
ON THE LOCAL CONVERGENCE OF PATTERN SEARCH

ELIZABETH D. DOLAN∗, ROBERT MICHAEL LEWIS† , AND VIRGINIA TORCZON‡

Abstract. We examine the local convergence properties of pattern search methods, comple-
menting the previously established global convergence properties for this class of algorithms. We
show that the step-length control parameter which appears in the definition of pattern search al-
gorithms provides a reliable asymptotic measure of first-order stationarity. This gives an analytical
justification for a traditional stopping criterion for pattern search methods. Using this measure
of first-order stationarity, we both revisit the global convergence properties of pattern search and
analyze the behavior of pattern search in the neighborhood of an isolated local minimizer.

Key words. pattern search, local convergence analysis, global convergence analysis, stopping
criteria, desultory rate of convergence

1. Introduction. Pattern search methods are a class of direct search methods
for solving nonlinear optimization problems. In a series of papers [16, 11, 12, 13, 14] we
established the global convergence properties of pattern search for both constrained
and unconstrained problems. In this paper, we consider the local convergence prop-
erties of pattern search and revisit the global convergence properties in light of these
new results.

For simplicity, our discussion will focus on the case of unconstrained minimization:

min
x∈Rn

f(x),

where f : Rn → R. Results similar to those we present here also can be derived for
the general case of bound and linear constraints [12, 13]. However, the underlying
ideas are simpler to explain for the unconstrained case.

We first show how the pattern size parameter, which plays a central role in the
definition of pattern search methods and tacitly serves as a step-length control mech-
anism, also provides a reliable asymptotic measure of first-order stationarity. This
gives an analytical justification for the traditional use of the pattern size parameter
as a stopping criterion. We also establish a local convergence result concerning the
behavior of the sequence of iterates produced by a pattern search algorithm in the

∗Industrial Engineering and Management Sciences, Northwestern University and Mathemat-
ics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4844;
dolan@mcs.anl.gov. This research was supported by the National Science Foundation under Grant
CCR–9734044 while the author was in residence at the College of William & Mary; by the Math-
ematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-Eng-38; and by the National Science Foundation (Challenges in Computational Science Grant
CDA-9726385 and (Information Technology Research) Grant CCR-0082807.

†Department of Mathematics, College of William & Mary, P. O. Box 8795, Williamsburg, Virginia
23187–8795; buckaroo@math.wm.edu. This research was supported by the National Aeronautics and
Space Administration under NASA Contract No. NAS1–97046 while the author was in residence
at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, Virginia 23681–2199 and by the Computer Science Research Institute
at Sandia National Laboratories.

‡Department of Computer Science, College of William & Mary, P. O. Box 8795, Williamsburg,
Virginia 23187–8795; va@cs.wm.edu. This research was supported by the National Science Foun-
dation under Grant CCR–9734044, by the National Aeronautics and Space Administration under
NASA Contract No. NAS1–97046 while the author was in residence at the Institute for Computer Ap-
plications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Virginia
23681–2199, and by the Computer Science Research Institute at Sandia National Laboratories.

1

neighborhood of an isolated local minimizer x∗. These analytical results are illustrated
with some simple numerical experiments on quadratic objectives.

What is interesting about the analysis presented here is that we can establish local
convergence properties despite the fact that direct search methods do not employ
an explicit representation of the gradient of the objective and, as a consequence,
cannot enforce a notion of sufficient decrease. We proved global convergence results
for pattern search by showing that all iterates lie on a rational lattice. It is this
restriction on the form of the steps that allows us to relax the notion of sufficient
decrease and yet still prove global convergence. Pattern search may accept any point
on the current integer lattice so long as it produces simple decrease on the value of
the objective function at the current iterate. However, key to the global analysis is
the notion of having searched in a sufficient number of directions from the current
iterate to guarantee that we have not overlooked a potential direction of descent. It
is only after searching over a sufficient set of directions that we are allowed to reduce
the current step-length control parameter—which has the effect of refining the lattice
over which we are searching.

This notion of sufficient local information at iterations at which we reduce the
step-length control parameter allows us to show that the pattern size, as measured
by the step-length control parameter, provides a reliable asymptotic measure of first-
order stationarity. This analytical result is gratifying since it vindicates the long-
standing use of the step-length control parameter as a stopping criterion for direct
search methods (see, for instance, Section 4 of [8]). The result on the correlation of
the step-length control parameter and stationarity then enables us to study the local
convergence properties of pattern search.

