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Abstract. We extend pattern search methods to linearly constrained minimization. We develop
a general class of feasible point pattern search algorithms and prove global convergence to a Karush-
Kuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly
constrained problems accomplish this without explicit recourse to the gradient or the directional
derivative of the objective. Key to the analysis of the algorithms is the way in which the local search
patterns conform to the geometry of the boundary of the feasible region.
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1. Introduction. This paper continues the line of development in [8, 9, 15] and
extends pattern search algorithms to optimization problems with linear constraints:

minimize f(x)
subject to ` ≤ Ax ≤ u,

(1.1)

where f : Rn → R, x ∈ Rn, A ∈ Qm×n, `, u ∈ Rm, and ` ≤ u. We allow the possi-
bility that some of the variables are unbounded either above or below by permitting
`i, ui = ±∞, i ∈ {1, · · · ,m}. We also admit equality constraints by allowing `i = ui.

We can guarantee that if the objective f is continuously differentiable, then a sub-
sequence of the iterates produced by a pattern search method for linearly constrained
minimization converges to a Karush-Kuhn-Tucker point of problem (1.1). As in the
case of unconstrained minimization, pattern search methods for linearly constrained
problems accomplish this without explicit recourse to the gradient or the directional
derivative of the objective. We also do not attempt to estimate Lagrange multipliers.

As with pattern search methods for bound constrained minimization [8], when we
are close to the boundary of the feasible region the pattern of points over which we
search must conform to the geometry of the boundary. The general idea, which also
applies to unconstrained minimization [9], is that the pattern must contain search
directions that comprise a set of generators for the cone of feasible directions. We
must be a bit more careful than this; we must also take into account the constraints
that are almost binding in order to be able to take sufficiently long steps. In the bound
constrained case this turns out to be simple to ensure (though in Section 8.3 we will
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sharpen the results in [8]). In the case of general linear constraints the situation is
more complicated.

Practically, we imagine pattern search methods being most applicable in the case
where there are relatively few linear constraints besides simple bounds on the vari-
ables. This is true for the applications that motivated our investigation. Our analysis
does not assume nondegeneracy, but the class of algorithms we propose will be most
practical when the problem is nondegenerate.

2. Background. After we presented this work at the 16th International Sym-
posium on Mathematical Programming in Lausanne, Robert Mifflin brought to our
attention the work of Jerrold May in [11], which extended the derivative-free algo-
rithm for unconstrained minimization in [12] to linearly constrained problems. May
proves both global convergence and superlinear local convergence for his method. To
the best of our knowledge, this is the only other provably convergent derivative-free
method for linearly constrained minimization.

Both May’s approach and the methods described here use only values of the
objective at feasible points to conduct their searches. Moreover, the idea of using
as search directions the generators of cones that are polar to cones generated by the
normals of faces near the current iterate appears already in [11]. This is unavoidable
if one wishes to be assured of not overlooking any possible feasible descent in f using
only values of f at feasible points.

On the other hand, there are significant differences between May’s work and
the approach we discuss here. May’s algorithm is more obviously akin to a finite-
difference quasi-Newton method. Most significantly, May enforces a sufficient decrease
condition; pattern search methods do not. Avoiding a sufficient decrease condition
is useful in certain situations where the objective is prone to numerical error. The
absence of a quantitative decrease condition also allows pattern search methods to be
used in situations where only comparison (ranking) of objective values is possible.

May also assumes that the active constraints are never linearly dependent—i.e.,
nondegeneracy. Our analysis, which is based on the intrinsic geometry of the feasible
region rather than its algebraic description, handles degeneracy (though from a prac-
tical perspective, degeneracy can make the calculation of the pattern expensive). On
the other hand, we must place additional algebraic restrictions on the search direc-
tions since pattern search methods require their iterates to lie on a rational lattice.
To do so, we require that the matrix of constraints A in (1.1) be rational. This mild
restriction is a price paid for not enforcing a sufficient decrease condition.

May’s algorithm also has a more elaborate way of sampling f than the general
pattern search algorithm we discuss here. This, and the sufficient decrease condition
he uses, enables May to prove local superlinear convergence, which is stronger than
the purely global results we prove here.

In Section 3 we outline the general definition of pattern search methods for lin-
early constrained minimization. In Section 4 we present the convergence results. In
Section 5 we review those results from the analysis for the unconstrained case upon
which we rely for the analysis in the presence of linear constraints. In Section 6 we
prove our main results. In Section 7 we discuss stopping criteria and the questions
of identifying active constraints and estimating Lagrange multipliers. In Section 8 we
outline practical implementations of pattern search methods for linearly constrained
minimization. Section 9 contains some concluding remarks, while Section 10 contains
essential, but rather technical, results concerning the geometry of polyhedra that are
required for the proofs in Section 6.
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Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively. The ith standard basis vector will be denoted by ei.
Unless otherwise noted, norms and inner products are assumed to be the Euclidean
norm and inner product. We will denote the gradient of the objective by g(x).

We will use Ω to denote the feasible region for problem (1.1):

Ω = { x ∈ Rn | ` ≤ Ax ≤ u } .

Given a convex cone K ⊂ Rn we denote its polar cone by K◦; K◦ is the set of
v ∈ Rn such that (v, w) ≤ 0 for all w ∈ K, where (v, w) denotes the Euclidean inner
product.

If Y is a matrix, y ∈ Y means that the vector y is a column of Y .

3. Pattern search methods. We begin our discussion with a simple instance
of a pattern search algorithm for unconstrained minimization: minimize f(x). At
iteration k, we have an iterate xk ∈ Rn and a step-length parameter ∆k > 0. We
successively look at the points x+ = xk ± ∆kei, i ∈ {1, . . . , n}, until we find x+ for
which f(x+) < f(xk). Fig. 3.1 illustrates the set of points among which we search
for x+ for n = 2. This set of points is an instance of what we call a pattern, from
which pattern search takes its name. If we find no x+ such that f(x+) < f(xk), then
we reduce ∆k by half and continue; otherwise, we leave the step-length parameter
alone, setting ∆k+1 = ∆k and xk+1 = x+. In the latter case we can also increase the
step-length parameter, say, by a factor of 2, if we feel a longer step might be justified.
We repeat the iteration just described until ∆k is deemed sufficiently small.

xk︸ ︷︷ ︸

∆k

Fig. 3.1. An illustration of pattern search for unconstrained minimization.

One important feature of pattern search that plays a significant role in the global
convergence analysis is that we do not need to have an estimate of the derivative of
f at xk so long as included in the search is a sufficient set of directions to form a
positive spanning set for the cone of feasible directions, which in the unconstrained
case is all of Rn. In the unconstrained case the set { ±ei | i = 1, . . . , n } satisfies
this condition, the purpose of which is to ensure that if the current iterate is not a
stationary point of the problem, then we have at least one descent direction.

For the linearly constrained case we expand the notion of what constitutes a
sufficient set of search directions. Now we must take into account explicit information
about the problem: to wit, the geometry of the nearby linear constraints. We need
to ensure that if we are not at a constrained stationary point, we have at least one
feasible direction of descent. Moreover, we need a feasible direction of descent along
which we will remain feasible for a sufficiently long distance to avoid taking too short
a step. This is a crucial point since, just as in the unconstrained case, we will not

3



enforce any notion of sufficient decrease. Practically, we must ensure that we have
directions that allow us to move parallel to the constraints.

We modify the example given above by adding linear constraints near the current
iterate xk and show the effect this has on the choice of pattern. We add one further
qualification to the essential logic of pattern search for the unconstrained case by
noting that we are considering a feasible point method, so the initial iterate x0 and
all subsequent iterates must be feasible. To enforce this, we can introduce the simple
rule of assigning an arbitrarily high function value (say +∞) to any step that takes
the search outside the feasible region defined by Ω. Otherwise, the logic of pattern
search remains unchanged.

xk︸ ︷︷ ︸

∆k

Ω

Fig. 3.2. An illustration of pattern search for linearly constrained minimization.

We now turn to the technical components of the general pattern search method
for the linearly constrained problem (1.1). We borrow much of the machinery from the
unconstrained case [15], modified in view of more recent developments in [8, 9]. We
begin by describing how the pattern is specified and then used to generate subsequent
iterates.

3.1. The pattern. The pattern for linearly constrained minimization is defined
in a way that is a little less flexible than for patterns in the unconstrained case.
In [15], at each iteration the pattern Pk is specified as the product Pk = BCk of
two components, a fixed basis matrix B and a generating matrix Ck that can vary
from iteration to iteration. This description of the pattern was introduced in the
unconstrained case in order to unify the features of such disparate algorithms as
the method of Hooke and Jeeves [7] and multidirectional search (MDS) [14]. In the
case of bound constrained problems [8], we introduced restrictions on the pattern Pk

itself rather than on B and Ck independently, but maintained the pretense of the
independence of the choice of the basis and generating matrices.

