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Abstract. In this paper, we present Microsearch, a search system suit-
able for small devices used in ubiquitous computing environments. Akin
to a desktop search engine, Microsearch indexes the information inside a
small device, and accurately resolves user queries. Given the very limited
hardware resources, conventional search engine designs and algorithms
cannot be used. We adopt information retrieval techniques for query res-
olution, and propose a space efficient algorithm to perform top-k query
on limited hardware resources. Finally, we present a theoretical model of
Microsearch to better understand the tradeoffs in system design parame-
ters. By implementing Microsearch on actual hardware for evaluation, we
demonstrate the feasibility of scaling down information retrieval systems
onto very small devices.

1 Introduction

Interacting with our physical environment is a key component in many perva-
sive computing applications [1, 6, 7, 24, 26, 22]. A typical system design usually
involves a combination of simple beacons and a more powerful backend server.
For example, a simple RF beacon can be embedded into a file binder and pro-
grammed to continuously emit a unique ID. Information regarding the docu-
ments found in the binder is stored in the backend sever. A user accesses this
information by obtaining this ID and returning it with his query to the backend
server. Since each ID is unique, the backend server can retrieve all the data as-
sociated with this particular binder and resolve the query. A similar process is
executed when a user updates information about that binder.

Hardware improvements, which we will elaborate later, allow us to consider
a different design paradigm which does not utilize a backend server. Instead of
embedding a simple RF beacon into an object, we can embed a more powerful
device. Information previously kept on a server will now be stored directly on
this device. User queries will also be resolved by the object itself. This new
paradigm reduces cost by eliminating the network of backend servers as well
as long range wireless infrastructure needed for a user to communicate with
the backend server. Short range protocols such as Bluetooth can be used for
communication between a user and an object. Storing data on the object itself
also simplifies ownership transfer. The physical act of handing over a binder
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Fig. 1. (a)Typical design utilizing backend server. (b)Different paradigm without use
of a server

implicitly completes ownership transfer since any data can only be obtained when
the user has physical access to the object. Fig. 1 illustrates the two approaches.

In this paper, we describe Microsearch, a search system designed for small
embedded devices. We use the following example to illustrate how Microsearch
can be used. Consider a collection of document binders. Each binder is embedded
with a small device running Microsearch. Each device contains some information
about the documents found in that binder. When a user wishes to find some
documents, he can query a binder using some terms, i.e. “acme,coyote,refund”,
and Microsearch will return a ranked list of documents that might satisfy his
query. Also included in the reply is a short abstract of each document to help
him make his decision. Later, the user decides to add some notes to a document.
Through input devices such as a digital pen [19] or PDA, the user can store
notes into each binder. Microsearch will index the user input for future retrieval.

Microsearch is designed to run on resource constrained small devices capable
of being embedded into everyday objects. One example of such hardware is
manufactured by Intel [16] which has a 12MHz CPU, 64KB of RAM, 512KB of
flash memory, and wireless capabilities, all packaged in a 3x3 cm circuit board.
Larger storage capacity can also be engineered to store more data. In this paper,
we use the terms “mote” and “small device” interchangeably.

Similar to desktop search engines like Google Desktop [15], Spotlight [2] or
Beagle [4], Microsearch indexes information stored within a mote, and returns
a ranked list of possible answers in response to a user’s query. We envision that
Microsearch can be an important component in physical world search engines
like Snoogle [28] or MAX [31].

The challenge of designing Microsearch lies in engineering a complete solu-
tion that can run efficiently on a resource constrained platform. Desktop search
systems typically require large amounts of RAM to perform indexing. Similarly,
query resolution algorithms usually store intermediate results in memory while
resolving a query. With just kilobytes of RAM to spare, it is impossible to port



existing solutions directly onto motes. In addition, mote hardware uses flash
memory for persistent storage. Unlike conventional disk, flash memory requires
additional processing for I/O operations. Conventional flash file systems [30, 29]
cannot be used for this purpose due to the limited hardware resources. This
necessitates a different storage design.

