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Abstract. In this paper we prove global convergence for asynchronous parallel pattern search.
In standard pattern search, decisions regarding the update of the iterate and the step-length control
parameter are synchronized implicitly across all search directions. We lose this feature in asyn-
chronous parallel pattern search since the search along each direction proceeds semi-autonomously.
By bounding the value of the step-length control parameter after any step that produces decrease
along a single search direction, we can prove that all the processes share a common accumulation
point and, if the function is continuously differentiable, that such a point is a stationary point of the
standard nonlinear unconstrained optimization problem.
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1. Introduction. Asynchronous parallel pattern search (APPS) was introduced
in [5] as a way to solve in a parallel or distributed computing environment nonlinear
optimization problems of the form

min
x∈Rn

f(x), where f : Rn → R.(1.1)

In this paper, we prove that a subsequence of the sequence of iterates produced by
asynchronous parallel pattern search (APPS) converges to a stationary point of (1.1),
if f is continuously differentiable.

To do so, we build on the global convergence results for pattern search established
in [7, 10, 11]. What distinguishes this analysis from the earlier work is the need to
address the new concerns introduced by the asynchronism. The analyses in [7, 10,
11] rely on the fact that the more usual implementations of pattern search have
complete knowledge of information acquired during the course of the search when
making decisions about how to proceed. In contrast, APPS partitions out each search
direction to a single process and, to eliminate idle time, does away with the close
synchronization of the searches along each direction. This means that the search
along the single direction governed by an individual process is allowed to proceed
semi-autonomously. By this we mean that each process is allowed to make its own
decisions regarding the update of the iterate and the length of the next step, based only
on the information currently available to it, even though that information may not be
up-to-date with respect to the other processes. Further, there is no single controlling
process. Instead, information between processes is exchanged intermittently so that
eventually all processes learn of every reasonable candidate for the minimizer. The
only assumption we make is that information about success (i.e., a decrease in the
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value of f) on one process reaches all other processes in a finite amount of time. We
make no assumption about the order in which such information is received. Thus
the processes act as a loose confederation of agents working toward a single goal: the
identification of a stationary point of (1.1). The advantage of allowing processes to
proceed semi-autonomously is that we can eliminate synchronization barriers so that
we achieve good computational performance when working in a parallel or distributed
computing environment, as our tests in [5] demonstrate.

The critical issue for our analysis is that APPS makes decisions about the up-
dating the length of the next step and the best point in the absence of complete
information about the progress of the searches along the other directions. Therefore,
at any given time in the search, neither the value of the parameter each process uses
to determine the length of the step, nor the value of the best point, may be the same
across participating processes. Another minor aspect in which we differ from previous
analysis is that we do not fix the contraction and expansion parameters used to up-
date the step lengths. These differences require significant extensions to the analyses
found in [7, 10, 11]. The key to safeguarding the overall outcome of the search lies
in bounding the values which the parameter that controls the lengths of the steps is
allowed to assume after any step that produces decrease on f (i.e., after a successful
step).

In §2 we describe a synchronous variant of parallel pattern search and use it to
motivate our asynchronous parallel pattern search algorithms. In §3 we outline APPS
and introduce the extensive notation required for our analysis. We hasten to add that
most of this bookkeeping, which is essential to our analysis, is not required in practice.
A full treatment of the practical design and implementation of APPS is deferred to [5].
Since the notational overhead required for the analysis is significant, we refer interested
readers to [6] for an example of APPS applied to a simple function, an illustration
of the associated notation, and a discussion of those features of the asynchronous
algorithms that most complicate the analysis. In this paper, we concentrate on the
analysis, which is broken into four parts, covered in §§5–8. In §9 we close with some
remarks regarding further extensions that could be made to the analysis.

Standard notation. We denote by R, Q, Z, and N the sets of real, rational,
integer, and natural numbers, respectively.

We use pow(Λ, `) to indicate that Λ is raised to the power `, so that pow(Λ, `) ≡
Λ`. We adopt this notational convention to eliminate any ambiguities that could arise
when we introduce superscripts for use as indices.

2. Parallel pattern search. We start by considering a synchronous version of
parallel pattern search (PPS) to clarify the notation and motivate APPS.

We assume that we have p independent processes, each of which is generating a
sequence of trial points. We denote the set of processes as

P = {1, . . . , p}.

We work with a finite set of search directions

D = {d1, . . . , dp} = {Bc1, . . . , Bcp},(2.1)

where
• B ∈ Rn×n is a real nonsingular matrix,
• ci ∈ Qn for each i ∈ P, and
• the vectors in the set D form a positive spanning set [7] for Rn.
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To each process i ∈ P we assign the constant search direction di ∈ D. We constrain
the vectors ci, i = {1, . . . , p}, to the rationals to ensure that all iterates lie on a rational
lattice, which, as we see in §5, is required for the proof of Theorem 5.2. However, we
allow a mapping of the rational vectors ci to the real vectors di through the use of a
fixed real nonsingular matrix B.

We denote by xki the best point (i.e., one with the least function value) known by
process i at iteration k. We denote by ∆k

i the scalar that controls the length of the
step taken along the direction di to construct a new trial point at iteration k. We refer
to ∆k

i as the step-length control parameter. For the synchronous version of pattern
search, the subscript i on x and ∆ is redundant since the synchronization ensures
that the values of xki and ∆k

i are equivalent for all i ∈ P; however, this subscript
becomes meaningful in the asynchronous case, so we introduce the notation here for
comparison.

Each process i ∈ P constructs a trial point by computing

xki +∆k
i di(2.2)

and then evaluates f at this point. After the evaluation has finished on process
i, process i broadcasts the result to all the other processes in P and then waits
until it has received results from all the other processes in P. This is the point of
synchronization; no further action can be taken on process i until all the results from
all the other processes in P are known. Once all p results are known to all p processes,
a decision is made simultaneously as to which point is now best, and then xki and ∆k

i

are updated to produce xk+1i and ∆k+1
i . We assume that any ties are broken in a way

that ensures all processes arrive at an identical choice for the new best point.
Because it is convenient for what follows, we replace the notion of iterations with

the notion of occurrences at certain time steps as measured by a global clock like that
used in other asynchronous convergence proofs; c.f. [2]. Let the infinite set

T = {0, 1, 2, . . .}

be the index of time steps. We assume that the time steps are of fine enough resolution
that at most one event (i.e., a change in the best known point and/or the value of the
step-length control parameter) occurs per time step, per process. In the synchronous
case, iterations can be thought of as coarse time steps.

Using our global clock, we can represent the consequence of a single iteration, say
k, for a single process, say i ∈ P, on a timeline as illustrated in Figure 2.1. At time

. . .
t0

iteration k

. . .
t1

i finishes
f(x

t0
i
+∆

t0
i

di)

. . . -
t2

iteration k + 1

-¾ i idle

Fig. 2.1. Timeline for synchronous pattern search for process i

step t0, process i starts a function evaluation at its trial point given by

xt0i +∆t0
i di.

Observe that the notation introduced in (2.2) has changed. Now the time step re-
places the iteration number in the superscript and, from now on, we use time steps
as our indices. At time step t1, process i finishes its evaluation of f(xt0i + ∆t0

i di)
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and broadcasts its result to the remaining processes. We assume that at some time
step t2, all processes in P have received the results from all other processes, so each
independently decides on the point that is now best. Since each process knows the
results from all p processes in P, and since ties are broken in a consistent fashion, all
p processes will arrive at the same conclusion as to which point is now best. Each
process then updates its copies of the best point and the step-length control param-
eter to obtain xt2i and ∆t2

i . Iteration k + 1 then begins. Note that from time step t1
until time step t2, process i is idle.

For process j ∈ P, j 6= i, the procedure differs in only two respects. First, the
trial point is calculated using a different search direction dj ∈ D to yield

xt0j +∆t0
j dj .

Recall that xt0j = xt0i and ∆t0
j = ∆t0

i due to the synchronization. Second, we have
no guarantee that the evaluation of f at the trial point will take the same number of
time steps on process j as it did on process i. At one extreme is the possibility that
the evaluation of f takes only a single time step, which would give us the scenario
illustrated in Figure 2.2, where t̂1 denotes the time step at which the function evalu-
ation on process j finishes. In this case, t̂1 = t0 + 1 and process j is idle from time
step t0 + 1 to time step t2. At the other extreme, we have the scenario in Figure 2.3,

. . .
t0

iteration k

t̂1 = t0 + 1

j finishes
f(x

t0
j
+∆

t0
j

dj)

. . . -
t2

iteration k + 1

-¾
j idle

Fig. 2.2. Timeline for synchronous pattern search for process j

so that there is effectively no idle time on process j. Note that in this case we have
assumed that the communication is instantaneous—our theory allows for this possi-
bility as well as the possibility that communication may take up to a finite number
of time steps.