For linearly constrained problems, we will ignore the basis—i.e., we will take
B = I—and work directly in terms of the pattern Pk (for many of the classical
pattern search methods for unconstrained minimization, B = I). We do this because,
as with bound constrained problems, we need to place restrictions on Pk itself and it
is simplest just to ignore B.

A pattern Pk is a matrix Pk ∈ Zn×pk . We will place a lower bound on pk, but it
has no upper bound. To obtain the lower bound, we begin by partitioning the pattern
matrix into components:

Pk = [ Γk Lk ].
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In Section 3.5 we will describe certain geometrical restrictions that Γk ∈ Zn×rk must
satisfy. For now we simply observe that rk ≥ n+ 1. We will have more to say on rk
in Section 8, in particular, how we may reasonably expect to arrange rk ≤ 2n. We
also will have occasion to refer to Γk as the core pattern since it represents the set
of sufficient directions required for the analysis. We require that Lk ∈ Zn×(pk−rk)

contains at least one column, a column of zeroes; this is purely a convenience we
will explain shortly. Additional columns of Lk may be present to allow algorithmic
refinements but they play little active role in the analysis. Given these definitions of
the components Γk and Lk of Pk, it should be clear that pk ≥ rk + 1 > n+ 1.

We define a trial step si
k to be any vector of the form si

k = ∆kc
i
k, where ∆k ∈ R,

∆k > 0, and cik denotes a column of Pk = [c1k · · · c pk

k ]. We call a trial step si
k feasible

if (xk + si
k) ∈ Ω. At iteration k, a trial point is any point of the form xi

k = xk + si
k,

where xk is the current iterate. We will accept a step sk from among the trial steps si
k

that have been considered to form the next iterate xk+1 = xk + sk. The inclusion of
a column of zeroes in Lk allows for a zero step, i.e., xk+1 = xk. Among other things,
this ensures that if xk is feasible, then the pattern Pk always contains at least one
step—the zero step—that makes it possible to produce a feasible xk+1.

3.2. The linearly constrained exploratory moves. Pattern search methods
proceed by conducting a series of exploratory moves about the current iterate xk to
choose a new iterate xk+1 = xk + sk, for some feasible step sk determined during
the course of the exploratory moves. The hypotheses on the result of the linearly
constrained exploratory moves, given in Fig. 3.3, allow a broad choice of exploratory
moves while ensuring the properties required to prove convergence. In the analysis of
pattern search methods, these hypotheses assume the role played by sufficient decrease
conditions in quasi-Newton methods. The only change from the unconstrained case

1. sk ∈ ∆kPk = ∆k [Γk Lk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) < f(xk).

Fig. 3.3. Hypotheses on the result of the linearly constrained exploratory moves.

is the requirement that the iterates must be feasible.

We also observe that the last of the hypotheses is not as restrictive as may first
appear. Another way to state the condition is to say that the exploratory moves are
allowed to return the zero step only if there is no feasible step sk ∈ ∆kΓk which yields
improvement over f(xk). Otherwise, we may accept any feasible sk ∈ ∆kPk for which
f(xk + sk) < f(xk). Thus, in the unconstrained example depicted in Fig. 3.1, while
we look successively in each of the directions defined by the unit basis vectors for x+

for which f(x+) < f(xk), we are free to abandon the search the moment we find such
an x+. This means that if we are lucky, we can get by with as few as one evaluation
of f(x) in an iteration. The same holds for the example with linear constraints. This
economy is possible because we do not enforce a sufficient decrease condition on the
improvement realized in the objective.

3.3. The generalized pattern search method for linearly constrained

problems. Fig. 3.4 states the general pattern search method for minimization with
linear constraints. To define a particular pattern search method, we must specify
the pattern Pk, the linearly constrained exploratory moves to be used to produce a
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feasible step sk, and the algorithms for updating Pk and ∆k. We defer a discussion
of stopping criteria to Section 7.

Let x0 ∈ Ω and ∆0 > 0 be given.
For k = 0, 1, · · · ,

a) Compute f(xk).
b) Determine a step sk using a linearly constrained exploratory moves algorithm.
c) If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
d) Update Pk and ∆k.

Fig. 3.4. The generalized pattern search method for linearly constrained problems.

3.4. The updates. Fig. 3.5 specifies the rules for updating ∆k. The aim of the
update of ∆k is to force decrease in f(x). An iteration with f(xk +sk) < f(xk) is suc-
cessful; otherwise, the iteration is unsuccessful. As is characteristic of pattern search
methods, a step need only yield simple decrease, as opposed to sufficient decrease, in
order to be acceptable.

There are two possibilities:
(a) If f(xk + sk) ≥ f(xk) (i.e., the iteration is unsuccessful), then ∆k+1 = θk∆k,

where θk ∈ (0, 1).
(b) If f(xk + sk) < f(xk) (i.e., the iteration is successful), then ∆k+1 = λk∆k,

where λk ∈ [1,+∞).
The parameters θk and λk are not allowed to be arbitrary, but must be of the following
particular form. Let τ ∈ Q, τ > 1, and {w0, · · · , wL} ⊂ Z, w0 < 0, wL ≥ 0, and
w0 < w1 < · · · < wL, where L > 1 is independent of k. Then θk must be of the form
τwi for some wi ∈ {w0, · · · , wL} such that wi < 0, while λk must be of the form τwj

for some wj ∈ {w0, · · · , wL} such that wj ≥ 0.

Fig. 3.5. Updating ∆k.

We will sometimes refer to outcome (a) in Fig. 3.5, a reduction of ∆k, as back-
tracking, in a loose analogy to back-tracking in line-search methods. Note that part
(3) in Fig. 3.3 prevents back-tracking, and thus shorter steps, unless we first sample
f(x) in a suitably large set of directions from xk and find no improvement. This is at
the heart of the global convergence analysis.

3.5. Geometrical restrictions on the pattern. In the case of linearly con-
strained minimization, the core pattern Γk must reflect the geometry of the feasible
region when the iterates are near the boundary. Pattern search methods do not ap-
proximate the gradient of the objective, but instead rely on a sufficient sampling of
f(x) to ensure that feasible descent will not be overlooked if the pattern is sufficiently
small. We now discuss the geometrical restrictions on the pattern that make this
possible in the presence of linear constraints.

3.5.1. The geometry of the nearby boundary. We begin with the relevant
features of the boundary of the feasible region near an iterate. Let aT

i be the ith row
of the constraint matrix A in (1.1), and define

A`i
=

{
x | aT

i x = `i
}

Aui
=

{
x | aT

i x = ui

}
.
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These are the boundaries of the half-spaces whose intersection defines Ω. Set

∂Ω`i
(ε) = { x ∈ Ω | dist(x,A`i

) ≤ ε } ,
∂Ωui

(ε) = { x ∈ Ω | dist(x,Aui
) ≤ ε } ,

and

∂Ω(ε) =

m⋃

i=1

(∂Ω`i
(ε) ∪ ∂Ωui

(ε)) .

Given x ∈ Ω and ε ≥ 0 we define the index sets

I`(x, ε) = { i | x ∈ ∂Ω`i
(ε) }(3.1)

Iu(x, ε) = { i | x ∈ ∂Ωui
(ε) } .(3.2)

For i ∈ I`(x, ε) we define

ν`i
(x, ε) = −ai(3.3)

and for i ∈ Iu(x, ε) we define

νui
(x, ε) = ai.(3.4)

These are the outward pointing normals to the corresponding faces of Ω.
Given x ∈ Ω we will define the cone K(x, ε) to be the cone generated by the

vectors ν`i
(x, ε) for i ∈ I`(x, ε) and νui

(x, ε) for i ∈ Iu(x, ε). Recall that a convex
cone K is called finitely generated if there exists a finite set of vectors {v1, · · · , vr}
(the generators of K) such that

K = { v | v =

r∑

i=1

λivi, λi ≥ 0, i = 1, · · · , r }.

Finally, let PK(x,ε) and PK◦(x,ε) be the projections (in the Euclidean norm) onto
K(x, ε) andK◦(x, ε), respectively. By convention, ifK(x, ε) = ∅, thenK◦(x, ε) = Rn.
Observe that K(x, 0) is the cone of normals to Ω at x, while K◦(x, 0) is the cone of
tangents to Ω at x.