We make the following contributions in this paper. (a) We provide a system
architecture that effectively utilizes limited memory resources to store and in-
dex different inputs. (b) Our architecture incorporates information retrieval (IR)
techniques to determine relevant answers to user queries. (c) Since conventional
IR techniques are designed for more powerful systems in mind, we introduce
a space saving algorithm to perform IR calculations with limited amounts of
memory. Our algorithm can return the top-k relevant answers in response to a
user query. (d) A theoretical model of Microsearch is presented to better un-
derstand how to choose different system parameters. (e) Finally, we implement
Microsearch on an actual hardware platform for evaluation.

The rest of this paper is as follows: Section 2 contains related work, and
Section 3 describes the Microsearch system design. Section 4 covers our search
algorithms, and Section 5 presents the theoretical model of Microsearch. Section
6 contains our evaluation, and Section 7 concludes.

2 Related Work

Desktop search engines are a mainstream feature found in most modern oper-
ating systems. In general, these search engines collect metadata from every file,
and store the metadata into an inverted index, a typical data structure used to
support keyword searches [10]. Information retrieval algorithms [18, 11–13] are
then used to determine the best answer to a query. Our work draws from the
basic principals of IR to rank query results.

A counterpart to Microsearch is PicoDBMS [23], a scaled down database for
a smart card. PicoDBMS allows data stored inside the smart card to be queried
using SQL-like semantics. The main design difference between our work and Pi-
coDBMS is that PicoDBMS uses a database design. Their approach works well
in a specific domain like storing health care information, where rules regarding
structured inputs with specified attribute terms can be enforced, and users, e.g.
doctors and nurses, are assumed to be well trained in the system. Microsearch on
the other hand uses a search engine design which allows for unstructured inputs
without enforcing pre-specified attributes, and a natural language query inter-
face. The differences between the Microsearch and PicoDBMS can be summed
up as the differences between a search engine and a database.

Other embedded search systems can be found in sensor network literature [32,
20, 9]. Sensor networks are a collection of small, embedded devices usually de-
ployed to collect environmental data such as temperature readings or soil hu-
midity values. While sensor systems share a similar hardware platform as Mi-
crosearch, they are primarily concerned with indexing and processing numeric
data. There appears to be no way for existing sensor search systems to index



textual data. In addition, query processing in sensor networks typically returns
a range query results or min/max values on collected data. Since the data is
numeric, there is no concept of relevancy or ranking. Microsearch differs from
sensor systems in that it handles textual in addition to numeric data, and uses
IR algorithms to reply to queries.

3 System Architecture

We begin by describing the inputs to Microsearch. We assume that a user uploads
information to Microsearch via a wireless connection through a suitable interface
like a PDA. Microsearch requires every user input to consist of two segments, a
payload, and a metadata. The payload is the actual information the user wishes
other people to download. The metadata is a description of the payload data,
and is used to determine whether a payload is relevant to a user’s query. Both
the payload and metadata are user generated.

The metadata is essentially a list of terms describing the corresponding pay-
load. Microsearch requires each term, known as a metadata term, to be accompa-
nied by a numeric value, known as a metadata value, indicating how important
that term is in describing the payload. A metadata using n metadata terms to de-
scribe a payload can be represented as

{

(term1, value1), · · · , (termn, valuen)
}

.
For a text based payload, the simplest method to determine the metadata value
for a term is to count the number of occurrences of that term in the payload.
Metadata values for non-text based payloads can be defined by the user.

3.1 Microsearch Design

Microsearch maintains two data structures in RAM: a buffer cache, and an in-
verted index. The buffer cache is used to temporarily store and organize data
before writing to flash to improve overall performance. The inverted index is
used to track and recover the stored data. In general, when receiving an input
file, Microsearch stores the payload into flash memory, and the metadata into
the buffer cache. This continues as more inputs are sent to Microsearch until
the buffer cache is full. Selected metadata entries are then organized and flushed
to flash memory to free up space in the buffer cache, and the inverted index is
updated.

Receiving an input: Upon receiving an input file, Microsearch first stores
the metadata into RAM, and then writes the payload directly to flash memory.
The starting address of the payload in flash is returned and added to each
metadata entry for that payload. With this payload address, Microsearch can
recover the entire payload if needed. Each metadata entry in the buffer cache
now becomes a tuple , (term, value, address), consisting of a metadata term, a
metadata value, and payload address. For example, consider Microsearch writing
a payload to flash memory location addr3. All the metadata associate with this
payload becomes,

{

(term1, 3, addr3), · · · , (termn, 2, addr3)
}

.