. . .
t0

iteration k

. . . -
t̂1 = t2

j finishes f(x
t0
j
+∆

t0
j

dj)

iteration k+1

Fig. 2.3. Alternate timeline for synchronous pattern search for process j

We stress that even though the time required to finish a function evaluation may
vary from process to process and from iteration to iteration, the synchronization
ensures that, across all processes, iteration k begins at time step t0 while iteration
k + 1 begins at time step t2.

The goal of asynchronous parallel pattern search is to eliminate the synchroniza-
tion since it potentially can waste CPU cycles, as our examples in Figs. 2.1 and 2.2
demonstrate and our experimental evidence in [5] confirms. As we see in the next
section, APPS allows each process to update its xti and ∆t

i independently whenever a
function evaluation finishes and/or a new message arrives.

3. Asynchronous parallel pattern search. Like PPS, APPS [5] uses p pro-
cesses collectively to solve (1.1). Each process is in charge of searching along a single
search direction from its best known point, and the best known point and the value
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of the step-length control parameter are varied according to internal and external
events. The difference is that individual processes in APPS no longer wait for infor-
mation from the other processes before making a local decision as to the next best
point. Once the decision is made, the process then updates its record of the best point
and the step-length control parameter, constructs a new trial point, and immediately
begins a new evaluation of the objective function.

Because we no longer have synchronization after every function evaluation, de-
cisions now depend on the time step at which they are made. Therefore, we index
according to the global clock described previously. We then define the following for
each process i ∈ P and time step t ∈ T :

xti = the best known point at time step t for process i and

∆t
i = the step-length control parameter at time step t for process i.

In APPS, the current values of the best point and the step-length control parameter
can be different across processes at the same time step t ∈ T . Therefore, the subscript
i is no longer redundant, and it is possible that xti 6= xtj and/or ∆

t
i 6= ∆t

j . On a single

process i ∈ P, we are guaranteed that at any time step t ∈ T , f(xt+1i ) ≤ f(xti).

The values of xti and ∆t
i are not necessarily changed at every time step. Let

Ti = the set of time steps at which xti and/or ∆
t
i is changed,(3.1)

so that Ti ⊆ T . For each process i ∈ P we categorize each time step t ∈ T as either
successful or unsuccessful. We also need to observe further distinctions within each
of these two categories, which we detail in §3.2 and §3.3.

3.1. Assumptions. As a practical matter, we assume that at the start of the
search the best point and the value of the step-length control parameter are equal for
all i ∈ P; that is, there exist x0 ∈ Rn and ∆0 ∈ R, ∆0 > 0 such that

x0 = x01 = x02 = · · · = x0p and ∆0 = ∆01 = ∆02 = · · · = ∆0p.(3.2)

We further assume that the value f(x0) is known by all processes.

As is standard for pattern search analysis, we assume

L(x0) = { x ∈ Rn : f(x) ≤ f(x0) } is bounded.(3.3)

Also, to ensure that APPS always converges to a stationary point of (1.1), we assume
that f is continuously differentiable on the closure of L(x0), though we need this
assumption only for our final result, Theorem 8.5.

We assume that D, the set of search directions, is fixed and finite and of the form
given in (2.1) with the conditions that B is a real nonsingular matrix, that ci ∈ Qn

for each i ∈ P, and that the vectors in the set D form a positive spanning set for Rn.

We assume that the initial step-length control parameter is constrained by

0 < ∆min ≤ ∆0 ≤ ∆max < +∞,(3.4)

where ∆min and ∆max are constants. These same constants are used to bound ∆t
i

after any step that produces decrease on f (i.e., after any successful time step). This
condition is given in (3.10) and is described fully in §3.2.1.
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We assume that both the maximum time for a function evaluation and the max-
imum time for a single communication are finite; we quantify those as

η = maximum number of time steps for evaluating f at a given x and(3.5)

γ = maximum number of time steps for communicating a message.(3.6)

We assume that the minimum time for evaluation and communication are one and
zero time steps, respectively.

3.2. Successful time steps. On process i, we characterize any time step t ∈
T at which we identify a point with a strictly lower value of f as successful. We
further distinguish between internal and external successes depending on whether
the information that identified improvement in the value of f was computed locally
or received in the form of a message from another process; we detail these distinctions
in §3.2.1 and §3.2.2.

We pay special attention to points that produce equal values of f since we must
break ties in a consistent fashion. This becomes particularly critical in the asyn-
chronous case since equivalent function values are likely to become known to each
process at different time steps and perhaps in reverse order. To ensure the conver-
gence of the overall search, we must ensure that when faced with equivalent function
values, every one of the participating processes arrives at the same decision as to
which of the points known to produce the same function value should be considered
“best.” Thus, we may have reason to classify some time steps as successful, even
when they do not strictly improve the value of f . We describe such situations in more
detail in §3.2.2.

3.2.1. Internal successes. The first type of successful time step is an internal
success, which can occur when a process finishes a function evaluation. Suppose that
on process i ∈ P a function evaluation starts at some time step, say t0, (using x

t0
i and

∆t0
i to generate the trial point) and finishes at some later time step, say t1. We can

represent this on a timeline as in Figure 3.1.

. . .
t0

i starts
f(x

t0
i
+∆

t0
i

di)

. . . -
t1 − 1 t1

i finishes
f(x

t0
i
+∆

t0
i

di)

-¾
≤ η

Fig. 3.1. Timeline for asynchronous pattern search on process i

The time step t1 is considered an internal success when the following condition is
satisfied:

f
(

xt0i +∆t0
i di

)

< f
(

xt1−1i

)

.(3.7)

We compare f
(

xt0i +∆t0
i di

)

to f
(

xt1−1i

)

, rather than to f
(

xt0i
)

, since it is possible

that xt1−1i 6= xt0i due to an external success, which is described in the next section.
When (3.7) is not satisfied, the time step is unsuccessful, as described in §3.3. Other-
wise, when (3.7) is satisfied, we say that time step t1 ∈ Ii, where

Ii = the set of internal successful time steps for process i.

We then update xi as follows:

xt1i = xt0i +∆t0
i di;
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in other words, xt1i is set to the point that produced the best known function value.
Further, we update the step-length control parameter ∆i as follows:

∆t1
i = λt1i ∆

t0
i ,

where λt1i is the expansion parameter for the update at time step t1. Before we define
the expansion parameter for the update, we first define the rational constant

Λ ∈ Q, Λ > 1,(3.8)

which controls the scaling of all steps. Returning to the choice of λti, we require it to
satisfy two conditions. The first condition is that λti be a nonnegative integer power
of Λ; i.e.,

λti = pow(Λ, kti)(3.9)

for some

kti ∈ {0, 1, 2, . . .}.

Since Λ > 1 and kti is nonnegative, λ
t
i ≥ 1. The second condition on the choice of λti

is that the new step-length control parameter must satisfy

0 < ∆min ≤ ∆t
i ≤ ∆max < +∞,(3.10)

where ∆min and ∆max are the same constants used in (3.4). Note that (3.10) applies
only to updates associated with successful time steps. The bounds on ∆t

i implicitly
restrict the value of kti that may be chosen in (3.9).

The lower bound on ∆ is new to the asynchronous analysis; in §4 we give an
example that shows why this lower bound is necessary to ensure an accumulation
point that is common to all processes. As for the upper bound on ∆, we could use the
assumption that L(x0) is bounded, given in (3.3), to yield an implicit upper bound on
∆, as is done in the analyses in [7, 10]. For convenience, here we assume the existence
of an explicit upper bound and thus eliminate the dependence on f .

Once xi and ∆i are updated, process i broadcasts the new best point, its function
value, and the new step-length control parameter to all the other processes in P for
them to consider as a candidate for new best. Process i then proceeds with the
construction and evaluation of xt1i +∆t1

i di.

3.2.2. External successes. The other type of successful time step is an external
success. Suppose that an internal success occurs on process i at time step t1, as just
described in §3.2.1. Then at some time step t2 ≥ t1, process j, j 6= i, receives the
broadcast from process i with the new best point found by process i, along with its
associated function value and step-length control parameter. We assume that process
j can immediately assimilate the newly received information even if it is currently
in the midst of a function evaluation. In the implementation described in [5], we
achieve this by executing the function evaluation as a separate thread or process. We
represent this example of an external success on the timeline in Figure 3.2.