The cone K(x, ε), illustrated in Fig. 3.6, is the cone generated by the normals
to the faces of the boundary within distance ε of x. Its polar K◦(x, ε) is important
because if ε > 0 is sufficiently small, we can proceed from x along all directions in
K◦(x, ε) for a distance δ > 0, depending only on ε, and still remain inside the feasible
region. This is not the case for directions in the tangent cone of the feasible region
at x, since the latter cone does not reflect the proximity of the boundary for points
close to, but not on, the boundary.

3.5.2. Specifying the pattern. We now state the geometrical restriction on
the pattern Pk. We require the core pattern Γk of Pk to include generators for all of
the cones K◦(xk, ε), 0 ≤ ε ≤ ε∗, for some ε∗ > 0 that is independent of k.

We also require that the collection Γ = ∪∞
k=0Γk be finite. Thus (and this is the

real point), Γ will contain a finite set of generators for all of the cones K◦(xk, ε), 0 ≤
ε ≤ ε∗. Note that as ε varies from 0 to ε∗ there is only a finite number of distinct cones
K(xk, ε) since there is only a finite number of faces of Ω. This means that the finite
cardinality of Γ is not an issue. There remains the question of constructing sets of
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generators that are also integral; we address the issue of constructing suitable patterns,
by implicitly estimating ε∗, in Section 8. However, we will see that the construction
is computationally tractable, and in many cases is not particularly difficult. We close
by noting that the condition that Γk contains generators of K◦(xk, ε) implies that Γk

contains generators for all tangent cones to Ω at all feasible points near xk.

If xk is “far” from the boundary in the sense that K(xk, ε) = ∅, then K◦(xk, ε) =
Rn and a set of generators for K◦(xk, ε) is simply a positive spanning set for Rn

[5, 9]. (A positive spanning set is a set of generators for a cone in the case that the
cone is a vector space.) If the iterate is suitably in the interior of Ω, the algorithm will
look like a pattern search algorithm for unconstrained minimization [9], as it ought.
On the other hand, if xk is near the boundary, K(xk, ε) 6= ∅ and the pattern must
conform to the local geometry of the boundary, as depicted in Figs. 3.2 and 3.6.

x

Ω

ε
�

�K◦(x, ε)

�

�

K(x, ε)

Fig. 3.6. The situation near the boundary.

The design of the pattern reflects the fundamental challenge in the development
of constrained pattern search methods. We do not have an estimate of the gradient of
the objective and consequently we have no idea which constraints locally limit feasible
improvement in f(x). In a projected gradient method one has the gradient and can
detect the local interaction of the descent direction with the boundary by conducting
a line-search along the projected gradient path. In derivative-free methods such as
pattern search we must have a sufficiently rich set of directions in the pattern since
any subset of the nearby faces may be the ones that limit the feasibility of the steepest
descent direction, which is itself unavailable for use in the detection of the important
nearby constraints. Nonetheless, in Section 4 we are able to outline the conditions for
global convergence and in Section 8 we outline practical implementations of pattern
search methods for linearly constrained minimization.

4. Convergence analysis. In this section we state the convergence results for
pattern search methods for linearly constrained minimization. We defer the proofs of
these results to Section 6, after reviewing existing results for pattern search methods
in Section 5.

We first summarize features of the algorithm whose statements are scattered
throughout Section 3.

Hypothesis 0.

1. The pattern Pk = [ Γk Lk ] ∈ Zn×pk , pk > n+ 1, so that all search directions
are integral vectors scaled by ∆k ∈ Rn. All steps sk are then required to be
of the form ∆kc

i
k, where cik denotes a column of Pk = [c1k · · · cpk

k ].
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2. The core pattern Γk ∈ Zn×rk , rk ≥ n + 1, belongs to Γ, where Γ is a finite
set of integral matrices the columns of which include generators for all of the
cones K◦(xk, ε), 0 ≤ ε ≤ ε∗, for some ε∗ > 0 that is independent of k.

3. The matrix Lk ∈ Zn×(pk−rk) contains at least one column, a column of zeroes.
4. The rules for updating ∆k are as given in Fig. 3.5.
5. The exploratory moves algorithm returns steps that satisfy the conditions

given in Fig. 3.3.
We now add some additional hypotheses on the problem (1.1).

Hypothesis 1. The constraint matrix A is rational.
Hypothesis 1 is a simple way of ensuring that we can find a rational lattice that fits
inside the feasible region in a suitable way. In particular, the rationality of A ensures
that we can construct Γk satisfying part 2 of Hypothesis 0, as discussed further in
Section 8.

Hypothesis 2. The set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) } is compact.
Hypothesis 3. The objective f(x) is continuously differentiable on an open

neighborhood D of LΩ(x0).
We next remind the reader that unless otherwise noted, norms are assumed to be

the Euclidean norm and that we denote by g(x) the gradient of the objective f at x.
Let PΩ be the projection onto Ω. For feasible x, let

q(x) = PΩ(x− g(x)) − x.

Note that because the projection PΩ is non-expansive, q(x) is continuous on Ω. The
following proposition summarizes properties of q that we need, particularly the fact
that x is a constrained stationary point for (1.1) if and only if q(x) = 0. The results
are classical; see Section 2 of [6], for instance.

Proposition 4.1. Let x ∈ Ω. Then

‖ q(x) ‖ ≤ ‖ g(x) ‖

and x is a stationary point for problem (1.1) if and only if q(x) = 0.
We can now state the first convergence result for the general pattern search

method for linearly constrained minimization.
Theorem 4.2. Assume Hypotheses 0–3 hold. Let {xk} be the sequence of iterates

produced by the generalized pattern search method for linearly constrained minimiza-
tion (Fig. 3.4). Then

lim inf
k→+∞

‖ q(xk) ‖ = 0 .

As an immediate corollary, we have
Corollary 4.3. There exists a limit point of {xk} that is a constrained station-

ary point for (1.1).
Note that Hypothesis 2 guarantees the existence of one such limit point.

We can strengthen Theorem 4.2, in the same way that we do in the unconstrained
and bound constrained cases [8, 15], by adding the following hypotheses.

Hypothesis 4. The columns of the pattern matrix Pk remain bounded in norm,
i.e., there exists c4 > 0 such that for all k, c4 > ‖ cik ‖, for all i = 1, · · · , pk.

Hypothesis 5. The original hypotheses on the result of the linearly constrained
exploratory moves are replaced with the stronger version given in Fig. 4.1.

The third condition is stronger than the hypotheses on the result of the linearly
constrained exploratory moves given in Fig. 3.3. Now we tie the amount of decrease
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1. sk ∈ ∆kPk = ∆k [Γk Lk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) ≤ min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω }.

Fig. 4.1. Strong hypotheses on the result of the linearly constrained exploratory moves.

in f(x) that must be realized by the step sk to the amount of decrease that could be
realized were we to rely on the local behavior of the linearly constrained problem, as
defined by the columns of Γk.

Hypothesis 6. We have limk→+∞ ∆k = 0.
Note that we do not require ∆k to be monotone non-increasing.

Then we obtain the following stronger results.
Theorem 4.4. Assume Hypotheses 0–6 hold. Then for the sequence of iter-

ates {xk} produced by the generalized pattern search method for linearly constrained
minimization (Fig. 3.4),

lim
k→+∞

‖ q(xk) ‖ = 0 .

Corollary 4.5. Every limit point of {xk} is a constrained stationary point for
(1.1).
Again, Hypothesis 2 guarantees the existence of at least one such limit point.

5. Results from the standard theory. We need the following results from the
analysis of pattern search methods in the unconstrained case. For the proofs, see [15];
these results generalize to the linearly constrained case without change. Theorem 5.1
is central to the convergence analysis for pattern search methods; it allows us to prove
convergence for these methods in the absence of any sufficient decrease condition.

Theorem 5.1. Any iterate xN produced by a generalized pattern search method
for linearly constrained problems (Fig. 3.4) can be expressed in the following form:

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑

k=0

zk,(5.1)

where
• x0 is the initial guess,
• β/α ≡ τ , with α, β ∈ N and relatively prime, and τ is as defined in the rules

for updating ∆k (Fig. 3.5),
• rLB and rUB are integers depending on N , where rLB ≤ 0 and rUB ≥ 0,
• ∆0 is the initial choice for the step length control parameter,
• B is the basis matrix, and
• zk ∈ Zn, k = 0, · · · , N − 1.

Recall that in the case of linearly constrained minimization we set B = I.
The quantity ∆k regulates step length as indicated by the following.
Lemma 5.2. (i) There exists a constant ζ∗ > 0, independent of k, such that for

any trial step si
k 6= 0 produced by a generalized pattern search method for linearly

constrained problems we have ‖ si
k ‖ ≥ ζ∗∆k.