As mentioned earlier, flash memory is used as permanent storage for user
inputs. Microsearch writes data to flash memory using a log structure style
write which treats the entire flash memory as a circular log, always appending
new data to the head of the log. A pointer indicating the next available location
in flash memory is kept by Microsearch. Log-style writes have been found to be
suitable for flash memory [14]. Since writes are performed on a page granularity,
Microsearch will always attempt to buffer the data into at least a single page
before writing to flash.

Buffer cache organization: As more input files are sent to the buffer
cache, the buffer cache becomes a collection of metadata entries which describe
the different input files stored in the mote. There is no longer the concept of a set
of entries belonging to a particular metadata. Instead, metadata entries which
have the same metadata term are grouped together. For instance, two payloads
stored in address addr3 and addr8 may share the same term term1. Thus, inside
the buffer cache, they will be grouped as

{

(term1, 3, addr3), (term1, 8, addr8)
}

.
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Fig. 2. (a) Buffer eviction with uninitialized index slot: 1) Flushes tuples from buffer
cache, 2) Copies address of metadata page, addr17, into inverted index. (b) Buffer
eviction with initialized index slot: 1) Copies previous metadata page address from
inverted index. 2) Flushes tuples from buffer cache. 3) Copies new address, addr26,
into inverted index.

Inverted index: An inverted index is commonly used in search engine sys-
tems to recover archived information. A conventional inverted index has every
slot on the inverted index correspond to a different term. Each slot stores a
pointer to a list of documents or web pages containing that term. By matching
a given query term with the inverted index, one can recover all the documents
or webpages containing that term.

Microsearch uses a modified inverted index which differs from a conventional
design in two ways. First, Microsearch uses a hash function to map multiple
metadata terms to a certain slot in the inverted index. This results in a smaller



inverted index which uses less RAM but is slightly inaccurate. We discuss how
Microsearch resolves this inaccuracy in the next section. Second, Microsearch has
each slot in the inverted index store the flash address of a page in flash memory
containing a group of metadata terms which hash to the same slot. This flash
page is known as a metadata page. An inverted index slot which already has
metadata terms hashed to it is considered initialized.

Buffer eviction with uninitialized index slot: When the buffer cache
reaches full capacity, tuples will have to be evicted to free up space for new
entries. Microsearch selects the largest group of tuples, which all share the same
metadata term, and applies a hash function to the metadata term to determine
a slot on the inverted index. If no metadata term has been hashed to that slot
before, that slot is considered uninitialized. Microsearch organizes the group of
tuples in the order of their arrival into the buffer cache, and writes the metadata
pages into flash memory. If the group of tuples spans multiple flash pages, each
metadata page contains the flash memory address of the next page. The address
of the last metadata page containing the tuples is returned to the inverted index.
The inverted index stores this address into the uninitialized slot. The slot is now
considered initialized. Fig. 2(a) illustrates this process.

Buffer eviction with initialized index slot: In the event that an inverted
index slot has already been initialized, Microsearch will copy the address found
in that slot onto the first metadata page of the group of tuples. The group of
tuples are written to flash memory as before, and the address of the last metadata
page is returned and stored in the inverted index. The inverted index thus will
always have the address of the latest metadata page written into flash memory.
Since each metadata page in flash memory contains the address location of the
preceeding page, every metadata page can be recovered by traversing the links.
We consider this a chain of metadata pages. Fig. 2(b) illustrates this process.

Data deletion: Once the flash is reaching full capacity, Microsearch simply
erases the oldest data to make room. Deletion in flash memory occurs at a
sector granularity, with each section usually being 64KB. A pointer is kept by
Microsearch to indicate which is the next sector to erase. The deletion does
not affect the working of Microsearch since payloads are always written to flash
before metadata. Therefore we will not have “orphaned” payloads that exist in
flash memory but cannot be retrieved. The next problem is that of entries in
metadata pages pointing to invalid payload that have been deleted. This is solved
using the deletion pointer. Since this pointer indicates the next sector to erase,
the sector that lie before this pointer must have been just erased. Microsearch
disregards entries in metadata pages that point to payloads in the sectors behind
the delete pointer since they do not exist anymore.