There are three possibilities when process j receives a message from process i:
the function value associated with the incoming point is either better, equal, or worse
than the function value of the best point at the previous time step. Certainly, if
f
(

xt1i
)

< f
(

xt2−1j

)

holds, then process j now has a new best point, received from
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. . .
t0

i starts
f(x

t0
i
+∆

t0
i

di)

. . .
t1

i finishes
f(x

t0
i
+∆

t0
i

di)

. . . -
t2 − 1 t2

j receives from i

f(x
t0
i
+∆

t0
i

di)

-¾
≤ γ

Fig. 3.2. Timeline for asynchronous pattern search message from process i to process j

the external process i, and it should update its local values for the best point and the
step-length control parameter in light of this new information. However, if f

(

xt1i
)

>

f
(

xt2−1j

)

, process j should simply discard the new information since xt2−1j is clearly

better than xt1i .
The interesting question is what to do when f

(

xt1i
)

= f
(

xt2−1j

)

. To ensure the
robustness of the search procedure, we define a comparison operator ≺. Given any
x, y, z ∈ Rn, ≺ denotes a comparison that satisfies the following two conditions:

1. x ≺ y and y ≺ z implies x ≺ z, and
2. x = y (i.e., neither x ≺ y nor y ≺ x) only if x[i] = y[i] for i = 1, . . . , n where

the notation x[·] denotes the ith entry of the vector x.
We can use any definition for the comparison operator≺ so long as it satisfies these two
conditions. For example, we may use the following ordered elementwise comparison.
We say x ≺ y if there exists j ∈ {1, . . . , n} such that x[j] < y[j] and x[i] = y[i] for
i = 1, . . . , j − 1. Given a way to resolve ties, we are now ready to define an external
success.

The time step t2 is considered an external success if either

f
(

xt1i
)

< f
(

xt2−1j

)

or f
(

xt1i
)

= f
(

xt2−1j

)

and xt1i ≺ xt2−1j .(3.11)

If (3.11) is satisfied, we then say that t2 ∈ Ej where

Ej = the set of external successful time steps for process j.

The updates are

xt2j = xt1i

and

∆t2
j = ∆t1

i .

We assume that the receipt of an external message does not affect the status of a
function evaluation that may be executing on the receiving process.

3.2.3. Additional comments on what constitutes a success. Now that we
have defined what constitutes both an internal and an external success, we define

Si = Ii ∪ Ei = the set of successful time steps for process i.

We emphasize again that although internal successes require strict decrease in
the function value as seen in (3.7), external successes relax the requirement of strict
decrease and instead use the comparison operator ≺ to break ties, as shown in (3.11).
This ensures that all processes agree on the best point even when different points
generated by different processes have the same function value.
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3.3. Unsuccessful time steps. Any time step that is not successful is classified
as unsuccessful. We let the set

Ui = T \ Si,

denote the unsuccessful time steps on process i ∈ P. There are two types of unsuc-
cessful time steps.

3.3.1. Contractions. Consider again the function evaluation on process i that
starts at time step t0 and finishes at time step t1, as shown in Figure 3.1. We say
that time step t1 is a contraction if (3.7) is not satisfied and xt1−1i = xt0i ; i.e., there
is no reduction in the function value and xi has not been updated since time step t0
(which also means that ∆t1−1

i = ∆t0
i ). In terms of time steps, t1 6∈ Ii and t 6∈ Ei for

any t ∈ {t0 + 1, . . . , t1 − 1}.
In this case, process i is required to reduce the value of its step-length control

parameter ∆t1−1
i before continuing the search along its direction di. This means that

t ∈ Ti since ∆
t1−1
i , though not xt1−1i , is changed. More specifically, we say that t1 ∈ Ci

where

Ci = the set of contraction time steps for process i.

Note that Si ∩ Ci = ∅ since Ci ⊆ Ui.
We update the step-length control parameter ∆i as follows:

∆t1
i = θt1i ∆t1−1

i ,

where θt1i is the contraction parameter at time step t1. The choice of the contraction
parameter θti is subject to the following condition, using the same Λ as in (3.9),

θti = pow(Λ, `ti),(3.12)

for some

`ti ∈ {−1,−2,−3, . . . , `
min},(3.13)

where `min is a finite integer constant. Together, (3.8), (3.12), and (3.13) imply that

θti ∈ [θmin, θmax] ⊂ (0, 1), where θmin = pow(Λ, `min), θmax = pow(Λ,−1).(3.14)

3.3.2. The trivial case. The final possibility is that no changes to either xti or
∆t
i occur on process i for a given time step t; in other words, t 6∈ Ti. This situation

could occur for several reasons.
One possibility would be that process i is still evaluating f at a trial point con-

structed at some time step t0 < t and that evaluation does not finish during time step
t. Thus, t 6∈ Ii and t 6∈ Ci.

A further possibility is that no external candidate arrives from process j, j 6= i,
or an external candidate does arrive, but it is immediately discarded since its function
value does not improve upon f(xt−1i ). Thus, t 6∈ Ei.

A last possibility is that at time step t, process i does finish evaluating f at a trial
point constructed at some time step t0 < t but the function value does not improve
upon f(xt−1i ), so t 6∈ Ii. However, before assigning t to Ci, we must verify that
xt−1i = xti. If xt−1i 6= xti, that means that at least one external success occurred on
process i at some time step t̂ ∈ {t0+1, . . . , t−1}. Let t̂ = max{{t0+1, . . . , t−1}∩Ei}.
In this case, since we have already recorded the external success at time step t̂, we
construct a new trial point without further changes to xt̂i or ∆t̂

i and initiate a new
function evaluation. Thus, while t̂ ∈ Ei, t ∈ Ui \ Ci.
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3.4. Multiple decisions in one time step. We allow for the possibility that
multiple candidates for the best point may be considered simultaneously at time step
t ∈ T if, for instance, multiple messages have arrived from external processes or there
is both an internal candidate as well as one or more external candidates to consider.

3.5. Identifying the source of a change. If a function evaluation finishes at
time step t1, a new one is started at time step t1 using the values xt1i and ∆t1

i —at
least one of these values is guaranteed to have changed since time step t0 from either
an internal success, an external success, or a contraction.

To identify where a change to xti, and possibly ∆t
i, was generated (i.e., on which

process) and at what time step the corresponding function evaluation started and
finished, for each i ∈ P and for all t ∈ Si we define the following generating functions:

ωi(t) = the index of the process generating the update at time step t on process i,

τi(t) =
the time index for the initiation of the function evaluation that
produced the update at time step t on process i, and

νi(t) =
the time index for the completion of the function evaluation that
produced the update at time step t on process i.

Here

ωi(·) : Si → P, τi(·) : Si → T , νi(·) : Si → T , and 0 ≤ τi(t) < νi(t) ≤ t.

For our example of an internal success on process i, so that t1 ∈ Ii, as illustrated
in Figure 3.1, we have ωi(t1) = i, τi(t1) = t0, and νi(t1) = t1. In fact, ωi(t) = i and
νi(t) = t for all t ∈ Ii.

For our example of an external success on process j, so that t2 ∈ Ej , as illustrated
in Figure 3.2, we have ωj(t2) = i, τj(t2) = τi(t1) = t0, and νj(t2) = νi(t1) = t1.

The generating functions play an important role in the proofs of Lemma 5.1,
Theorem 5.2, Lemma 7.4, and Corollary 7.5.

3.6. The definitions for xti and ∆t
i. For every t ∈ T , t > 0, the best point xti

for process i ∈ P is defined to be:

xti =

{

x
τi(t)
ωi(t)

+∆
τi(t)
ωi(t)

dωi(t), if t ∈ Si, and

xt−1i , otherwise.
(3.15)

Recall that we initialize the procedure with x0 as shown in (3.2). Thus, xti is changed
on process i ∈ P only at successful time steps t ∈ Si.

Changes in ∆t
i must occur at contraction time steps and may occur at successful

(internal or external) time steps. Correspondingly, for every t ∈ T , t > 0, the step-
length control parameter ∆t

i for process i ∈ P is defined to be:

∆t
i =











λ
νi(t)
ωi(t)

∆
τi(t)
ωi(t)

, if t ∈ Si,

θti∆
t−1
i , if t ∈ Ci, and

∆t−1
i , otherwise.

(3.16)

Again, the initialization is as in (3.2) and we assume ∆0 satisfies (3.4). Recall λti ≥ 1 is
the expansion parameter defined in (3.9) and θti ∈ (0, 1) is the contraction parameter
defined in (3.12).

These precise definitions for xti and ∆t
i play a role in all the results that follow.