(ii) Under Hypothesis 4, there exists a constant ψ∗ > 0, independent of k, such
that for any trial step si

k produced by a generalized pattern search method for linearly
constrained problems we have ∆k ≥ ψ∗‖ si

k ‖.
10



In the case of pattern search for linearly constrained problems, Pk is integral. Since
si

k ∈ ∆kPk, we may take ζ∗ = 1.

6. Proof of Theorems 4.2 and 4.4. We now proceed with the proofs of the
two main results stated in Section 4. Essential to our arguments are some results
concerning the geometry of polyhedra. We defer the treatment of these technical
details to Section 10.

Given an iterate xk, let gk = g(xk) and qk = PΩ(xk −gk)−xk. Let B(x, δ) be the
ball with center x and radius δ, and let ω denote the following modulus of continuity
of g: given x ∈ LΩ(x0) and ε > 0,

ω(x, ε) = sup { δ > 0 | B(x, δ) ⊂ D and ‖ g(y) − g(x) ‖ < ε for all y ∈ B(x, δ) } .

Then we have this elementary proposition concerning descent directions, whose proof
we omit (see [8]).

Proposition 6.1. Let s ∈ Rn and x ∈ LΩ(x0). Assume that g(x) 6= 0 and
g(x)T s ≤ −ε‖ s ‖ for some ε > 0. Then, if ‖ s ‖ < ω(x, ε/2),

f(x+ s) − f(x) ≤ −ε
2
‖ s ‖.

The next result is the crux of the convergence analysis. Using the results in
Section 10, we show that if we are not at a constrained stationary point, then the
pattern always contains a descent direction along which we remain feasible for a
sufficiently long distance.

Let Γ∗ be the maximum norm of any column of the matrices in the set Γ, where Γ

is as in Section 3.1 and Section 3.5. If ∆k ≤ δ/Γ∗, then ‖ si
k ‖ ≤ δ for all si

k ∈ ∆kΓk.
Also define

h = min
1≤i≤m

`i 6=ui

ui − `i
‖ ai ‖

.(6.1)

This is the minimum distance between the faces of Ω associated with the constraints
that are not equality constraints. Finally, ‖ gk ‖ is bounded on LΩ(x0) by hypothesis;
let g∗ be an upper bound for ‖ gk ‖.

Proposition 6.2. There exist r6.2 > 0 and c6.2 > 0 such that if η > 0, ‖ qk ‖ ≥ η,
and ∆k ≤ r6.2η

2, then there is a trial step si
k defined by a column of ∆kΓk for which,

given xk ∈ Ω, (xk + si
k) ∈ Ω and

−gT
k s

i
k ≥ c6.2‖ qk ‖‖ si

k ‖.

Proof. Let

r = min(ε∗/(g∗)2, h/(2(g∗)2), r10.7),

where ε∗ is the constant introduced in Section 3.5.2, h is given by (6.1), and r10.7 is
the constant that appears in Proposition 10.7.

Now consider ε = rη2. From Proposition 4.1, ‖ qk ‖ ≤ ‖ gk ‖ ≤ g∗, so our choice
of r ensures that ε is sufficiently small that

1. ε ≤ ε∗,
2. ε ≤ h/2, and

11



3. ε ≤ r10.7η
2.

Because of this last fact, (3), we may apply Proposition 10.7 to w = −gk with
x = xk and γ = g∗ to obtain

‖ PK◦(xk,ε)(−gk) ‖ ≥ c10.7‖ qk ‖.(6.2)

Meanwhile, since we require the core pattern Γk of Pk to include generators for all of
the cones K◦(xk, δ), δ ≤ ε∗, then, because ε ≤ ε∗, some subset of the core pattern
steps si

k forms a set of generators for K◦(xk, ε). Consequently, by virtue of (6.2) we
may invoke Corollary 10.4: for some si

k ∈ ∆kΓk we have

−gT
k s

i
k ≥ c10.4 ‖ PK◦(xk,ε)(−gk) ‖ ‖ si

k ‖.(6.3)

From (6.3) we then obtain

−gT
k s

i
k ≥ c10.4 c10.7 ‖ qk ‖ ‖ si

k ‖ = c6.2 ‖ qk ‖ ‖ si
k ‖,

where c6.2 = c10.4 c10.7. Thus we are assured of a descent direction inside the pattern.
Now we must show that we can take a sufficiently long step along this descent

direction and remain feasible. Define

r6.2 = r/(2Γ∗)

and consider what happens when ∆k ≤ r6.2η
2. We have ∆k ≤ ε/(2Γ∗), and since

si
k ∈ ∆kΓk, we have ‖ si

k ‖ ≤ ε/2. Since si
k ∈ K◦(xk, ε), and ε ≤ h/2 by (2) above,

we can apply Proposition 10.8 to w = si
k to conclude that (xk + si

k) ∈ Ω.
We now show that if we are not at a constrained stationary point, we can al-

ways find a step in the pattern which is both feasible and yields improvement in the
objective.

Proposition 6.3. Given any η > 0, there exists r6.3 > 0, independent of k,
such that if ∆k ≤ r6.3η

2 and ‖ qk ‖ ≥ η, the pattern search method for linearly
constrained minimization will find an acceptable step sk; i.e., f(xk+1) < f(xk) and
xk+1 = (xk + sk) ∈ Ω.

If, in addition, the columns of the generating matrix remain bounded in norm and
we enforce the strong hypotheses on the results of the linearly constrained exploratory
moves (Hypotheses 4 and 5), then, given any η > 0, there exists σ > 0, independent
of k, such that if ∆k < r6.3η

2 and ‖ qk ‖ ≥ η, then

f(xk+1) ≤ f(xk) − σ‖ qk ‖‖ sk ‖.

Proof. Proposition 6.2 assures us of the existence of r6.2 and a step si
k defined by

a column of ∆kΓk such that (xk + si
k) ∈ Ω and

gT
k s

i
k ≤ −c6.2‖ qk ‖‖ si

k ‖,

provided ∆k ≤ r6.2η
2. Also, since g(x) is uniformly continuous on LΩ(x0) and LΩ(x0)

is a compact subset of the open set D on which f(x) is continuously differentiable,
there exists ω∗ > 0 such that

ω
(

xk,
c6.2

2
η
)

≥ ω∗

for all k for which ‖ qk ‖ ≥ η.
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Now define

r6.3 = min
(
r6.2, ω∗/(Γ

∗(g∗)2)
)

and suppose ‖ qk ‖ ≥ η and ∆k ≤ r6.3η
2. We have

‖ si
k ‖ ≤ ∆kΓ∗ ≤ ω∗ ≤ ω

(

xk,
c6.2

2
‖ qk ‖

)

.

Hence, by Proposition 6.1,

f(xk + si
k) − f(xk) ≤ −c6.2

2
‖ qk ‖‖ si

k ‖.

Thus, when ∆k ≤ r6.3η
2, f(xk + si

k) < f(xk) for at least one feasible si
k ∈ ∆kΓk. The

hypotheses on linearly constrained exploratory moves guarantee that if

min { f(xk + y) | y ∈ ∆kΓk, (xk + y) ∈ Ω } < f(xk),

then f(xk+sk) < f(xk) and (xk+sk) ∈ Ω. This proves the first part of the proposition.
If, in addition, we enforce the strong hypotheses on the result of the linearly

constrained exploratory moves, then we actually have

f(xk+1) − f(xk) ≤ −c6.2

2
‖ qk ‖‖ si

k ‖.

Part (i) of Lemma 5.2 then ensures that

f(xk+1) ≤ f(xk) − c6.2

2
ζ∗∆k‖ qk ‖.

Applying part (ii) of Lemma 5.2, we arrive at

f(xk+1) ≤ f(xk) − c6.2

2
ζ∗ψ∗‖ qk ‖‖ sk ‖.

This yields the second part of the proposition with σ = (c6.2/2)ζ∗ψ∗.
Corollary 6.4. If lim infk→+∞ ‖ qk ‖ 6= 0, then there exists a constant ∆∗ > 0

such that for all k, ∆k ≥ ∆∗.
Proof. By hypothesis, there existsN and η > 0 such that for all k > N , ‖ qk ‖ ≥ η.