Notation. We use L(x0) to denote the set { x | f(x) ≤ f(x0) }. We use ∂ to
denote the boundary of a given set. It is assumed, unless otherwise noted, that
all norms are Euclidean vector norms or the associated operator norm. Given x
and r > 0, we denote by B(x, r) the open ball of radius r centered at x so that
B(x, r) = { y | ‖ y − x ‖ < r }. We also acknowledge an abuse of notation that is
nonetheless convenient: if y is a vector and A is a matrix, we use the notation y ∈ A
to mean that the vector y is contained in the set of columns of the matrix A.

2. Pattern search. We first review the elements of pattern search that play
a role in our local analysis. There are rigorous formal definitions of pattern search
[16, 11], several features of which we will recall shortly. However, pattern search can
perhaps be most quickly understood with the following simple example of a pattern
search algorithm. At iteration k, we have an iterate xk ∈ Rn and a step-length
control parameter ∆k > 0. Let ej , j = 1, . . . , n be the standard unit basis vectors.
For the purposes of this example, we represent the set of directions that we will use
for the search as the set D ≡ {di}

2n
i=1 ≡ {e1, . . . , en,−e1, . . . ,−en} though, as we

discuss shortly, many other choices are possible. We now have several algorithmic
options open to us. We consider the simple opportunistic strategy, which is to look
successively at the points x+ = xk +∆kdi, i ∈ {1, . . . , 2n} until either we find an x+
for which f(x+) < f(xk) or we exhaust all 2n possibilities. Figure 2.1 illustrates the
pattern of points among which we search for x+ when n = 2.

If we find no x+ such that f(x+) < f(xk), then we call the iteration unsuccessful ;
otherwise, we consider the iteration successful since we have found a new iterate that
produces decrease on f at xk. When the iteration is unsuccessful, we set xk+1 = xk

and are required to reduce ∆k (typically, by a half) before continuing; otherwise, for
a successful iteration, we set xk+1 = x+ and leave the step-length control parameter

2

r
xk

∆k
︷ ︸︸ ︷

b

b

bb

Fig. 2.1. A simple instance of a pattern in R2.

alone, i.e., ∆k+1 = ∆k (though the analysis also allows us to increase ∆k if the
iteration is a success). We repeat this process until some suitable stopping criterion
is satisfied.

Note that overall our requirements on the outcome of the search at each iteration
are light: if after searching over all the points defined by ∆kdi, i = 1, . . . , 2n we fail to
find a point x+ = xk +∆kdi that reduces the value of f at xk, then we must try again
with a smaller value of ∆k. Otherwise, we accept as our new iterate the first point in
the pattern that produces decrease. In the latter case, we may choose to increase ∆k.
In either case, we are free to make changes to the set of search directions D to be used
in the next iteration, though we leave D unchanged in the example given previously.
In general, changes to either the step-length control parameter or the set of search
directions are subject to certain algebraic conditions, outlined fully in [11].

A distinguishing characteristic of pattern search methods is that they sample the
function over a predefined pattern of points, all of which lie on a rational lattice. By
enforcing structure on the form of the points in the pattern, as well as some simple
rules on both the outcome of the search and the subsequent updates, standard global
convergence results can be obtained [16, 11].

There remains the question of what constitutes an acceptable set of search di-
rections. A pattern must form a positive spanning set for Rn [5]. A set of vectors
{a1, . . . , ap} positively spans Rn if any vector x ∈ Rn can be written as a nonnegative
linear combination of the vectors in the set; i.e.,

x = α1a1 + · · ·+ αpap αi ≥ 0 ∀i.

The set {a1, . . . , ap} is called positively dependent if one of the ai’s is a nonnegative
combination of the others; otherwise the set is positively independent. A positive basis
is a positively independent set whose positive span is Rn.

It is straightforward to verify that the set of vectors {e1, . . . , en,−e1, . . . ,−en}
we used to define the pattern for our simple example is a positive spanning set.

2.1. Prior results. Before proceeding to our local convergence results, we recall
the following proposition from [11], which we state here without proof.

Proposition 2.1. Given any set {a1, . . . , ar} that positively spans Rn, ai 6= 0
for i = 1, . . . , r, there exists c2.1 > 0 such that for all x ∈ Rn, we can find an ai for
which

xTai ≥ c2.1‖ x ‖ ‖ ai ‖.

Note that this is a purely geometric property of positive spanning sets.

3

2.2. Some formal definitions. We also need to recall some notation regarding
both the pattern and the form of the search. For the details, we refer the reader to
[16, 11].

We have noted already that the pattern must form a positive spanning set for
Rn. In fact, we represent the pattern using two components, a basis matrix and a
generating matrix.