10



4. An overview of the analysis. Now that we have reviewed APPS and in-
troduced most of the notation required for our analysis, we provide an outline of that
analysis. Before proceeding, the reader may wish to review the example given in [6].
This example helps establish the definitions given in §3, including those for the many
sets we have introduced to track the progress of the search. Also, [6] illustrates and
discusses those features of the asynchronous algorithm that make the analysis more
intricate than for the synchronous case.

Our first task is to show that every iterate xti lies on a rational lattice; this is
equivalent to Theorem 3.2 in [10] for the synchronous case. The main difference here
is that the asynchronism we have introduced in APPS complicates the arguments.
Now, for some subset of the t’s in T , the xti residing on process i may be the result of
an external success—i.e., a point produced by a search along direction dj on process
j, where j 6= i. Thus the changes to xti and ∆t

i may be made without regard to the
history of past successes on process i. Nevertheless, in §5 we show that the algebraic
structure found in the synchronous case is still preserved in the asynchronous case.

The lattice structure is the key to ensuring convergence for pattern search. In
the synchronous case, the underlying lattice structure makes it possible to prove
that a subsequence of the step-length control parameters goes to zero—even though
pattern search does not enforce a sufficient decrease condition. In §7, we show an
equivalent result, but we now have p semi-independent sequences of ∆ to consider.
This makes the arguments more complex than in the synchronous case. Still, we
arrive at Theorem 7.8, which says that

lim inf
t→+∞

∆t
j = 0 for all j ∈ P.

Our definition of ∆t
i, given in (3.16), ensures that ∆t

i is decreased only at con-
tractions (i.e., when t ∈ Ci). In fact, it is these contractions that are of interest for
the remainder of the proof. In the synchronous case, there is an accumulation point
x̂ of the subsequence of iterates associated with contractions which has the property
that 0 ≤ f(x̂)T di for all i ∈ P. The challenge in the asynchronous case lies in showing
that all the processes share a common accumulation point with this property. In
order to do this, in §8 we show that all the processes share a common subsequence of
contraction iterates. This, in turn, relies on the fact that we require ∆min ≤ ∆ every
time we encounter a successful point, which guarantees that in the limit there will be
long sequences of unsuccessful iterates. These long sequences of unsuccessful iterates
allow us to construct a common sequence of contraction iterates across all processors.
This argument culminates with Theorem 8.5, which states that there exists an x̂ and,
for each i ∈ P , a subset of the contraction iterates Ĉi such that

lim
t→+∞

t∈Ĉi

∆t
i = 0, lim

t→+∞

t∈Ĉi

xti = x̂, and lim
t→+∞

t∈Ĉi

∇f(xti) = ∇f(x̂) = 0 for all i ∈ P.

A fundamental difference in the assumptions for the asynchronous case is that the
step-length control parameter is bounded below for all successful iterates (see (3.10)).
This assumption is critical to the asynchronous case because it enables us to avoid
a so-called “race condition.” If we did not enforce this lower bound, we might have
different processes producing sequences of iterates that converge to different limit
points, as the following situation in R2 illustrates. Let f(x) = xTx. Observe that f
is symmetric about both the x-axis and the y-axis and has a unique global minimizer
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at x = (0, 0)T . Choose

D =

{(

−1
0

)

,

(

0
−1

)

,

(

1
1

)}

,

which forms a positive basis for R2. Let x0 = (1, 1)T , ∆0 = 2, and Λ = 2. For every
contraction (t ∈ Ci), choose θ = Λ−2 = 1/4. For every internal success (t ∈ Ii),
choose λ = Λ1 = 2, ignoring the lower bound restriction in (3.10). Assume further
that each function evaluation requires exactly one time step and each communication
takes exactly two time steps.

The situation that develops in this case is illustrated in Figure 4.1. Here, both
{xt1} and {xt3} → (0, 1)T (denoted by circles) while {xt2} → (1, 0)T (denoted by
squares). The reason that the three sequences converge to two different limit points,
neither of which is the unique stationary point for f , is that the first and the second
processes are reducing their steps too quickly, continuing to find internal successes,
and rejecting each candidate for an external success because they have already found
another, better, internal success. The third process cannot remedy the situation since
its direction is always a direction of ascent. The broadcasts of internal successes from
the first and the second process arrive on the third process within the same time step
and have the same function value, which is better than any produced on the third
process. Ties are broken in favor of the first process, leading to an external success
on the third process, so the iterates on the third process also converge to (0, 1)T .

Enforcing the lower bound of ∆min on ∆t
i for successful points eliminates this race

condition. Choose, for instance, ∆min = 1/4 and notice that this eventually disrupts
the symmetric exchanges between the first and the second process.

We require a common accumulation point x̂ so that we can use the fact that our
search directions in D form a positive spanning set, thus ensuring the final conclusion
of Theorem 8.5: that x̂ is also a stationary point of f .

We close by noting that in practice we stop searching along a given direction
di once ∆t

i falls below a certain threshold. Process i then waits until either another
process reports a better point, in which case the search along di resumes with this new
best point, or a sufficient number of other processes have converged to the same point
identified by process i, in which case the entire search terminates. (For further details,
see [5].) Thus, as a practical matter, ∆min need not impede the overall progress of
the search as it can be chosen to be on the order of the threshold used to terminate
the search.

5. The algebraic structure of the iterates. We return to the analysis of
APPS. We use the formulation for xti given in (3.15) to show that we can, in fact,
write any xti as a linear combination of the search directions (translated by x0). We
prove this in Lemma 5.1. Then, in Theorem 5.2, we show that the algebraic structure
underlying the sequences {xti}, for all i ∈ P, guarantees that all the iterates lie on
a rational lattice defined by the search directions. The latter result is equivalent to
Theorem 3.2 in [10].

Lemma 5.1. For any i ∈ P and any t ∈ T , there exist sets Îj(i, t) ⊆ Ij for each
j ∈ P such that

xti = x0 +
∑

j∈P

δj(i, t) dj with δj(i, t) =
∑

t̂∈Îj(i,t)

∆
τj( t̂ )
j ,(5.1)

where δj(i, t) = 0 if Îj(i, t) = ∅.
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Fig. 4.1. A potential race condition, which we exclude. In this illustration, if we do not enforce

the bounds on ∆t
i after an internal success, then each sequence converges to a different limit; the

circles denote the sequence of best iterates on processes 1 and 3 while the squares denote the sequence

of best iterates on process 2. The situation is remedied by requiring ∆t
i ≥ ∆min for all t ∈ Ii.

Proof. We prove this lemma by induction on t. For any i ∈ P, the case for t = 0
is trivial since x0i = x0 by (3.2). Simply choose Îj(i, 0) = ∅ for each j ∈ P.

Now consider the case for general t for any i ∈ P. First consider t ∈ Ui, in which
case (3.15) gives us xti = xt−1i . From the induction hypothesis, we have

xt−1i = x0 +
∑

j∈P

δj(i, t− 1) dj with δj(i, t− 1) =
∑

t̂∈Îj(i,t−1)

∆
τj( t̂ )
j .

In this case, we simply choose Îj(i, t) = Îj(i, t− 1) for all j ∈ P to yield (5.1).
On the other hand, consider t ∈ Si. From (3.15), we have

xti = x
τi(t)
ωi(t)

+∆
τi(t)
ωi(t)

dωi(t).

The assumption that the minimum time for a function evaluation is one time step
ensures that τi(t) < t for all i ∈ P. Thus, from the induction hypothesis, we can
rewrite the first term as

x
τi(t)
ωi(t)

= x0 +
∑

j∈P

δj(ωi(t), τi(t)) dj with δj(ωi(t), τi(t)) =
∑

t̂∈Îj(ωi(t),τi(t))

∆
τj( t̂ )
j .

By definition, we also have τi(t) = τωi(t)(νi(t)) and νi(t) ∈ Iωi(t). Therefore, choosing

Îj(i, t) =

{

Îj(ωi(t), τi(t)) ∪ {νi(t)} for j = ωi(t) and

Îj(ωi(t), τi(t)) for j 6= ωi(t)
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yields (5.1).
The purpose of the sets Îj(i, t) is to track, for each j ∈ P, which subset of the set

of time steps that produced internal successes on process j led to the xti residing on
process i at time step t.