By Proposition 6.3, we can find δ = r6.3η
2 such that if k > N and ∆k < δ, then we

will find an acceptable step. In view of the update of ∆k given in Fig. 3.5, we
are assured that for all k > N , ∆k ≥ min(∆N , τ

w0δ). We may then take ∆∗ =
min{∆0, · · · ,∆N , τ

w0δ}.
The next theorem combines the strict algebraic structure of the iterates with

the simple decrease condition of the generalized pattern search algorithm for linearly
constrained problems, along with the rules for updating ∆k, to tell us the limiting
behavior of ∆k.

Theorem 6.5. Under Hypotheses 0–3, lim infk→+∞ ∆k = 0.
Proof. The proof is like that of Theorem 3.3 in [15]. Suppose 0 < ∆LB ≤ ∆k for

all k. Using the rules for updating ∆k, found in Fig. 3.5, it is possible to write ∆k as
∆k = τrk∆0, where rk ∈ Z.

The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τrk} is bounded
away from zero. Meanwhile, we also know that the sequence {∆k} is bounded above
because all the iterates xk must lie inside the set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) }
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and the latter set is compact; part (i) of Lemma 5.2 (which is a consequence of the
rules for updating ∆k) then guarantees an upper bound ∆UB for {∆k}. This, in turn,
means that the sequence {τrk} is bounded above. Consequently, the sequence {τrk}
is a finite set. Equivalently, the sequence {rk} is bounded above and below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 5.1;
the details are found in the proof of Theorem 3.3 in [15]. In the context of Theorem 5.1,

rLB = min
0≤k<N

{rk} rUB = max
0≤k<N

{rk}.

If, in the matter at hand, we let

rLB = min
0≤k<+∞

{rk} rUB = max
0≤k<+∞

{rk},(6.4)

then (5.1) holds for the bounds given in (6.4), and we see that for all k, xk lies in the
translated integer lattice G generated by x0 and the columns of βrLBα−rUB∆0I.

The intersection of the compact set LΩ(x0) with the lattice G is finite. Thus,
there must exist at least one point x∗ in the lattice for which xk = x∗ for infinitely
many k.

We now appeal to the simple decrease condition in part (c) of Fig. 3.4, which
guarantees that a lattice point cannot be revisited infinitely many times since we
accept a new step sk if and only if f(xk) > f(xk + sk) and (xk + sk) ∈ Ω. Thus there
exists an N such that for all k ≥ N , xk = x∗, which implies f(xk) = f(xk + sk).

We now appeal to the algorithm for updating ∆k (part (a) in Fig. 3.5) to see that
∆k → 0, thus leading to a contradiction.

6.1. The proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [15].
Suppose that lim infk→+∞ ‖ qk ‖ 6= 0. Then Corollary 6.4 tells us that there exists
∆∗ > 0 such that for all k, ∆k ≥ ∆∗. But this contradicts Theorem 6.5.

6.2. The Proof of Theorem 4.4. The proof, also by contradiction, follows
that of Theorem 3.7 in [15]. Suppose lim supk→+∞ ‖ qk ‖ 6= 0. Let ε > 0 be such that
there exists a subsequence ‖ q(xmi

) ‖ ≥ ε. Since

lim inf
k→+∞

‖ qk ‖ = 0,

given any 0 < η < ε, there exists an associated subsequence li such that

‖ qk ‖ ≥ η for mi ≤ k < li, ‖ q(xli) ‖ < η.

Since ∆k → 0, we can appeal to Proposition 6.3 to obtain formi ≤ k < li, i sufficiently
large,

f(xk) − f(xk+1) ≥ σ‖ qk ‖‖ sk ‖ ≥ ση‖ sk ‖,

where σ > 0. Summation then yields

f(xmi
) − f(xli) ≥ ∑li

k=mi
ση‖ sk ‖ ≥ ση‖ xmi

− xli ‖.
Since f is bounded below on the set LΩ(x0), we know that f(xmi

) − f(xli) → 0 as
i→ +∞, so ‖ xmi

− xli ‖ → 0 as i→ +∞. Then, because q is uniformly continuous,
‖ q(xmi

) − q(xli ) ‖ < η, for i sufficiently large. However,

‖ q(xmi
) ‖ ≤ ‖ q(xmi

) − q(xli) ‖ + ‖ q(xli) ‖ ≤ 2η.(6.5)

Since (6.5) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try η = ε
4 ).
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7. Comments on the algorithm. We next discuss some practical aspects of
pattern search algorithms for linearly constrained problems. In this section we pro-
pose some stopping criteria for these algorithms, as well as examine the questions of
estimating Lagrange multipliers and identifying the constraints active at a solution.

7.1. Stopping criteria. The stopping criterion that seems most natural to us is
to halt the algorithm once ∆k falls below some prescribed tolerance ∆∗. Equivalently,
one can halt once the absolute length of the steps in the core pattern falls below some
prescribed tolerance δ∗.

The following proposition concerning the correlation of stationarity and the size
of ∆k lends support to this choice of a stopping criterion. The result relates ‖ qk ‖
and the ∆k at those steps where ∆k is reduced (i.e., where back-tracking occurs);
if we terminate the algorithm at such an iterate, then, if ∆k is sufficiently small,
‖ qk ‖ will also be small. In the case of bound constraints, a similar result allows
one to establish convergence for a pattern search algorithm for general nonlinearly
constrained problems via inexact bound constrained minimization of the augmented
Lagrangian [10]. For convenience, we assume that ∇f(x) is Lipschitz continuous.
However, if we assume only that ∇f(x) is uniformly continuous on LΩ(x0), we can
still establish a correlation between stationarity and the size of ∆k.

Proposition 7.1. Suppose ∇f(x) is Lipschitz continuous on LΩ(x0) with Lip-
schitz constant C. There exists c7.1 > 0 for which the following holds. If xk is an
iterate at which there is an unsuccessful iteration, then

‖ qk ‖2 ≤ c7.1∆k.(7.1)

Proof. We need only consider the situation where η = ‖ qk ‖ > 0. There are two
cases to consider. First suppose r6.2‖ qk ‖2 ≤ ∆k, where r6.2 is the constant of the
same name in Proposition 6.2. Then we immediately have

‖ qk ‖2 ≤ ∆k/r6.2.(7.2)

On the other hand, suppose r6.2‖ qk ‖2 > ∆k. By Proposition 6.2, there exists
si

k ∈ ∆kΓk such that (xk + si
k) ∈ Ω and

−gT
k s

i
k ≥ c6.2‖ qk ‖‖ si

k ‖.(7.3)

Since iteration k is unsuccessful, it follows from Fig. 3.3 that f(xk + si
k) − f(xk) ≥ 0

for all feasible si
k ∈ ∆kΓk. By the mean-value theorem, for some ξ in the line segment

connecting xk and xk + si
k we have

0 ≤ f(xk + si
k) − f(xk)

= ∇f(xk)T si
k + (∇f(ξ) −∇f(xk))T si

k

≤ −c6.2‖ qk ‖‖ si
k ‖ + ‖ ∇f(ξ) −∇f(xk) ‖‖ si

k ‖,

where si
k is the step for which (7.3) holds. Thus

c6.2‖ qk ‖ ≤ ‖ ∇f(ξ) −∇f(xk) ‖.

Using the Lipschitz constant C for ∇f(x), we obtain

c6.2‖ qk ‖ ≤ C‖ ξ − xk ‖ ≤ CΓ∗∆k,
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where Γ∗ is the maximum norm of any column of the matrices in the set Γ. Thus

c6.2‖ qk ‖2 ≤ g∗CΓ∗∆k,(7.4)

where g∗ is the upper bound on ∇f(x). The proposition then follows from (7.2) and
(7.4).

Remark. We conjecture that one can establish the estimate ‖ qk ‖ ≤ c∆k at
unsuccessful steps. The appearance of ‖ qk ‖2 rather than ‖ qk ‖ in (7.1) is a conse-
quence of the appearance of η2 in the hypotheses of Proposition 10.7, which in turn
derives from the limitations of the way in which the latter proposition is proved.

May’s algorithm [11], which is based on a difference approximation of feasible
directions of descent, uses a difference approximation of local feasible descent in its
stopping criterion. In connection with pattern search one could also attempt to do
something similar, estimating ∇f(x) either by a difference approximation or a regres-
sion fit, and using this information in a stopping test. However, depending on the
application, the simpler stopping criterion ∆k < ∆∗ may be preferable; for instance, if
the objective is believed to be untrustworthy in its accuracy, or if f(x) is not available
as a numerical value and only comparison of objective values is possible.

7.2. Identifying active constraints. Another practical issue is that of identi-
fying active constraints, as in [2, 3, 4]. A desirable feature of an algorithm for linearly
constrained minimization is the identification of active constraints in a finite number
of iterations, that is, if the sequence {xk} converges to a stationary point x∗, then in
a finite number of iterations the iterates xk land on the constraints active at x∗ and
remain thereafter on those constraints.