The basis matrix can be any nonsingular matrix B ∈ Rn×n.
The generating matrix is an integral matrix Ck ∈ Zn×pk , where pk > n + 1. We

require Ck to contain a minimum of n+ 2 columns because the minimum number of
vectors in a positive spanning set is n + 1 [5]; for convenience, we require a column
of zeros to denote the zero step. We further partition the generating matrix to reveal
the positive basis that guarantees that the pattern positively spans Rn. We call the
columns associated with the positive basis the core pattern, which we denote Γk; any
remaining columns in the positive spanning set are denoted Lk:

Ck = [Γk Lk 0].(2.1)

We further require that Γk ∈ Γ, where Γ comprises a finite set of integral matrices,
the columns of which form a positive basis for Rn.

A pattern is then represented by the columns of the matrix Pk = BCk. For con-
venience, we use the partition of the generating matrix Ck given in (2.1) to partition
Pk as follows:

Pk = BCk = [BΓk BLk 0].

To tie this notation back to the example that introduces Section 2, we note that
B = I, Γk = [I −I] and Lk ≡ ∅. Since the choices of Γk and Lk are fixed in our
example, Pk ≡ [I −I 0] for all k.

Now, given the step-length control parameter ∆k ∈ R, ∆k > 0, we define a trial
step si

k to be any vector of the form si
k = ∆kBc

i
k, where c

i
k is a column of Ck.

In Figure 2.2 we state the general form of a pattern search method for uncon-
strained minimization.

Let x0 ∈ Rn and ∆0 > 0 be given.
For k = 0, 1, . . ., until convergence do:

1. Compute f(xk).
2. Determine a step sk using an unconstrained exploratory moves algorithm.
3. If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
4. Update Ck and ∆k.

Fig. 2.2. Generalized pattern search for unconstrained minimization.

We have remarkable latitude in our choice of the step sk. For the global conver-
gence analysis to hold, we need only satisfy the hypotheses on the outcome of the
unconstrained exploratory moves, given in Figure 2.3.

1. sk ∈ ∆kPk.
2. If min { f(xk + y) | y ∈ ∆kBΓk } < f(xk), then f(xk + sk) < f(xk).

Fig. 2.3. Hypotheses on the outcome of the unconstrained exploratory moves.

4

A few comments on these hypotheses are in order. The first hypothesis is straight-
forward: the step returned must be a column in the current pattern matrix Pk, scaled
by the current value of the step-length control parameter ∆k. This condition ensures
that the steps we consider remain on the rational lattice; arbitrary steps are not
allowed.

For our purposes, the second hypothesis is the more interesting. Notice that
in Figure 2.2, a successful iteration of pattern search requires only that the step sk

produce simple decrease, i.e., f(xk + sk) < f(xk). Thus, any nonzero step defined by
a column of ∆kPk that satisfies the condition f(xk + sk) < f(xk) may be returned
by the exploratory moves since it immediately satisfies both of the hypotheses given
in Figure 2.3—even if we do not explicitly find min { f(xk + y) | y ∈ ∆kBΓk }.

The second hypothesis in Figure 2.3 ensures that we have sufficient information
about the local behavior of f to declare an iteration unsuccessful, accept the zero
step sk = 0 (so that xk+1 ≡ xk), and reduce ∆k to continue the search with smaller
steps at the next iteration. The second hypothesis implicitly decrees that we may
only return the zero step, and thus reduce ∆k, when we have looked at all the steps
defined by the core pattern, i.e., all steps of the form y ∈ ∆kBΓk.

The core pattern BΓk must be a positive basis. This means that even though we
do not have an explicit representation of ∇f(xk) (assuming that f is differentiable),
the geometric property of positive spanning sets captured in Proposition 2.1 gives us
a positive lower bound, which is independent of k, on the angle between −∇f(xk)
(assuming it is nonzero) and some ai in the positive spanning set. At any given iter-
ation, we do not know for which ai this lower bound holds. However, this guaranteed
lower bound, when combined with the second hypothesis in Figure 2.3, ensures that
at the end of an unsuccessful iteration, we have significant information about the local
behavior of f at xk. Furthermore, the quality of our local information improves as
we reduce ∆k.

Finally, we make a brief comment on the basic rules for updating ∆k, which are
given in Figure 2.4. We also must impose additional conditions on the choice of θ and

1. If all f(xk + sk) ≥ f(xk), then ∆k+1 = θ∆k, where θ ∈ (0, 1).
2. If any f(xk + sk) < f(xk), then ∆k+1 = λk∆k, where λk ≥ 1.

Fig. 2.4. Basic rules for updating ∆k .

λk to ensure that Theorem 3.2 from [16] holds. Rather than detail these conditions
here, since they are outlined fully in [16] (other options are discussed in [10]), we
note the two essential consequences. First, if our choices for θ and λk ensure that
Theorem 3.2 from [16] holds, then all the iterates lie on a translated integer lattice.
Second, the rules for updating ∆k ensure that ∆k is reduced after any unsuccessful
iteration since θ ∈ (0, 1). The latter means that after any unsuccessful iteration,
pattern search refines the lattice of points over which the search resumes.