Now that we have taken a closer look at xti, let us do the same for ∆t
i. From

(3.16), (3.12), and (3.9), we see that for any i ∈ P and for any t ∈ T we can express
any ∆t

i as a multiple of an integer power of the Λ from (3.8) times the ∆0 from (3.4).
Let Γti denote that integer power so that

∆t
i = pow(Λ,Γti)∆

0, Γti ∈ Z.(5.2)

Since Λ ∈ Q, we can find ΛN and ΛD (here the subscripts denote numerator and
denominator, respectively) such that

Λ =
ΛN
ΛD

, where ΛD,ΛN ∈ N with ΛD,ΛN relatively prime.(5.3)

Using (5.3), we can rewrite (5.2) as

∆t
i = pow(ΛN,Γ

t
i) pow(ΛD,−Γ

t
i)∆

0, Γti ∈ Z.(5.4)

Define Γmax to be the least integer such that

pow(Λ,Γmax)∆0 ≥ ∆max, Γmax ∈ Z.(5.5)

From (3.10) we are then guaranteed that

Γti ≤ Γmax for all i ∈ P and t ∈ T .(5.6)

Finally, we recall the definition of the set of search directions D given in (2.1).
Observe that each search direction di ∈ D is the product of a real nonsingular matrix
B and and rational vector ci.

Combining our observations on xti and ∆t
i, with our recollection of the definition

of D, we now state and prove the following theorem, which is our analog of Theorem
3.2 from [10].

Theorem 5.2. Let i ∈ P and Γ ∈ Z. For any t ∈ T such that

Γ ≤ min { Γ
τi( t̂ )
i : t̂ ≤ t, t̂ ∈ Ii, i ∈ P },(5.7)

where Γti is defined as in (5.2), there exists ζj(i, t,Γ) ∈ Z for each j ∈ P such that

xti = x0 +
pow(ΛN,Γ)

pow(ΛD,Γmax)
∆0B

∑

j∈P

ζj(i, t,Γ) cj ,(5.8)

where ΛN and ΛD are as defined in (5.3) and Γmax is as defined in (5.5).
Further, xti lies on the rational lattice defined by integer multiples of the ele-

ments of the set {c1, . . . , cp} that is scaled by pow(ΛN,Γ) pow(ΛD,−Γ
max)∆0, trans-

lated by x0, and subject to a (possible) change of basis B. This lattice is denoted by
G(D,Λ,Γ,∆max,∆0, x0).

Proof. First we make an observation about any ∆
τi( t̂ )
i such that i ∈ P, t̂ ≤ t, and

t̂ ∈ Ii. From (5.4)–(5.6) we have

∆
τi( t̂ )
i = pow(ΛN,Γ

τi( t̂ )
i − Γ) pow(ΛD,Γ

max − Γ
τi( t̂ )
i )

pow(ΛN,Γ)

pow(ΛD,Γmax)
∆0.
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Recall from (5.3) that ΛD, ΛN ∈ N ⊂ Z and from (5.2) that Γ
τi( t̂ )
i ∈ Z. Further, we

have assumed that Γ ∈ Z and Γ ≤ Γ
τi( t̂ )
i , and the assumptions placed on Γmax ensure

that Γmax ∈ Z and Γmax ≥ Γ
τi( t̂ )
i . Combining these observations, we have that

pow(ΛN,Γ
τi( t̂ )
i − Γ) pow(ΛD,Γ

max − Γ
τi( t̂ )
i ) ∈ Z.

In Lemma 5.1 we saw that we could write any xti as the sum of x0 plus a linear

combination of the search directions. Using the definitions of Îj(i, t) and δj(i, t) from
Lemma 5.1, we choose

ζj(i, t,Γ) =
∑

t̂∈Îj(i,t)

pow(ΛN,Γ
τj( t̂ )
j − Γ) pow(ΛD,Γ

max − Γ
τj( t̂ )
j )

=
pow(ΛD,Γ

max) δj(i, t)

pow(ΛN,Γ)∆0
,

with ζj(i, t,Γ) = 0 if Îj(i, t) = ∅. Clearly, ζj(i, t,Γ) ∈ Z. Given that for every j ∈ P,
dj = Bcj , (5.8) then follows immediately from (5.1). The final statement follows
from two facts. First, the set {c1, . . . , cp} is finite. Second, each of the cj ’s is strictly
rational and any finite set of rational numbers can be scaled to the integers.

The importance of Theorem 5.2 will become apparent in Lemma 7.4, where we
show that some subsequence of the step-length control parameters must go to zero.

6. The subset of time steps at which changes occur is infinite. Before
we proceed to the proof of global convergence, we revisit the set Ti, which we first
defined in (3.1), and show that it must be infinite. A review of (3.15) and (3.16) leads
to an alternate definition in terms of the subsets Si and Ci:

Ti = Si ∪ Ci.(6.1)

Lemma 6.1. Ti is infinite.
Proof. Each function evaluation takes at most η time steps and a new function

evaluation is started at the conclusion of each function evaluation. Since T is infinite,
there are infinitely many function evaluations. Recalling the discussion in §3.5, for
each function evaluation we are guaranteed that either an external successful update
took place during the function evaluation or either an internal successful update or a
contraction took place at the conclusion of the function evaluation. So, there must be
at least one update to xi and/or ∆i for every function evaluation and, hence, there
are infinitely many updates.

This fact about Ti plays a role in the analysis ahead.

7. A subsequence of the step-length control parameters goes to zero.

Once the lattice structure has been established, the next part of the proof of conver-
gence for standard pattern search convergence analysis [10] involves showing that the
step-length control parameter ∆ goes to zero; i.e.,

lim inf
t→+∞

∆t = 0.

In this section, we aim to show an equivalent result, but we now have p semi-
independent sequences of ∆ to consider. Given this complication, the basic outline
for our arguments is as follows:
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1. If the number of successful time steps for some process is finite, showing that
the sequence of step-length control parameters goes to zero is trivial. So, we eliminate
this case first in Lemma 7.1.

2. Using Lemma 7.1, we then show, in Lemma 7.2 and Corollary 7.3, that either
every process has a set of successful time steps that is finite or none do. From this
point forward, we then need only concern ourselves with the case where the number
of successful time steps is infinite.

3. Lemma 7.4 is a key result. We show that some subsequence of the set of all
step-length control parameters (indexed over all processes and all time steps) must
go to zero. This result relies on the fact that every xti lies on a rational lattice.

4. We narrow the scope in Corollary 7.5 to show that a subsequence of step-length
control parameters converges to zero on one process i ∈ P.

5. Before we can extend this result to the remaining processes, we introduce
some new definitions that help us discover what is happening between successful time
steps on any process j ∈ P, j 6= i. In Lemma 7.6, we conclude that the lim sup of
the number of time steps between successes on a single process goes to +∞ in these
cases.

6. We now can tie together the actions across processes to say, in Lemma 7.7,
that every process must have a subsequence of step-length control parameters that
goes to zero.

7. Combining all these results into Theorem 7.8, we see that whether or not
the number of successful time steps is infinite, every process has a subsequence of
step-length control parameters that goes to zero.

Now that we have an overall picture of the argument, we begin by showing that
for any process i which has only finitely many successful time steps, the sequence of
step-length control parameters goes to zero.

Lemma 7.1. If Si is finite for some i ∈ P, then

lim
t→+∞

∆t
i = 0.

Proof. Let t0 = max { t : t ∈ Si }. Then, by (3.16), for any time step t ∈ T such
that t > t0, the time step is either a contraction or nothing happens. From (6.1), we
have Ti = Si ∪Ci, and Lemma 6.1 assures us that Ti is infinite. Since, by assumption,
the set Si is finite, we conclude that the set Ci must be infinite. Hence there are
infinitely many contractions after time step t0. Therefore, the sequence {∆t

i}
+∞
t=t0 is

decreasing and bounded below by zero. Finally, (3.14) guarantees that the contraction
parameter θti ≤ θmax < 1, which enforces a fraction of decrease at each contraction.
We can therefore conclude that the sequence {∆t

i}
+∞
t=t0 converges to zero. Hence, the

claim.
In the next lemma, we show that if one process has infinitely many successful

time steps, then every process must have infinitely many successful time steps.
Lemma 7.2. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P.
Proof. Suppose not; that is, suppose there exists k ∈ P, k 6= i, such that Sk is

finite. Let t0 = max { t : t ∈ Sk } which implies that xt0k is the best point known
by process k over all t ∈ T . The point xt0k is considered by process i at some later
time step t1 ≤ t0 + γ, where γ is defined in (3.6). Since Si is infinite, xt0k , whether
initially accepted or rejected at time step t1, is improved upon at some later time step
t2 with t2 > t1; together, (3.5) and (3.6) guarantee that t2 is finite. The point xt2i
must, in turn, be considered by process k at a later time step t3 ≤ t2 + γ. Since xt2i
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is an improvement over xt0k , we must have t3 ∈ Sk; but this contradicts t0 being the
maximum t ∈ Sk.