4 Query Resolution

A user queries a mote by sending a list of search terms and parameter k which
specifies the top-k rankings he is interested in. The user receives an ordered
list of k possible payload data as an answer. We begin by first introducing a



basic query resolution algorithm. The actual space saving algorithm used by
Microsearch is presented later.

In the basic algorithm, Microsearch first obtains a set of metadata entries
which have metadata terms that match the search terms. Remember that a
metadata entry is of the form (term, value, address). With this chosen set of
metadata entries, Microsearch then ranks the payload addresses in order of their
relevancy, and uses the top ranking addresses to retrieve the payloads to return
to the user. Since each payload has a unique flash memory address, this address
is used as an identifier for a payload.

To obtain the set of metadata entries, Microsearch first scans all the meta-
data entries in the buffer cache for metadata terms matching the search terms.
Matching entries are then copied to a separated section of RAM. Next, Mi-
crosearch uses the inverted index to find matching metadata entries in flash.
Microsearch first applies the hash function to each search term to determine the
corresponding slot in the inverted index. These slots contain the addresses of the
metadata pages in flash memory. Each metadata page contains metadata terms
which hash to the same slot. Note that the metadata terms found in the same
page do not necessarily have to be the same. They only need to hash to the
same slot. Microsearch then retrieves each metadata page one at a time until all
metadata pages are read. For each metadata page read, Microsearch compares
the actual metadata terms to the search terms, and copies the matching ones to
RAM.

At this point, Microsearch has a list of all metadata entries which match the
search terms. Microsearch uses a simple information retrieval weighing calcula-
tion, the TF/IDF function, to determine how relevant each payload address is
in satisfying the user’s query. TF refers to the term frequency, and IDF refers to
the inverse document frequency. Under the TF/IDF function, the weight of each
metadata term of a payload is determined by the product of TF · IDF , where
TF is the metadata value of the metadata term, and IDF is log( N

DF
), where N

is the total number of payloads stored within the mote, and DF is the number
of payloads which share the same metadata term. The relevancy of a payload, or
the score of the payload, is the combined weights of the metadata terms match-
ing the search terms. After determining the score of the each payload address,
Microsearch orders them from the highest score to the lowest. Microsearch then
uses the top k payload addresses to obtain the actual payloads from flash to
return to the user.

4.1 Improving Performance

The basic algorithm first selects all the metadata entries which match the search
terms, and then proceeds to eliminate low scoring payload address. This ap-
proach requires a large section of RAM to be set aside. A better solution is to
eliminate low scoring payload addresses as they are encountered.

There are two difficulties in deriving a better solution. First, Microsearch re-
lies on TF/IDF calculations to determine the relevancy of each payload address.
Calculating the IDF requires knowledge of DF, the number of payloads in flash



which share the same metadata term. This information can only be obtained by
reading in every metadata page from flash and checking the corresponding meta-
data terms. We cannot maintain a running DF score since each inverted index
slot represents the metadata terms which hash to that slot. Without reading in
the actual metadata page, we cannot determine what the actual metadata terms
are.

Second, even we use only TF score without IDF, a simple elimination scheme
does not work. Consider the example when a user queries Microsearch with
two search terms x and y, with k = 1. For simplicity, we assume that the
buffer cache is empty, and x, y hash to different slots in the inverted index, i.e.
hash(x) 6= hash(y). We have 10 metadata pages each in flash memory matching
hash(x) and hash(y). Now after reading in the first metadata page for x, we
obtain 2 metadata entries with x. This means there are two potential payload
addresses which can satisfy the user’s query. Let us denote these two address as
addr1 and addr2. The first metadata page for y does not contain either addr1

or addr2. At this point, even though the user specifies the top-1 answer, we
cannot eliminate addr1 or addr2 because we cannot determine whether either
payload address actually contains the term y. The reason is that Microsearch
does not guarantee that metadata from the same payload are evicted from the
buffer cache at the same time. To be sure whether addr1 or addr2 contains y,
we have to continue reading in the metadata pages for hash(y) from flash.

4.2 Space Efficient Algorithm

To derive a space efficient algorithm, Microsearch exploits the sequential write
behavior of log file system. This sequential behavior ensures that data written
to flash memory is always written in a forward order. This means that if payload
p1 is sent to the mote before payload p2, then the flash address of p1 will be
smaller than that of p2.