As discussed in [8] for the case of bound constraints, there are several impediments
to proving such results for pattern search algorithms and showing that ultimately the
iterates will land on the active constraints and remain there. For algorithms such
as those considered in [2, 3, 4], this is not a problem because the explicit use of the
gradient impels the iterates to do so in the neighborhood of a constrained stationary
point. However, pattern search methods do not have this information, and at this
point it is not clear how to avoid the possibility that these algorithms take a purely
interior approach to a point on the boundary. On the other hand, the kinship of
pattern search methods and gradient projection methods makes us hopeful that we
may be able to devise a suitable mechanism to ensure pattern search methods also
identify the active constraints in a finite number of iterations.

7.3. Estimating Lagrange multipliers. Similar limitations pertain to esti-
mating Lagrange multipliers as do to identifying active constraints. Pattern search
methods do not use an explicit estimate of ∇f(x), and one does not obtain an estimate
of the Lagrange multipliers for (1.1) from the usual workings of the algorithm. Some
manner of post-optimality sensitivity analysis would be required to obtain estimates
of the multipliers; again, either through difference estimates or regression estimates
of ∇f(x).

By way of comparison, in May’s algorithm one looks at both the cones tangent and
polar to the nearby constraints and computes directional derivatives along generators
for both of these cones. The directional derivatives associated with the normal cone
yield multiplier estimates. (The authors are indebted to one of the referees for pointing
this out and for suggesting that the same idea could be applied to our algorithm.)

In the algorithm we propose, we restrict attention to the behavior of f(x) solely
in feasible directions, ignoring the behavior of f(x) in infeasible directions, which is
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precisely the information needed to compute multipliers. However, one could estimate
multipliers along the lines of the calculations in May’s algorithm, by estimating the
active constraints at a stopping point xk and computing directional derivatives in
the directions of the generators of the associated estimate of the cone normal to the
feasible region. (The computation of the generators of the requisite cones is discussed
in the following section.)

For another way in which one can obtain information about multipliers from
pattern search methods, see the augmented Lagrangian approach in [10].

8. Constructing patterns for problems with linear constraints. In this
section we outline practical implementations of pattern search methods for linearly
constrained minimization. The details will be the subject of future work. In the
process we also show that under the assumption that A is rational, one can actually
construct patterns with both the algebraic properties required in Section 3.1 and the
geometric properties required in Section 3.5.

8.1. Remarks on the general case. We begin by showing that in general it is
possible to find rational generators for the cones K◦(x, ε). By clearing denominators
we then obtain the integral vectors for Γ as required in Section 3.1. The construction
is an elaboration of the proof that polyhedral cones are finitely generated (see [16], for
instance). The proof outlines an algorithm for the construction of generators of cones.
Given a cone K we will use V to denote a matrix whose columns are generators of K:

K = { x | x = V λ, λ ≥ 0 } .

Proposition 8.1. Suppose K is a cone with rational generators V . Then there
exists a set of rational generators for K◦.

Proof. Suppose w ∈ K◦; then (w, v) ≤ 0 for all v ∈ K. Let v = V λ, λ ≥ 0. Then

(w , v) =
(
PN (V T )w + PN (V T )⊥w , V λ

)
≤ 0,

where PN (V T ) and P(N (V T ))⊥ are the projections onto the nullspace N (V T ) of V T

and its orthogonal complement N (V T )⊥, respectively. Since N (V T )⊥ is the same as
the range R(V ) of V , we have

(w , v) =
(
PR(V )w , V λ

)
≤ 0.

Let N and R be rational bases for N (V T ) and R(V ) respectively; these can be
constructed, for instance, via reduction to row echelon form since V is rational.

Let {p1, · · · , pt} be a rational positive basis for N (V T ). Such a positive basis can
be constructed as follows. If N is n × r then if Π is a rational positive basis (with t
elements) for Rr (e.g., Π = [I − I]), then NΠ is a rational positive basis for N (V T ).

Meanwhile, if R is a rational basis for R(V ), then for some z we have

PR(V )w = Rz,

whence

(w , v) = (Rz , V λ) ≤ 0.

Since λTV TRz ≤ 0 for all λ ≥ 0, it follows that V TRz ≤ 0. Let e = (1, · · · , 1)T and
consider

C =
{
z | V TRz ≤ 0, eTV TRz ≥ −1

}
.
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Since C is convex and compact, it is the convex hull of its extreme points {c1, · · · , cs}.
Furthermore, note that the extreme points of C will define a set of generators for
the cone

{
z | V TRz ≤ 0

}
. The extreme points of C are also rational since V TR is

rational; the extreme points will be solutions to systems of equations with rational
coefficients. These extreme points, which are the vertices of the polyhedron C, can
be computed by any number of vertex enumeration techniques (e.g., see [1] and the
references cited therein).

Returning to w ∈ K◦, we see that we can express w as a positive linear com-
bination of the vectors {p1, · · · , pt, c1, · · · , cs}. Moreover, by construction the latter
vectors are rational.

8.2. The nondegenerate case. As we have seen, the construction of sets of
generators for cones is non-trivial and is related to the enumeration of vertices of
polyhedra. However, in the case of nondegeneracy—the absence of any point on
the boundary at which the set of binding constraints is linearly dependent—we can
compute the required generators in a straightforward way. This case is handled in
[11] by using the QR factorization to derive the search directions. Because we require
rational search directions, we use the LU factorization (reduction to row echelon form,
to be more precise) since the latter can be done in rational arithmetic.

The following proposition shows that once we have identified a cone K(xk, δ) with
a linearly independent set of generators, we can construct generators for all the cones
K(xk, ε), 0 ≤ ε ≤ δ.

Proposition 8.2. Suppose that for some δ, K(x, δ) has a linearly independent
set of rational generators V . Let N be a rational positive basis for the nullspace of
V T .

Then for any ε, 0 ≤ ε ≤ δ, a set of rational generators for K◦(x, ε) can be found
among the columns of N , V (V TV )−1, and −V (V TV )−1.

Proof. Given x ∈ Ω and δ > 0, let K = K(x, δ). Suppose w ∈ K◦; then (w, v) ≤ 0
for all v ∈ K. Let v = V λ, λ ≥ 0. Since V has full column rank, we have

(w, v) = ((I − V (V TV )−1V T )w + V (V TV )−1V Tw, V λ) ≤ 0

or (V Tw, λ) ≤ 0 for all λ ≥ 0. Let ξ = V Tw; then we have (ξ, λ) ≤ 0 for all λ ≥ 0, so
ξ ≤ 0.

The matrix N is a positive basis for the range of I − V (V TV )−1V T , since the
latter subspace is the same as the nullspace of V T . Then any w ∈ K◦ can be written
in the form

w = Nζ − V (V TV )−1ξ

where ζ ≥ 0 and ξ ≥ 0. Thus the columns of N and −V (V TV )−1 are a set of
generators for K◦.

Moreover, for ε < δ we obtain K̃ = K(x, ε) by dropping generators from V .
Without loss of generality we will assume that we drop the first r columns of V ,
where V has p columns. Then consider w ∈ K̃◦. Proceeding as before, we obtain
(V Tw, λ) ≤ 0 for all λ ≥ 0, λ1, · · · , λr = 0. If we once again define ξ = V Tw, then we
see that ξr+1, · · · , ξp ≤ 0, while ξ1, · · · , ξr are unrestricted in sign. Hence we obtain

a set of generators for K̃◦ from the columns of N , the first r columns of V (V TV )−1

and their negatives, and the last p− r columns of −V (V TV )−1.
Proposition 8.2 leads to the following construction of patterns for linearly con-

strained minimization. Under the assumption of nondegeneracy, we know there exists
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ε∗ such that if 0 ≤ ε ≤ ε∗, then K(x, ε) has a linearly independent set of generators.
If we knew this ε∗, it would be a convenient choice for the ε∗ required in Section 3.5.
The following algorithm implicitly estimates ε∗: it conducts what amounts to a safe-
guarded backtracking on ε at each iteration to find a value of εk for which K(xk, εk)
has a linearly independent set of generators.

Given ε∗ independent of k, choose εk ≥ ε∗. Then
1. Define the cone K(xk, εk) as in Section 3.5.
2. Let V represent the matrix whose columns are the generators ν`

i (xk, εk) and
νu

i (xk, εk) of K(xk, εk) (defined in (3.3)–(3.4)). Determine whether or not V
has full column rank. If so, go to Step 3. Otherwise, reduce εk just until
|I`(xk, εk)| + |Iu(xk, εk)| is decreased. Return to Step 1.