The immediate corollary is that if any process has only finitely many successful
time steps, then every process has only finitely many successful time steps.

Corollary 7.3. If Si is finite for some i ∈ P, then Sj is finite for all j ∈ P.
From Lemma 7.1 and Corollary 7.3, the case for the convergence of the step-

length control parameters to zero is trivial when there are finitely many successful
time steps. The remainder of this section concentrates on the case where there are
infinitely many successful time steps on each process.

The next lemma shows there is a subsequence of step-length control parameters
(indexed over all processes) that converges to zero.

Lemma 7.4. Suppose Sj is infinite for all j ∈ P, then there exists i ∈ P such
that

lim inf
t→+∞
t∈Si

∆
τi(t)
ωi(t)

= 0.

Proof. Suppose not. Then there exists ∆∗ > 0 such that

∆
τj(t)

ωj(t)
≥ ∆∗ for all j ∈ P and t ∈ Sj .

Choose an Γ∗ ∈ Z that satisfies (5.7) for all t ∈ T . We are guaranteed that such a
Γ∗ exists since ∆∗ is strictly positive. With this choice of Γ∗, Theorem 5.2 guarantees
that (5.8) holds for every choice of t ∈ T , thus every xtj lies on the translated rational

lattice G(D,Λ,Γ∗,∆max,∆0, x0).
Observe that each lattice point in G(D,Λ,Γ∗,∆max,∆0, x0) can be considered

successful at most once by each process. Consider process k ∈ P. Recall that Sk =
Ik ∪ Ek and a successful point must satisfy either (3.7) or (3.11). In either case, if
f(xt2k ) < f(xt1k ), then clearly xt1k 6= xt2k . The only other possibility is that t2 ∈ Ek with
f(xt2k ) = f(xt1k ), in which case we must have xt2k ≺ xt1k so that, once again, xt1k 6= xt2k .
We conclude, therefore, that for any process k ∈ P, we cannot have t1, t2 ∈ Sk with
t1 < t2 such that xt1k = xt2k .

On the other hand, every successful point must lie in L(x0). The intersection of
the bounded set L(x0) with the translated integer lattice G(D,Λ,Γ∗,∆max,∆0, x0) is
finite.

Since any successful point must be in the finite set G(D,Λ,Γ∗,∆max,∆0, x0) ∩
L(x0) and no point is successful more than once for each process j ∈ P, it follows
that Sj must be finite. But this contradicts the assumption that Sj is infinite for all
j ∈ P. Hence, the claim.

An immediate corollary to the preceding lemma is that there is some process
which has a subsequence of step-length control parameters that converges to zero.

Corollary 7.5. Suppose Sj is infinite for all j ∈ P, then there exists i ∈ P
such that

lim inf
t→+∞

∆t
i = 0.(7.1)

Proof. By Lemma 7.4, there exists i ∈ P and S̄i ⊆ Si such that

lim
t→+∞

t∈S̄i

∆
τi(t)
ωi(t)

= 0.
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For each j ∈ P, define S̄ij = {t ∈ S̄i : ωi(t) = j}, so
⋃p
j=1 S̄ij = S̄i. Since S̄i is

infinite, there exists at least one k such that S̄ik is infinite. So,

lim
t→+∞

t∈S̄ik

∆
τi(t)
k = 0.

Hence, the claim.
We need to show that a subsequence of step-length control parameters is going

to zero for every process. In order to do so, we must first introduce some definitions
and an additional lemma.

For each process i ∈ P, we can decompose the set of unsuccessful time steps (i.e.,
t 6∈ Si) into contiguous blocks as follows:

Ui = T \ Si = Ui1 ∪ Ui2 ∪ · · · ∪ UiN ,(7.2)

where N may be +∞, each Ui` is a contiguous index block (e.g., Ui` = {3, 4, 5, 6}),
and any pair Ui` and Ui,`+1 is separated by at least one t ∈ Si.

It is also useful to define the minimum number of contractions required to reduce
∆min to a given ∆ ∈ R, ∆ > 0, as

κ(∆) = min { p ∈ {0, 1, 2, . . .} : pow(θmin, p)∆min ≤ ∆ },(7.3)

where θmin is defined in (3.14) and ∆min is defined in (3.10). It is straightforward to
see that

lim
∆→0

κ(∆) = +∞.(7.4)

Finally, for a given t ∈ T , we define the last successful time step up to, and
possibly including, t and the first successful time step after t as

ψi(t) = max { t̄ ∈ Si ∪ {0} : t̄ ≤ t } and(7.5)

φi(t) = min { t̄ ∈ Si : t < t̄ },(7.6)

respectively. We ensure that ψi(t) is always defined by setting it to zero in the case
that { t̄ ∈ Si : t̄ ≤ t } is empty. In the case that there is no t̄ ∈ Si satisfying t < t̄, then
φi(t) = +∞. Thus, ψi(·) : T → Si ∪ {0}, φi(·) : T → Si ∪ {+∞}, and ψi(t) < φi(t)
for all t ∈ T .

Using the above definitions, we can show that the lim sup of the number of time
steps between successes is going to infinity if a subsequence of the step-length control
parameters is going to zero.

Lemma 7.6. Suppose Sj is infinite for all j ∈ P. Then for all i ∈ P satisfying
(7.1), we have

lim sup
`→+∞

| Ui`| = +∞.(7.7)

Proof. Let i ∈ P be such that (7.1) holds. By the definition of the limit, for
any ∆∗ > 0, there exists t∗ ∈ T such that ∆t∗

i < ∆∗. Without loss of generality, we
assume t∗ ∈ Ui.

Then, using definitions (7.3) and (7.5) from above, there must be at least κ(∆∗)
time steps between t∗ and ψi(t

∗) since (3.10) must hold for all t ∈ Si. Let `
∗ be such

that t∗ ∈ Ui`∗ . Then

| Ui`∗ | > κ(∆∗).
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From (7.4), the proof is complete.
We can now show that, in the case of an infinite number of successful time steps, a

subsequence of the step-length control parameters converges to zero for every process.
Lemma 7.7. Suppose Sj is infinite for all j ∈ P. Then for all j ∈ P,

lim inf
t→+∞

∆t
j = 0.

Proof. Suppose not. Then there exists an i ∈ P and ∆∗ > 0 such that

∆t
i ≥ ∆∗ for all t ∈ T .

Define

κ̄(∆∗) = min{p ∈ {0, 1, 2, . . .} : pow(θmax, p)∆max ≤ ∆∗},

where θmax is defined in (3.14) and ∆max is defined in (3.10). Then κ̄(∆∗) is the
maximum possible number of contractions needed to reduce ∆max to ∆∗. So the
maximum number of time steps between two successful time steps on process i is

max
`
| Ui`| ≤ η κ̄(∆∗),

where η is defined in (3.5) and Ui` is defined in (7.2).
Now consider k ∈ P, k 6= i. Since any successful point produced on process k is

considered on process i within γ time steps, i has a new minimum within η κ̄(∆∗) time
steps, and that new minimum is considered by process k within γ more time steps; so
the maximum number of time steps between successes on any process k, k 6= i, can
be at most

max
`
| Uk`| ≤ η κ̄(∆∗) + 2γ.(7.8)

However, Corollary 7.5 guarantees us that there exists i∗ such that (7.1) holds,
and our null hypothesis tells us i∗ 6= i. Further, Lemma 7.6 says (7.7) must hold for
i∗, but this contradicts (7.8) which also holds for k = i∗. Hence, the claim.

Finally, we show that each process has a subsequence of step-length control param-
eters that converges to zero—whether there are finitely or infinitely many successful
time steps.

Theorem 7.8. For every process j ∈ P, there exists a subsequence of the step-
length control parameters that goes to zero; that is,

lim inf
t→+∞

∆t
j = 0 for all j ∈ P.

Proof. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P by
Lemma 7.2, in which case the claim follows immediately from Lemma 7.7. Otherwise,
all Sj must be finite for all j ∈ P by Corollary 7.3, in which case the claim follows
from Lemma 7.1.

The following corollary says that, specifically, the subsequence of time steps at
which the step-length control parameters decrease forms a subset of the set of unsuc-
cessful time steps. This corollary is useful in the next section.

Corollary 7.9. The set Cj is infinite for all j ∈ P, and

lim inf
t→+∞
t∈Cj

∆t
j = 0 for all j ∈ P.(7.9)
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Proof. This follows immediately from Theorem 7.8 since for each j ∈ P, ∆t
j ≥

∆min for all t ∈ Sj and (3.16) confirms that ∆t
j is unchanged for all t ∈ T \ Ti.

