assigns a random value to state variable K.
We observe 379 vectors in ∆(initialbotinfection) which
makes the formula that enumerates those cases impractical.
The alternative formula that uses ranges simply states that
−115 ≤ K ′ −K ≤ 132 with respect to variable K.

Type 7. Daikon does not contribute to this type of formu-
las. Traviando generates a formula for each action with an
average of 8.3 possible successor actions (out of 28). An in-
teresting case results from the action that reacts on a change
on the number of active propagation bots and forces a restart
of the arrival process. Since this action reacts almost imme-
diately, there are three actions that have only this action as
its only observed immediate successor, namely the actions
that model that a propagation bot 1) goes into sleep mode,
2) returns to active mode, or 3) is identified and removed.
This is a relevant property for a correct model.

Runtime Verification. A series of experiments that varies
the probabilities of attacks being successful or defense
mechanisms to be successful does not modify functional
properties of the model. A runtime verification of the gen-
erated sets of formulas reveals as expected that almost all of
the derived formulas hold. The ones that may fail and de-
pend on the executed simulation model are some statistical
ones obtained with Daikon that are not backed by the model
and the incomplete representation of the state transforma-
tion functions in the arrival model. All types of formu-
las considered result in rather simple and small determin-
istic finite automata. The socket communication between
Möbius simulators and Traviando monitoring clients slows
down the Möbius simulation. We performed a runtime ver-
ification for a simulation study of 18 model configurations
where Möbius runs a distributed simulation across five ma-
chines. Monitoring 1815 Daikon-generated formulas, we

observed a slowdown by a factor of 41. Monitoring 168
Traviando-generated formulas, which are less numerous but
longer, imposed a slowdown by a factor of 25, and monitor-
ing all 1983 formulas resulted in a slowdown by a factor of
62. Unless future improvements for the communication of
trace data and the evaluation of formulas reduces this over-
head substantially, the runtime verification can be applied
only to simulation experiments that are short enough to keep
the overall running times in an acceptable range.

6. Conclusion
We presented an approach to derive a formal specifi-

cation of the functional behavior of a simulation model
from a set of finite simulation traces Σ. Set Σ is obtained
from running simulations of a stochastic discrete event sys-
tems model for verification and validation purposes such
that it is reasonable to assume that Σ represents correct
model behavior. The set of properties that we derive are
mainly safety properties formulated in LTL. This set of for-
mulas contributes to the long-standing challenge of hav-
ing appropriate documentation of a simulation model as
well as achieving its verification and validation. In addi-
tion to documentation purposes, the generated set of formu-
las (possibly enriched with manually generated ones) can
be used for runtime verification of a simulation model for
production runs or for consistency evaluations of a modi-
fied model much like regression testing in software devel-
opment. We implemented our approach with the help of
Möbius, Daikon, and Traviando in order to obtain a fully
automated framework for the generation of formulas as well
as its runtime verification.

Acknowledgements. We thank the reviewers who helped
to improve the paper. We also thankfully acknowledge that
the James Monroe Scholars program and the Chappell Fel-
lowship program of the College of William and Mary pro-
vided funding for this undergraduate research project.

References
[1] O. Balci. Quality assessment, verification, and validation of

modeling and simulation applications. In Proc. of the 2004
Winter Simulation Conference, pages 122–129. IEEE, 2004.

[2] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference
and enforcement of kernel data structure invariants. Com-
puter Security Applications Conf., 0:77–86, 2008.

[3] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-
time properties. In S. Arun-Kumar and N. Garg, editors,
FSTTCS, volume 4337 of LNCS, pages 260–272. Springer,
2006.

[4] A. Bauer, M. Leucker, and C. Schallhart. The good, the bad,
and the ugly, but how ugly is ugly? In O. Sokolsky and
S. Tasiran, editors, RV, volume 4839 of LNCS, pages 126–
138. Springer, 2007.

[5] A. Bauer, M. Leucker, and C. Schallhart. Runtime verifica-
tion for LTL and TLTL. Technical report, TUM-I0724, TU
München, 2007.

[6] N. Benes, L. Brim, I. Cerna, J. Sochor, P. Verkova, and
B. Zimmerova. Partial order reduction for state/event LTL.
In M. Leuschel and H. Wehrheim, editors, IFM 2009, vol-
ume 5423 of LNCS, pages 307–321. Springer, 2009.

[7] S. Bensalem and D. Peled, editors. Runtime Verification,
9th Int. Workshop, RV 2009, France, 2009., volume 5779 of
LNCS. Springer, 2009.

[8] L. Bodrog, G. Horváth, S. Rácz, and M. Telek. A tool sup-
port for automatic analysis based on the tagged customer
approach. In QEST, pages 323–332. IEEE CS, 2006.

[9] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/event based software model checking. In
E. Boiten, J. Derrick, and G. Smith, editors, IFM 2004, vol-
ume 2999 of LNCS, pages 128–147. Springer, 2004.

[10] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. G. Webster. The Möbius
framework and its implementation. IEEE TSE, 28(10):956–
969, 2002.

[11] N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Checking
traces for regulatory conformance. In M. Leucker, editor,
RV, volume 5289 of LNCS, pages 86–103. Springer, 2008.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3):35–45, 2007.

[13] P. Kemper. Recovering model invariants from simulation
traces with Petri net analysis techniques. In Winter Simula-
tion Conference. ACM, 2009.

[14] P. Kemper. Report generation for simulation traces with Tra-
viando. In DSN, pages 347–352. IEEE CS, 2009.

[15] P. Kemper and C. Tepper. Automated trace analysis of dis-
crete event system models. IEEE TSE, 35,2:195–208, 2009.

[16] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokol-
sky. Java-MaC: A run-time assurance approach for java pro-
grams. Formal Methods in System Design, 24(2):129–155,
2004.

[17] M. Leucker and C. Schallhart. A brief account of runtime
verification. J. Log. Algebr. Program., 78(5):293–303, 2009.

[18] O. Mondragon, A. Q. Gates, S. Roach, H. Mendoza, and
O. Sokolsky. Generating properties for runtime monitoring
from software specification patterns. Int J Software Engi-
neering and Knowledge Engineering, 17(1):107–126, 2007.

[19] G. Rosu, W. Schulte, and T.-F. Serbanuta. Runtime verifica-
tion of c memory safety. In Bensalem and Peled [7], pages
132–151.

[20] E. V. Ruitenbeek and W. H. Sanders. Modeling peer-to-peer
botnets. In QEST, pages 307–316. IEEE CS, 2008.

[21] S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and
Y. Zhou. Using likely program invariants to detect hardware
errors. In DSN. IEEE CS, 2008.

[22] R. G. Sargent. Verification and validation of simulation
models. In Winter Simulation Conference, pages 157–169.
ACM, 2008.

[23] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC: Dis-
tributed monitoring and checking. In Bensalem and Peled
[7], pages 184–201.