To describe the space efficient algorithm, we first define some notations. We
let t be the number of search terms and a user query is {k, {st1, st2, . . . , stt}},
where sti is the ith search term. We denote the inverted index as InvIndex,
and the latest metadata page to be written to flash memory as the head meta-
data page. For example, InvIndex[hash(sti)] returns the address of the head
metadata page for sti. We represent this value as head[i].

We allocate a memory space page[i] for each query term sti, which is sufficient
to load one metadata page from flash memory. We first check the buffer and load
the metadata entries whose metadata value is sti to page[i]. If sti is not found in
the buffer, we load head[i] to page[i]. Let min(page[i]) and max(page[i]) denote
the smallest and largest payload addresses in page[i] respectively. We define a
cutoff value as

cutoff = max(min(page[i])), ∀i ∈ [1, t].

Due to the following lemma 1, we have all necessary information to calculate the
IR scores for the loaded index entries, whose payload address is greater than or
equal to cutoff. The entire algorithm is found in Algorithm 1.



Lemma 1. For any index entry whose payload address ≥ cutoff, if its term field

is included in the query terms, it must have been loaded into memory.

Proof. It can be proved by contradiction. Assume there exists such an index en-
try whose term is one of the search terms sti, and payload address is p ≥cutoff.
In addition, the metadata page it belongs to has not been loaded yet. It means
that the contents in page[i] are from some ancestor in the same chain. An im-
portant property of metadata page chain is that if page i is an ancestor of page
j, then min(i) > max(j). Thus, min(page[i]) > p ≥cutoff. It is a contradiction
with the definition of cutoff.

A k-length array result[k] is used to store the intermediate results which are
the candidates of final reply. Every time we get a new IR score, this array will
be updated to keep the current top-k results. The processed index entries will be
eliminated from memory. When page[i] is empty, we load the next metadata page
in the chain from flash memory and repeat this process. Based on the definition
of cutoff, there must be at least one page[i] becoming empty after each iteration.
The algorithm terminates when ∀i, page[i] = φ and every chain reaches its tail.
In this design, instead of loading every metadata page, we load at most one page
for each query term. Thus, the memory space needed is at most O(E · t), where
E is the size of a metadata page.

Note that in practice we actually traverse each index chain twice, the first
time to obtain the DF for the term, and the second time to execute the actual
query algorithm. This is done to match the DF definition in the simple TF/IDF
scoring algorithm adopted for this paper. If alternative scoring algorithms that
do not require this form of IDF calculations are used, this extra traversal can
be avoided.

5 Theoretical Model

A key parameter in designing Microsearch is the size of the inverted index. We
first present the intuition behind the choice of inverted index size, followed by
the theoretical model.

With a smaller inverted index, uploading information into Microsearch is
faster. When the buffer cache is full, Microsearch evicts data from the buffer
cache into flash memory. Microsearch groups all the metadata terms which hash
to the same inverted index slot together for eviction. Recall that writing data to
flash memory occurs on a page granularity. In other words, the cost of writing
a page into flash memory is the same even in situations where there are not
enough metadata terms hashing to the same inverted slot to make up a flash
page. A smaller inverted index results in more metadata terms hashing to the
same inverted index slot. This increases the probability of more entries being
flushed out of the buffer cache each time.

With a larger inverted index, query performance is better. A larger inverted
index will have fewer metadata terms hashing to each slot. As a result, the chain
of metadata pages in flash memory which map to each inverted index slot is



Algorithm 1 Reply Top-k Query:

1: Input: k, {st1, st2, . . . , stt}
2: Output: k-length array result

3: head[i] = InvIndex[hash(sti)]
4: Scan buffer and each relevant metadata page chain to accumulate the document

frequency (df [i])
5: Load relevant index entries in buffer to the buffer page page[i]
6: If page[i] is empty, load Flash(head[i]) and move head[i] to the next page
7: while there exists a non-empty page[i] do

8: cutoff=max{min(page[i])}
9: for non-empty page[i] and max(page[i]) ≥ cutoff do

10: for every entry e ∈ page[i] and e ≥cutoff do

11: score = calScore(e)
12: if score>minimum score in result then

13: replace the entry with the minimum score in result by {e, score}
14: for j = 1 to t do

15: remove e from page[j]
16: for i = 1 to t do

17: if page[i] is empty then

18: load Flash(head[i]) to page[i]
19: move head[i] to the next metadata page
20: return result

shorter. When replying to a query, Microsearch has to read in the entire chain of
metadata pages. A shorter chain of metadata pages means that fewer pages are
needed to be read from flash memory, and thus speeding up query performance.
The variables used for our model are found in Table 1.