8. A common accumulation point that is also a stationary point. Our
final goal is to show that there exists a common accumulation point for all processes
and that this accumulation point has a zero gradient. Our argument is outlined as
follows.

1. In Lemma 8.1 we show that on process 1 we can extract a subsequence of
contractions for which the step-length control parameter goes to zero and that the
subsequence xt1 associated with these particular contractions has an accumulation
point. (We specify the first process for convenience, but we could pick any process.)

2. Still focused on process 1, in Corollary 8.2 we show that the number of un-
successful time steps before each of these contractions is going to +∞. This means
that on process 1 we have a sequence of ever-lengthening contiguous index blocks of
unsuccessful time steps.

3. In Lemma 8.3 we show that using the subsequence of contractions on process
1 for which the step-length control parameter goes to zero, each process i, i 6= 1, has
its own corresponding sequence of contiguous index blocks of unsuccessful time steps.

4. In Lemma 8.4, we show that the sequence of contiguous index blocks of unsuc-
cessful time steps on each process i, i 6= 1, is also ever-lengthening. We then extract
a sequence of step-length control parameters corresponding to these ever-lengthening
blocks of unsuccessful time steps and show that this particular sequence of step-length
control parameters must go to zero.

5. Finally, in Theorem 8.5 we show that these blocks of unsuccessful iterates
can be used to build a sequence of contraction iterates corresponding to those on
process 1—and thus share the same accumulation point. Furthermore, if we use
the fact that the set of search directions positively spans Rn, and assume that f is
continuously differentiable, then we can show that this common accumulation point
is also a stationary point of f .

In essence, our argument for the existence of a common accumulation point is
based on the timing of the global clock. Since we have assumed both that the number
of time steps required for a function evaluation is finite (3.5) and that the number of
time steps required for the communication of a message is finite (3.6), we know that
eventually every process must see any candidate for the new best point in a finite
amount of time. What we do not know, in general, is in what order each candidate
will be considered on any given process. What we show is that there is an infinite
sequence of increasingly long blocks of unsuccessful time steps on every process, where
the block length is unbounded above as the algorithm proceeds. We also show that
every sufficiently long block is a member of a set of such blocks, where all the blocks
in a set have start times within γ time steps of one another. Similarly, the same
can be said for all finish times. We then show that each set contains one block for
each process. For a set of sufficiently long blocks, each process must start and finish
a function evaluation within that process’ block. The bounds (3.5) and (3.6) mean
that all processes start these new function evaluations using the same best point.
For sufficiently long blocks, all of these function evaluations must be unsuccessful.
Thus, in the language of [10], the processes collectively perform a poll about the best
point, and this poll is unsuccessful. The sequence of such sets of blocks is infinite,
and so an infinite sequence of these best points occurs. The final conclusion, that
this accumulation point is also a stationary point of f , follows automatically from our
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assumptions on D and f .
Having made these observations, we start the analysis by showing that the first

process has a convergent subsequence of x’s corresponding to a subsequence of step-
length control parameters that goes to zero.

Lemma 8.1. There exists x̂ ∈ Rn and Ĉ1 ⊆ C1 such that

lim
t→+∞

t∈Ĉ1

∆t
1 = 0 and lim

t→+∞

t∈Ĉ1

xt1 = x̂.(8.1)

Proof. From Corollary 7.9, we know that C1 is infinite and that (7.9) holds, so
there exists C′1 ⊆ C1 such that

lim
t→+∞

t∈C′
1

∆t
1 = 0.

Since the set { xt1 : t ∈ C′1 } is contained in the bounded set L(x0), we can extract an
infinite subset Ĉ1 ⊂ C

′
1 such that the subsequence converges; i.e., there exists x̂ in the

closure of L(x0) such that the limit in (8.1) holds.
Next, we show that the number of time steps between each t ∈ Ĉ1 and the most

recent success on process 1 goes to +∞.
Corollary 8.2. Let Ĉ1 be as defined in Lemma 8.1. Then there exists t∗ ∈ T

such that

κ(∆t
1) > η + 2γ for all t > t∗, t ∈ Ĉ1,

where κ(∆) is defined in (7.3), η is defined in (3.5), and γ is defined in (3.6).
Proof. This follows immediately from Lemma 8.1 and (7.4).
Another way to look at this corollary is to consider the step-length control param-

eters. By definition, κ(∆) returns the minimum number of contractions required to
reduce ∆min to a given value ∆. Consider t̂ > t∗ with t̂ ∈ Ĉ1. Corollary 8.2 then tells
us that κ(∆t

1) is at least η+2γ. The importance of this connection with ∆min becomes
clearer when we recall that (3.10) requires the ∆ associated with any successful time
step to satisfy ∆t

i ≥ ∆min. Therefore, we conclude that the minimum possible number
of contractions since the last successful time step, at time step ψ1( t̂ ), is η+2γ. Since
each contraction requires one function evaluation which, in turn, requires at least one
time step, the situation illustrated in Figure 8.1 must hold.

. . .
ψ1( t̂ )

. . . -t̂

-¾
> η + 2γ

Fig. 8.1. Relative order of events on process 1 when t̂ ∈ Ĉ1 and t̂ > t∗.

The situation illustrated in Figure 8.1 applies only to process 1. Now we show
that for every t̂ ∈ Ĉ1, t̂ > t∗, on each of the other processes there is a corresponding
nonempty block of contiguous time steps that is devoid of successes. In particular,
the situation shown in Figure 8.2 holds. The relative order between the time steps
ψ1( t̂ ) + γ and t̂− γ follows from Corollary 8.2. In the next lemma, we show that the
relative order of the time steps ψi(t̂ − γ) and ψ1(t) + γ, as well as that of the time
steps t̂ − γ and φi(ψ1( t̂ ) + γ), also must hold for any i ∈ P, i 6= 1, when t̂ ∈ Ĉ1 and
t̂ > t∗. The result we want then follows immediately.
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. . .
ψi(t̂− γ)

. . .
ψ1( t̂ ) + γ

. . .
t̂− γ

. . . -
φi(ψ1( t̂ ) + γ)

-¾
> η

Fig. 8.2. Relative order of events for any process i ∈ P, i 6= 1, when t̂ ∈ Ĉ1 and t̂ > t∗.

Lemma 8.3. Let Ĉ1 be as defined in Lemma 8.1 and t∗ be as defined in Corol-
lary 8.2. Then for any t̂ ∈ Ĉ1 with t̂ > t∗ and any i ∈ P, i 6= 1, we have

ψi(t̂− γ) ≤ ψ1( t̂ ) + γ and(8.2)

t̂− γ ≤ φi(ψ1( t̂ ) + γ),(8.3)

where γ is defined in (3.6), ψi(·) is defined in (7.5), and φi(·) is defined in (7.6).
Further,

{ t ∈ T : ψ1( t̂ ) + γ < t < t̂− γ } ⊆ Ui,(8.4)

where Ui is defined in (7.2).

Proof. Suppose not. First consider the proof for (8.2). Since the point x
ψ1( t̂ )
1 is

guaranteed to have been considered by process i by time step ψ1( t̂ )+γ and ψ1( t̂ )+γ <
ψi(t̂− γ) (from the null hypothesis), it must be true that

f(x
ψi(t̂−γ)
i ) < f(x

ψ1( t̂ )
1 ),(8.5)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.

Likewise, the point x
ψi(t̂−γ)
i will be considered by process 1 at some time step t1 ≥

ψi(t̂− γ). By the null hypothesis, we have ψ1( t̂ ) < ψi(t̂− γ)− γ, so ψ1( t̂ ) < t1. On

the other hand, since the point x
ψi(t̂−γ)
i must be considered within γ time steps of

ψi(t̂− γ), we have t1 ≤ ψi(t̂− γ) + γ. By the definition of ψ, we conclude t1 ≤ t̂. So
we then have

ψ1( t̂ ) < t1 ≤ t̂.

From (8.5), either t1 ∈ S1, or there exists t2 ∈ S1 with ψ1( t̂ ) < t2 < t1. In either
case, we have a contradiction to the fact that ψ1( t̂ ) is the most recent successful time
step before t̂ on process 1.

We follow the same line of reasoning for (8.3). Since φi(ψ1( t̂ )+γ) ∈ Si (note that

it is finite by the null hypothesis) and the point x
ψ1( t̂ )
1 must have been considered by

time step ψ1( t̂ ) + γ, it must be true that

f(x
φi(ψ1( t̂ )+γ)
i ) < f(x

ψ1( t̂ )
1 ),(8.6)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.