3. Construct a rational positive basis N for the range of I − V (V TV )−1V T .
This can be done via reduction to row echelon form, or simply by taking the
columns of the matrices ±

(
I − V (V TV )−1V T

)
.

4. Form the matrix Γk = [N V (V TV )−1 − V (V TV )−1 ].
Under the assumption of nondegeneracy, εk will remain bounded away from 0 as a
function of k, implicitly giving us the ε∗ introduced in Section 3.5.2.

This construction also shows that we may reasonably expect to arrange that rk,
the number of columns of Γk defined in Section 3.1, to be at most 2n. Suppose V
has rank r. Then the nullspace of V has dimension n − r, so we can find a positive
basis N for the nullspace with as few as n− r + 1 elements (or 0 elements, if n = r).
At the same time, V (V TV )−1 has r columns, so we can arrange Γk to have as few as
(n− r+ 1) + 2r = n+ r− 1 columns, if r < n, or 2r elements, if r = n. In either case
Γk has at most 2n columns.

8.3. The case of bound constraints. Matters simplify enormously in the
case of bound constraints, previously considered in [8]. We will briefly discuss the
specialization to bound constrained minimization and in the process sharpen the
results in [8].

In the case of bound constraints we have

minimize f(x)
subject to l ≤ x ≤ u.

Again, we allow the possibility that some of the variables are unbounded either above
or below by permitting `j , uj = ±∞, j ∈ {1, · · · , n}.

In the case of bound constraints we know a priori the possible generators of
the cones K(x, ε) and K◦(x, ε). For any x ∈ Ω and any ε > 0 the cone K(x, ε)
is generated by some subset of the coordinate vectors ±ei. If K(x, ε) is gener-
ated by νi1 , · · · , νir

, where νij
∈ {eij

,−eij
}, then K◦(x, ε) is generated by the set

−νi1 , · · · ,−νir
together with a positive basis for the orthogonal complement of the

space spanned by νi1 , · · · , νir
. This orthogonal complement simply corresponds to the

remaining coordinate directions.
This simplicity allows us to prescribe in advance patterns that work for allK(x, ε).

In [8] we gave the prescription Γk = [I − I]. This choice, independent of k, includes
generators for all possible K◦(x, ε). However, if not all the variables are bounded,
then one can make a choice of Γk that is independent of k but more parsimonious
in the number of directions. Let xi1 , · · · , xir

be the variables with either a lower or
upper bound; then Γk should include the coordinate vectors ±ei1 , · · · ,±eir

together
with a positive basis for the orthogonal complement of the linear span of ei1 , · · · , eir

;
a positive basis for the orthogonal complement can have as few as (n−r)+1 elements.
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The choice of Γk = [I − I] in [8] requires, in the worst case, 2n objective evalua-
tions per iteration. The more detailed analysis given here leads to a reduction in this
cost if not all the variables are bounded. If only r < n variables are bounded, then
we can find an acceptable pattern containing as few as 2r+ ((n− r) + 1) = n+ r+ 1
points.

Finally, note that if general linear constraints are present but A has full row rank
(i.e., there are no more than n constraints and they are all linearly independent), then
one can carry out a construction similar to that for bound constraints.

9. Conclusions. We have introduced pattern search algorithms for solving prob-
lems with general linear constraints. We have shown that under mild assumptions we
can guarantee global convergence of pattern search methods for linearly constrained
problems to a Karush-Kuhn-Tucker point. As in the case of unconstrained mini-
mization, pattern search methods for linearly constrained problems accomplish this
without explicit recourse to the gradient or the directional derivative. In addition,
we have outlined particular instances of such algorithms and shown how the gen-
eral approach can be greatly simplified when the only constraints are bounds on the
variables. The effectiveness of these techniques will be the subject of future work.

10. Appendix: results concerning the geometry of polyhedra. We need
a number of results concerning the geometry of polyhedra for the proofs of Section 6.
We begin with a classical result on the structure of finitely generated cones.

Theorem 10.1. Let C be a finitely generated convex cone in Rn. Then C
is the union of finitely many finitely generated convex cones each having a linearly
independent set of generators chosen from the generators of C.

Proof. See Theorem 4.17 in [16].
Corollary 10.2. Let C be a finitely generated convex cone in Rn with generators

{v1, · · · , vr}. Then there exists c10.2 > 0, depending only on {v1, · · · , vr}, such that any
z ∈ C can be written in the form z =

∑r

i=1 λivi with λ ≥ 0 and ‖ λ ‖ ≤ c10.2‖ z ‖.
Proof. Theorem 10.1 says that we can write z in the form z =

∑rz

j=1 λij
vij

where
rz ≤ r, λij

≥ 0, and the matrix Vz = [vi1 · · · virz
] has full column rank. The full

column rank of Vz means that the induced linear transformation is one-to-one, so if
V +

z is the pseudoinverse of Vz , then (λi1 , · · · , λirz
)T = V +

z z. If we define λ via

λi =

{
λij

if i = ij ,
0 otherwise,

then λ ≥ 0, z = V λ, and ‖ λ ‖ ≤ ‖ V +
z ‖‖ z ‖. Since the matrix Vz is drawn from a

finite set of possibilities (e.g., the set of all subsets of {v1, · · · , vr}), we can find the
desired constant c10.2, independent of z.

Let C be a closed convex cone in Rn with vertex at the origin and let C◦ be its
polar. Given any vector z, we will denote by zC and zC◦ the projections of z onto the
cones C and C◦, respectively. The classical polar decomposition [13, 17] allows us to
express z as

z = zC + zC◦ ,

where (zC , zC◦) = 0.
Proposition 10.3. Suppose the cone C is generated by {v1, · · · , vr}. Then there

exists c10.3 > 0, depending only on {v1, · · · , vr}, such that for any z for which zC 6= 0,

max
1≤i≤r

zT vi

‖ vi ‖
≥ c10.3‖ zC ‖.
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Proof. By Corollary 10.2, we have c10.2 > 0, depending only on {v1, · · · , vr}, such
that we can write zC as zC =

∑r

i=1 λivi, with ‖ λ ‖ ≤ c10.2‖ zC ‖ and λ ≥ 0. Then

zT zC =

r∑

i=1

λiz
Tvi,

so for some i we must have

λiz
Tvi ≥

1

r
zT zC =

1

r
‖ zC ‖2.

Since ‖ λ ‖ ≤ c10.2‖ zC ‖ and ‖ zC ‖ 6= 0, we obtain

zT vi ≥
1

r

1

c10.2
‖ zC ‖.

If we let

v∗ = max
1≤i≤r

‖ vi ‖

we obtain

zTvi ≥
1

r

1

c10.2

1

v∗
‖ vi ‖‖ zC ‖

and the desired result, with c10.3 = (rc10.2v
∗)−1.

For the polyhedron defining the feasible region of (1.1), we have the following.
Corollary 10.4. There exists c10.4 > 0, depending only on A, for which the

following holds. For any x ∈ Ω and ε ≥ 0, let K = K(x, ε). Then for any z for which
zK◦ 6= 0,

max
1≤i≤r

zT vi

‖ vi ‖
≥ c10.4‖ zK◦ ‖,

where {v1, · · · , vr} are the generators of K◦(x, ε) required in Section 3.5.2 to be in Γ.
Proof. The corollary follows from the observation that since K(x, ε) is generated

by subsets of the rows of A, K(x, ε) can be one of only a finite number of possible
cones. ConsequentlyK◦(x, ε) will also be one of only a finite number of possible cones.
Applying Proposition 10.3 to each of these latter cones in turn (with the generators
in Γ for K◦(x, ε)) and taking the minimum yields the corollary.

Let

a∗ = max
1≤i≤m

{‖ ai ‖}.

Then we have the following straightforward proposition.
Proposition 10.5. For any x ∈ Ω and ε ≥ 0, we have

`i ≤ aT
i x ≤ `i + ε‖ ai ‖ ≤ `i + εa∗ for i ∈ I`(x, ε),(10.1)

ui − εa∗ ≤ ui − ε‖ ai ‖ ≤ aT
i x ≤ ui for i ∈ Iu(x, ε),(10.2)
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where I`(x, ε) and Iu(x, ε) are the index sets defined in (3.1)–(3.2).
Proof. A simple calculation shows that the distance from any point x to the affine

subspace defined by aT
i z = b is

∣
∣ b − aT

i x
∣
∣ /‖ ai ‖. Thus, if the distance from x to

aT
i z = b is no more than ε, then

b− ε‖ ai ‖ ≤ aT
i x ≤ b + ε‖ ai ‖.