D # of documents

m # of metadata per document

t # of query terms

H Size of main index

E Size of metadata page

B Size of buffer

fs Query frequency

Table 1. System Model Variables

Query Performance: Assume there are D number of files stored in the
flash memory and each of them is described by m terms on average. Totally,
we need store D · m index entries in the flash, which occupy D·m

E
metadata

pages. Considering a fair hashing, the average length of metadata page chain
is D·m

E·H . When Microsearch processes a query for one term, based on the hash
value of the term, it has to go through one of the metadata page chain twice.



One round for collecting the value of DF and the other for finding the top-k
answers. Expectedly, Microsearch will need to read 2·D·m

E·H metadata pages from
the flash. For a query for t terms, Microsearch has to access t distinct metadata
page chains, when t ≪ H . Thus, it takes at most 2·t·D·m

E·H page reads to reply.

Insert Performance: Insert performance is measured by the number of
reads and writes operated during inserting D files. In our scheme, the number
of reads is roughly the same as the number of writes. Microsearch only writes
metadata pages to the flash in buffer eviction. Thus, the insert performance
depends on the number of flushed entries during each eviction. Let x denote the
number, i.e., on average, every eviction puts x index entries to the flash. After
inserting all the files, D · m − B entries are written to the flash. Thus, we need
D·m−B

x
writes for them. Next, we give an analysis of deriving the value of x.

According to our scheme, x is the most frequent hashed value when the buffer is
full. Obviously, x is at least ⌈B

H
⌉. For one hashed value hi, the probability that

p entries in the buffer map to hi is

(

B
p

) (

1

H

)p

(1 −
1

H
)(B−p).

Thus, the probability that at least p entries map to hi is

q =
∑

j≥p

(

B
j

) (

1

H

)j

(1 −
1

H
)(B−j).

The probability that x ≥ p is P (x ≥ p) = 1 − (1 − q)H . Thus,

P (x = p) = P (x ≥ p) − P (x ≥ p + 1).

Therefore, the expected value of x is

E(x) =

B
∑

i≥⌈ B
H

⌉

P (x = i) · i.

In total, inserting D files requires D·m−B
E(x) number of writes and the same

number of reads.

6 System Evaluation

We use the TelosB mote for our experiments. The TelosB mote features a 8MHz
processor, 10KB RAM, 48KB ROM and 1MB of flash memory. An IEEE 802.15.4
standard radio is used for wireless communication. The entire package is slightly
larger, measuring 65 × 31 × 6 mm, and weighs 23 grams without the battery.



6.1 Generating Workload Data

A difficulty in evaluating a search system lies in determining an appropriate
workload. An ideal workload should consists of traces derived from real world
applications. However, since Microsearch-like applications do not yet exist, we
cannot collect such traces for evaluation. This also makes generating synthetic
traces that approximate user behavior difficult. We generated our workload by
observing related real world applications.

We envision that most objects such as a wedding photograph album or a
document binder will embed a mote running Microsearch. Since each object has
its own mote, each mote does not necessarily have to contain a large amount of
unique data. For instance, a large bookshelf may contain hundreds of document
binders, with a combined total of thousands of documents. However, each binder
may contain only a dozen documents. Since each binder embeds a mote, each
mote only needs to index the contents of its own binder. Consequently, none of
our workloads consider excessively large number of unique data.

Our evaluation consists of two workloads. The first is the annotation work-

load which represents a user storing many short pieces of information, similar
to Post-it reminders or memos, onto a mote. The metadata a user would asso-
ciate with these type of applications is usually very short. We want a real world
application where many users provided annotations, since this closely resembles
the metadata we desire. One such application is the annotation of online pho-
tographs. We extracted 622 photographs and their accompanying annotations
from the website www.pbase.com. This created a set of 2059 metadata terms, an
average of 3.3 metadata terms per photograph. We consider each photograph as a
unique input, and each photograph’s annotation as the corresponding metadata
terms. The metadata value of each term is set to 1. Fig. 3 shows the metadata
term distribution for this workload.