Likewise, the point x
φi(ψ1( t̂ )+γ)
i will be considered by process 1 by some time step t1

satisfying

ψ1( t̂ ) < φi(ψ1( t̂ ) + γ)− γ ≤ t1 ≤ φi(ψ1( t̂ ) + γ) + γ < t̂,

where the last part is from the null hypothesis and the first part is from the definition
of φ. From (8.6), either t1 ∈ S1, or there exists t2 ∈ S1 with ψ1( t̂ ) < t2 < t1. In
either case, we once again have a contradiction.
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The proof for (8.4) follows immediately.
Using the previous lemma, we can construct a set of time steps Ĉi such that the

corresponding sequence of step-length control parameters converges to zero.
Lemma 8.4. Consider any i ∈ P, i 6= 1. Let Ĉ1 be as defined in Lemma 8.1 and

t∗ be as defined in Corollary 8.2. For any t̂ ∈ Ĉ1 with t̂ > t∗ define

χi( t̂ ) = max { t ∈ Ci : t < t̂− γ }(8.7)

and

Ĉi = { χi( t̂ ) : t̂ > t∗, t̂ ∈ Ĉ1 }.

Then

lim
t→+∞

t∈Ĉi

∆t
i = 0.(8.8)

Proof. First, we are guaranteed that

χi( t̂ ) > ψ1( t̂ ) + γ for each t̂ ∈ Ĉ1 with t̂ > t∗

for the following reasons. Appealing to Corollary 8.2, we know κ(∆t̂
1) > η+2γ and so

the interval contains at least η time steps. Thus, one function evaluation must finish
and another start on process i during that interval. Since, by Lemma 8.3, there are
no successes on i between ψ1( t̂ )+ γ and t̂− γ, there must be at least one contraction
on i in that interval, i.e., a t ∈ Ci.

Next from Lemma 8.1 and (7.4), we know that

lim
t→+∞

t∈Ĉ1

κ(∆t
1) = +∞,

so it must also be the case that

lim
t→+∞

t∈Ĉ1

(t− γ)− (ψ1(t) + γ)

η
= +∞.

In other words, the number of contractions in the interval defined by (8.4) is tending
towards infinity. Therefore, (8.8) holds.

Finally, we conclude that all processes share a common accumulation point and
that such a point is a stationary point of f . This argument follows the same basic
lines as those seen in [3, 9] (for the case that the search directions are restricted to
the set D = {±ei, i = 1, · · · , n}) and [11] (for the general case that D is a positive
spanning set). Similar arguments have been used more recently in [8, 1, 4].

Theorem 8.5. Assume the function f in (1.1) is continuously differentiable on
the closure of L(x0). Then there exists x̂ ∈ Rn and, for each i ∈ P, there exists
Ĉi ⊂ Ci such that

lim
t→+∞

t∈Ĉi

∆t
i = 0 and lim

t→+∞

t∈Ĉi

xti = x̂.(8.9)

Furthermore,

lim
t→+∞

t∈Ĉi

∇f(xti) = 0.
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Proof. By Lemma 8.1, we know that (8.9) holds for i = 1. By Lemma 8.4, we
know that for each i ∈ P, i 6= 1, we can construct Ĉi such that the limit on ∆t

i in

(8.9) holds. Further, note that for every t̂ ∈ Ĉi, we have

x
χi( t̂ )
i = xt̂1,

where χi( t̂ ) is defined in (8.7). Thus,

{ xti : t ∈ Ĉi } ⊆ { x
t
1 : t ∈ Ĉ1 }.

So, the limit on xti given in (8.9) holds as well. Hence, the claim.
Now, for any t ∈ Ci, (3.15) and (3.16) give us

xti = xt−1i and ∆t
i = θti∆

t−1
i .

Define the set B̂i = { t = t̂ − 1 : t̂ ∈ Ĉi }. Since θti is bounded below by θmin, (8.9)
ensures that

lim
t→+∞

t∈B̂i

∆t
i = 0.

If t̂ ∈ Ĉi this means that

f(x t̂−1i ) ≤ f(x t̂−1i +∆ t̂−1
i di).(8.10)

We rely here on the fact that even though the function evaluation that led to the
conclusion that t̂ ∈ Ĉi may have been initiated at some t < t̂ − 1, the update rules
(3.15) and (3.16) ensure that xti = xt−1i and ∆t

i = ∆t−1
i for any t ∈ T \ Ti. Since

(8.10) holds for any t̂ ∈ Ĉi, this is equivalent to saying that for any t ∈ B̂i

f(xti) ≤ f(xti +∆t
idi).

The mean value theorem then gives us

f(xti) ≤ f(xti) + ∆t
i∇f(x

t
i + σti∆

t
idi)

T di,

for some σti ∈ [0, 1]. Therefore,

0 ≤ ∇f(xti + σti∆
t
idi)

T di, t ∈ B̂i.

Taking the limits as t→∞, we get

0 ≤ ∇f(x̂)T di for all i ∈ P.(8.11)

Since the vectors in D are assumed to form a positive spanning set for Rn, (8.11)
implies that ∇f(x̂) = 0.

9. Conclusions. When developing this analysis, we tried to keep the number
of assumptions made to a minimum. Our first priority was to assure that under
standard assumptions, the version of APPS that we had implemented could be shown
to be globally convergent. That said, there are some further relaxations we could
have made. For instance, in (3.2) we assumed, for convenience, that all processes
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started with the same initial iterate x0 and the same initial value ∆0 for the step-
length control parameter. While we could relax (3.2), to do so would introduce a
level of complication to the analysis that does not appear to add appreciably to the
fundamental result.

An extension of more obvious practical import is to allow the set of search direc-
tions to change over time. In this paper, we assume that the set of search directions
is fixed. Earlier pattern search results [10] make clear that this condition can be
relaxed to allow a more general notion of exploratory moves. Experience with se-
quential implementations of pattern search have demonstrated that there certainly
can be algorithmic advantage to doing so. For instance, the exploratory moves en-
able more aggressive or speculative steps that may either accelerate the progress of
the search or move the iterates away from a local minimizer, without compromising
global convergence. In the parallel setting, one of the motivations for APPS was
to devise algorithms that could recover from the failure of a process. Since all we
require, in the end, is that (8.11) holds for enough vectors in D to form a positive
basis for Rn, we have some flexibility in both the implementation and the analysis.
In particular, exploratory moves are included implicitly. The exploratory moves play
an active role in the search only if they produce a success, but our analysis focuses
on the contractions. As long as we can express any point produced by an exploratory
move as in Theorem 5.2 (i.e., any success produced by an exploratory move lies on an
appropriate lattice), the analysis accommodates this extension in a straightforward
fashion.

Another possible extension to the analysis is to examine the robustness of the
search in the presence of process failures either because the processor on which the
process resides fails or because on that particular process the evaluation of the function
f at a given x fails. In the current implementation of APPS, we ignore the failure of
a process so long as the search directions contained on the active processes continue
to form a positive spanning set. If we experience enough process failures that this
condition no longer holds, we restart enough processes so that the condition is once
again satisfied. If we assume a finite number of failures for evaluation at a given
point—an extension to (3.5), our assumption that the maximum number of time
steps for evaluating f at a given x is finite—then the modifications required to the
analysis seem straightforward enough that we simply note them here.

A more ambitious option, along the lines of related ideas proposed in [11, 8, 4],
would be to actually change the set of search directions during the course of the
search, rather than working with some subset of a fixed set of directions chosen at
the start of the search. To do so requires some modification of the mechanism used
to control the length of the step. Our analysis relies on the algebraic structure of the
iterates. This can be relaxed, either by requiring ∆ to go to zero in the limit [11, 4]
or by introducing a sufficient decrease condition to determine the success of a step
[8], in lieu of the simple decrease conditions in (3.7) and (3.11) that we use here.

We close with the observation that we can reduce the general framework presented
here to a special case that looks more like traditional (sequential) pattern search. (This
is what motivated us to allow 0 ≤ γ so that communication can be “instantaneous,”
as it would be in the sequential case.) The difference here is that we have introduced
the bounds given in (3.10) for t ∈ Si. These bounds are necessary for our analysis
(e.g., in the proofs of Lemma 7.7 and Corollary 7.9 or for the definition of κ(∆) in
(7.3), which plays a role in the proofs of Lemma 7.6, Corollary 8.2, and Lemma 8.4).
Prior definitions of pattern search did not require the enforcement of (3.10) since the
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synchronization of the updates to ∆ suffices without the imposition of these bounds
on updates made after a successful step.
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