Then (10.1) and (10.2) follow from the fact that x ∈ Ω and the definitions of I`(x, ε)
and Iu(x, ε).

Despite its unpromising appearance, the following result is extremely useful, as it
relates the local geometry of Ω (as manifest in K(x, ε)) to the global geometry of Ω
(as manifest in the projection PΩ).

Proposition 10.6. There exists c10.6 > 0 such that for any x ∈ Ω, ε ≥ 0, and
w ∈ Rn,

‖ (x+ w) − PΩ(x + w) ‖2 ≥ ‖ PK(x,ε)w ‖2 − c10.6 ε ‖ PK(x,ε)w ‖.

Proof. PΩ(x+ w) is the solution y of the convex quadratic program

minimize 1
2‖ y − (x+ w) ‖2

subject to ` ≤ Ay ≤ u.
(10.3)

The dual of (10.3) is the following program in (z, µ1, µ2):

maximize 1
2‖ z − (x+ w) ‖2 − µT

1 (u−Az) − µT
2 (Az − `)

subject to z − (x+ w) +ATµ1 −ATµ2 = 0
µ1, µ2 ≥ 0.

(10.4)

The proposition will follow from a felicitous choice of (z, µ1, µ2) for the dual.
Given x ∈ Ω and ε ≥ 0, let K = K(x, ε) and consider the polar decomposition

w = wK + wK◦ . We can write

wK = ATµ1 −ATµ2

where µ1, µ2 ≥ 0, and the only non-zero components of µ1, µ2 correspond to the
generators of K(x, ε), which are the outward pointing normals to the constraints
within distance ε of x. More precisely,

µi
1 6= 0 only if i ∈ Iu(x, ε), µi

2 6= 0 only if i ∈ I`(x, ε).(10.5)

Furthermore, by Corollary 10.2 we can choose µ1, µ2 in such a way that there exists
c10.2 > 0, depending only on A, such that

‖ µ1 ‖ + ‖ µ2 ‖ ≤ c10.2‖ wK ‖.(10.6)

Meanwhile, let z = x+ wK◦ . Then

w = wK + wK◦ = z − x+ATµ1 −ATµ2,

so (z, µ1, µ2) is feasible for the dual (10.4). Since y = PΩ(x + w) is feasible for the
primal (10.3), by duality we have

1
2‖ (x + w) − PΩ(x+ w) ‖2

≥ 1
2‖ (x+ w) − z ‖2 − µT

1 (u−Az) − µT
2 (Az − `)

= 1
2‖ wK ‖2 − µT

1 (u−Ax) − µT
2 (Ax − `) + (ATµ1 −ATµ2)

TwK◦ .
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Since wK = ATµ1 −ATµ2 and (wK , wK◦) = 0, the latter expression reduces to

1
2‖ (x+ w) − PΩ(x+ w) ‖2 ≥ 1

2‖ wK ‖2 − µT
1 (u−Ax) − µT

2 (Ax− `).(10.7)

Now, in light of (10.5) and Proposition 10.5 we have

µT
1 (u−Ax) + µT

2 (Ax − `) ≤ a∗ ε ‖ µ1 ‖1 + a∗ ε ‖ µ2 ‖1 ≤ a∗
√
n ε (‖ µ1 ‖ + ‖ µ2 ‖).

Applying (10.6) we obtain

µT
1 (u−Ax) + µT

2 (Ax− `) ≤ c10.2 a
∗
√
n ε ‖ wK ‖.

Substituting this into (10.7) yields

1
2‖ (x+ w) − PΩ(x+ w) ‖2 ≥ 1

2‖ wK ‖2 − c10.2 a
∗
√
n ε ‖ wK ‖,

which is the desired result, with c10.6 = 2c10.2a
∗
√
n.

The consequence of Proposition 10.6 of utility to us is the following. It says that
if x ∈ Ω is close to ∂Ω and the step from x to PΩ(x + w) is sufficiently long, then w
cannot be “too normal” to ∂Ω near x.

Proposition 10.7. Given γ > 0, there exist r10.7 > 0 and c10.7 > 0, depending
only on A and γ, such that if η > 0, x ∈ Ω, 0 ≤ ε ≤ r10.7η

2, ‖ w ‖ ≤ γ, and
‖ PΩ(x + w) − x ‖ ≥ η, then

‖ PK◦(x,ε)w ‖ ≥ c10.7 ‖ PΩ(x+ w) − x ‖.

Proof. Given x ∈ Ω and ε ≥ 0, let K = K(x, ε) and consider the polar decompo-
sition w = wK + wK◦ . Let q = PΩ(x+ w) − x. We have

‖ w ‖2 = ‖ wK ‖2 + ‖ wK◦ ‖2 = ‖ (w− q) + q ‖2 = ‖ w− q ‖2 + 2 (w − q , q) + ‖ q ‖2.

We know that (z − PΩ(z) , PΩ(z) − y) ≥ 0 for all y ∈ Ω from the properties of the
projection PΩ [17]. Choosing z = x+ w and y = x we obtain (w − q , q) ≥ 0, so

‖ wK ‖2 + ‖ wK◦ ‖2 ≥ ‖ w − q ‖2 + ‖ q ‖2.

From Proposition 10.6 we obtain

‖ wK ‖2 + ‖ wK◦ ‖2 ≥ ‖ wK ‖2 − c10.6 ε ‖ wK ‖ + ‖ q ‖2.

Using the hypothesis that ‖ w ‖ ≤ γ, we obtain

‖ wK◦ ‖2 ≥ −c10.6 εγ + ‖ q ‖2.

Let

r10.7 =
3

4

1

γ

1

c10.6
.

Then, if ε ≥ 0 satisfies ε ≤ r10.7η
2, we have

‖ wK◦ ‖2 ≥ ‖ q ‖2/4.

Taking square roots yields the proposition, with c10.7 = 1/2
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As we noted at the introduction of K◦(x, ε), we can proceed from x along all
directions in K◦(x, ε) for a distance δ > 0, depending only on ε, and still remain
inside the feasible region. The following proposition is the formal statement of this
observation.

Proposition 10.8. Suppose ε > 0 satisfies ε ≤ h/2, where h is defined by (6.1).
Then for any x ∈ Ω, if w ∈ K◦(x, ε) and ‖ w ‖ ≤ ε/2, then (x+ w) ∈ Ω.

Proof. Consider any index i ∈ {1, · · · ,m}. We will show that x + w is feasible
with respect to the ith constraint.

If x /∈ ∂Ω`i
(ε) ∪ ∂Ωui

(ε), then `i + ε‖ ai ‖ < aT
i x < ui − ε‖ ai ‖, so

aT
i x+ aT

i w ≥ `i + ε‖ ai ‖ − ‖ ai ‖‖ w ‖ ≥ `i + (ε/2)‖ ai ‖ ≥ `i

and

aT
i x+ aT

i w ≤ ui − ε‖ ai ‖ + ‖ ai ‖‖ w ‖ ≤ ui − (ε/2)‖ ai ‖ ≤ ui.

On the other hand, suppose x ∈ ∂Ω`i
(ε) ∪ ∂Ωui

(ε). There are three cases to
consider. First suppose x ∈ Ω`i

(ε) and x ∈ ∂Ωui
(ε). Since ε < h/2, this means that

`i = ui (i.e., the constraint is an equality constraint). Then, if w ∈ K◦(x, ε), we have
both (w , −ai) ≤ 0 and (w , ai) ≤ 0, so (w , ai) = 0. Thus

`i = aT
i x+ aT

i w = ui.

Next suppose x ∈ ∂Ω`i
(ε) but x /∈ ∂Ωui

(ε). If w ∈ K◦(x, ε), we have (−ai, w) ≤ 0.
Applying Proposition 10.5 we obtain

`i ≤ aT
i x+ aT

i w ≤ `i + ε‖ ai ‖ + ‖ ai ‖‖ w ‖ ≤ `i + (3ε/2)‖ ai ‖ ≤ ui.

Finally, if x ∈ ∂Ωui
(ε) but x /∈ ∂Ω`i

(ε), then, if w ∈ K◦(x, ε), (ai, w) ≤ 0, so

ui ≥ aT
i x+ aT

i w ≥ ui − ε‖ ai ‖ − ‖ ai ‖‖ w ‖ ≥ ui − (3ε/2)‖ ai ‖ ≥ `i.

Thus (x + w) satisfies the constraints for all i ∈ {1, · · · ,m}, so (x+ w) ∈ Ω.
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