The second workload is the doc workload. This workload represents a mote
used for tracking purposes, such as keeping track of the documents inside a
binder. We assume that the binder contains academic publications, and the
accompanying mote contains the abstracts of all the papers. A user can query
Microsearch just like querying Google Scholar to determine if a particular paper
is inside the binder. To create the doc workload, we extracted 21 papers from the
conference proceedings of Sensys 2005, and derived an average of 50 metadata
terms for each paper. The metadata terms include author names, paper title,
keywords. Metadata values are based on the number of times each term appeared
in the paper abstract.

6.2 System Performance

We use the annotation workload to evaluate system performance. The objective
is to determine the performance of the two main Microsearch components: index-
ing the data sent by a user, and replying a user query. Time is the main metric
used. In addition, for every evaluation, we present both the actual measured
performance, and the predicted performance derived from our theoretical model
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introduced earlier. The closer the predicted results match the actual results, the
more accurate our theoretical model is.

To prepare, we first generate a set of queries by randomly choosing terms
from the 2059 harvested annotations. We then divided the set of queries into
four groups, with the first group containing queries with one search term, the
second group with queries containing two search terms and so on. Each group
has a total of 100 queries. We limit the number of search terms to at most four
terms, since studies conducted on mobile search conclude that most searches
consists of between 2 and 3 terms [8, 3, 17].

We then inserted the 622 metadata files with a total of 2059 metadata terms
into Microsearch. This is equivalent to inserting 622 short messages into the
mote. Fig. 4 shows the time taken to insert all the terms into Microsearch.
We see uploading information is faster given a smaller inverted index. This is
consistent with the intuition given in the prior section.

In Fig 5, we show the time taken for Microsearch to satisfy a user’s query. As
discussed in the theoretical model, we see that a larger inverted index processes
queries faster than a smaller inverted index. The predicted query response time
is also very close to the measured time. Overall, Microsearch is able to satisfy
a user’s query in less than two seconds, which we believe is a reasonable time.
Fig 6 shows the actual overhead of Microsearch minus the time taken to read
from flash memory. We see that the additional time taken to rank the query
answers is less than 0.5 seconds.

6.3 Search Accuracy

Shah and Croft [25] suggested using metrics from question answering (QA) re-
search [27] to evaluate search algorithms for bandwidth or power constrained
devices. QA is a branch of information retrieval that returns answers instead of
relevant documents in response to a query. In QA research, the goal is to return
a single or a very small group of answers in response to a query, not all relevant
documents. The main evaluation in QA is the mean reciprocal rank (MRR).
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Fig. 5. Predicted and actual query response time. Response time measured in seconds

MRR is the calculated as

MRR =
1

rank of first correct response
.

The first correct response is the top ranked document in the model answer.
For example, consider the model answer to a query be the ranked list (A, B, C)
and the IR system returns the list of (C, B, A). The first correct answer should
be A and the returned answer is 2 spots off. The MRR for this question is thus
1
3 = 0.33. We evaluate the performance of our search system by modifying the
guidelines for QA track at TREQ-10 [5]. We consider only the top 3 answers
in calculating MRR. If the model answer does not appear within the top three
ranks, it has a score of 0.

We use the doc workload to evaluate the accuracy of Microsearch. We first
determine a set of queries based on the 21 publications, and their corresponding
answers by hand. These questions are divided into three groups, LastName,
T itle and KeyTerms. The queries for the first two categories are terms from
the last names and paper titles of the conference proceedings. The queries for
the last category are a mixture of terms from last names, titles and abstract
keywords.

Our evaluation does not consider deliberately vague queries since it is difficult
to objectively quantify what the answer should be. Instead, we generated queries
which contain terms that are found in multiple documents, but these queries have
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a clear answer. An example of a query is “underwater sensor storage”. There is
only one paper containing the term “underwater”, and three papers containing
the term “storage”. Almost all papers contained the word “sensor”. The correct
answer is should be the only paper on underwater sensors. However, two other
papers contain more occurrences of the term “storage”. A good search system
will be able to rank the most likely result ahead of a less likely one.

Fig. 7 shows the results of our search system for the three categories. For
each category, we plot the MRR for the different categories over the average
of 21 questions. From the figure, our system returns a MRR of 0.95 for both
LastName and KeyTerms. The MRR for T itle is lower at 0.83, because some
of the paper titles contained very common words like “Packet Combining In
Sensor Networks”. In all cases, we see that on average Microsearch will return
the correct answer when the user specifies k = 3.

6.4 Alternative Design
An alternative system design is to not use an inverted index at all. The incoming
metadata is buffered and flushed to flash when there are enough entries to make
up a full metadata page. Each metadata page will contain a pointer to the previ-
ous metadata page in flash. A single entry kept in memory remembers the latest
metadata page’s location in flash. When querying, Microsearch accesses every
metadata page in flash before replying since every metadata page could contain
a payload matching the query terms. The intuition is that such a scheme will
have a better indexing performance at the expense of worse query performance.

To evaluate, we used a 1KB memory limit. The alternative design will allo-
cate all as much space as possible to the buffer cache, and have just one main
index entry. Microsearch uses a balanced approach, using an inverted index size
of 76B, and a buffer cache of 944B. The alternative system takes an average of
6.5 ms to index the metadata in one file compared to the 20 ms for our scheme.
Fig. 8 shows the difference in query response time for different number of query
terms. Next, we compare the energy consumption between our scheme and the
alternative scheme. Since both schemes have to do the same amount of writing
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for the payload data given the same document set, our comparison only mea-
sures the energy consumption of metadata input and query. Let Pw and Pr be
the energy consumption for writing and reading one page data in flash memory
respectively. Given the input insertion frequency fu and user query frequency
fq, the energy consumption is determined by the amount of metadata writing
during the input insertion period and the amount of metadata reading during
the query period. For the simplicity, we ignore the energy consumption of CPU
processing because that part is much smaller compared with the flash memory
read and write operations. On a per unit time basis, the energy consumption of
our scheme can be expressed as E1 = fu · Wi · (Pw + Pr) + fq · Rq · Pr, where
Wi is the number of pages written for the metadata in the worst case (when m
terms are mapped to m different index entries), and Rq is the number of page
read operations required for the query. From Section 5, we have Wi = m

B
H

+1
and

Rq = 2·D·m·t
E·H .

Similarly, the energy consumed by the alternative scheme can be expressed as
E2 = fu ·W

′
i ·(Pw +Pr)+fq ·R

′
q ·Pr, where W ′

i = m
E

, and R′
q = 2·D·m·t

E
. With the

system parameters fixed at D = 622, m = 3, E = 31 and H = 32, we estimate
the energy consumption for both schemes based on TelosB flash memory read
and write energy performance presented in [21] (i.e., Pw = 0.127×256 = 32.5µJ ,
Pr = 0.056 × 256 = 14.3µJ). To compare our scheme with the alternative, we
find the ratio of E1

E2

. Values less than 1 favor our solution while values larger than
1 favor the alternative. To simplify the results, we divide both E1 and E2 by fq,

which does not affect the ratio. As a result, E1

E2

becomes a function of fu

fq
. We plot

the energy ratio graph with 2, 3 and 4 query terms respectively. The estimation
results are found in Fig. 9. The figure shows that for an average of 2 query terms,
the alternative performs better when there are about 140 document insertions
to a single query. For an average of 3 and 4 query terms, the alternative scheme
performs better only when there are 200 and 260 document insertions to a single



query. This suggests that the alternative scheme should be used only when the
mote is used to store data and rarely if ever queried.

7 Conclusion and Future Work

In this paper, we present a search system for small devices. Our architecture
can index an arbitrary number of textual metatdata efficiently. A space saving
algorithm is used in conjunction with IR scoring to return the top-k answers to
the user. Our experimental results show that Microsearch is able to resolve a
user query of up to four terms in less than two seconds, and provide a high level
of accuracy.

In future work we aim to implement security measures such as access con-
trol and data encryption into Microsearch and evaluate their performance. We
also plan to incorporate Microsearch into our physical world search engine,
Snoogle [28], for further evaluation.
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