We can capitalize on the structure of pattern search refinement to construct local
convergence results. The subsequence of unsuccessful iterates, which is what interests
us here, is well-defined: they are the iterates at which we must reduce ∆k to ensure
that the search can make further progress. We reduce ∆k only after we have sufficient
local information about the behavior of f to justify this action: we have considered
all the steps defined by the columns of ∆kΓk and none of them have produced descent
on f at xk. We presently use this fact to assess stationarity.

5

3. Measuring first-order stationarity. The following theorem shows that the
step-length control parameter ∆k, when small enough, provides a reasonable measure
of first-order stationarity at an unsuccessful iterate. For simplicity, we assume that
∇f(x) is Lipschitz continuous. For the reader interested in greater generality, we note
that a similar result can be proven under the assumption of uniform continuity.

Theorem 3.1. Suppose that for some ρ > 0, ∇f(x) is Lipschitz continuous, with
Lipschitz constant K, on the open neighborhood Ω = ∪x∈L(x0)B(x, ρ) of L(x0). Then
there exist δ3.1 > 0 and c3.1 > 0 for which the following holds. If xk is an unsuccessful
iterate and ∆k < δ3.1, then

‖ ∇f(xk) ‖ ≤ c3.1∆k.

Proof. Let r = 1
2 min{1, ρ}. If x ∈ L(x0), then the ball B(x, r) is contained in Ω.

We are interested in steps of the form s = ∆kBc
i
k, where c

i
k is a column of the core

matrix Γk. Since Γk ∈ Γ and Γ is finite, ‖s‖ ≤ ∆k ‖B ‖Γ
∗, where Γ∗ is the maximum

norm of any column of the matrices in the set Γ. Set δ3.1 = r/(‖B ‖ Γ∗).
By the definition of pattern search, for any Γk ∈ Γ the set { s | s ∈ ∆kBΓk }

forms a positive basis for Rn. Thus Proposition 2.1 assures us of the existence of a
step s for which

−∇f(xk)
T s ≥ c2.1‖ ∇f(xk) ‖ ‖ s ‖.(3.1)

Since iteration k is unsuccessful, it follows that

f(xk + s)− f(xk) ≥ 0 ∀ s ∈ ∆kBΓk.

Since we assume ∆k < δ3.1, (xk + s) ∈ B(xk, r) ⊂ Ω, and we can apply the mean
value theorem. In addition, using (3.1) and the Cauchy–Schwarz inequality, for some
ξ in the line segment connecting xk and xk + s we have

0 ≤ f(xk + s)− f(xk)

= ∇f(xk)
T s+ (∇f(ξ)−∇f(xk))

T
s

≤ −c2.1‖ ∇f(xk) ‖ ‖ s ‖+ ‖ ∇f(ξ)−∇f(xk) ‖ ‖ s ‖,

where s is the step for which (3.1) holds. Thus

c2.1‖ ∇f(xk) ‖ ≤ ‖ ∇f(ξ)−∇f(xk) ‖.

Again, since B(xk, r) ⊂ Ω, the Lipschitz continuity of ∇f(x) gives us

c2.1‖ ∇f(xk) ‖ ≤ K ‖ ξ − xk ‖ ≤ K ‖ s ‖ ≤ K∆k ‖B ‖ Γ
∗.

Therefore

‖ ∇f(xk) ‖ ≤ c3.1∆k,

with c3.1 = K ‖B ‖ Γ
∗/c2.1.

Theorem 3.1 gives a theoretical justification for a traditional stopping criterion
for pattern search methods. In the long literature on direct search methods, one
frequently encounters the suggestion that a direct search method be terminated when
some measure of the step size first falls below a value deemed suitably small [8, 4, 2].

6

In the case of pattern search, Theorem 3.1 vindicates this intuition. At unsuccessful
iterations, the step size in pattern search (as measured by ∆k) provides a bound on
first-order stationarity. At the same time, it is after the unsuccessful iterations that
∆k is decreased. Thus, decrease in ∆k provides a simple measure of progress which
can be used reliably to test for convergence. We discuss further the use of ∆k to
measure progress when we present some numerical examples in Section 5.

A similar relation between ∆k and constrained stationarity in the case of pat-
tern search for bound constrained problems is explicitly used in the pattern search
augmented Lagrangian algorithm in [14]. The result plays a critical role in allow-
ing successive inexact minimization of an augmented Lagrangian without an explicit
estimate of the gradient. A relation similar to Theorem 3.1 for linearly constrained
pattern search appears in [13].

The global convergence analysis of pattern search in [16] says that if L(x0) is
compact, then lim infk→∞∆k = 0 and lim infk→∞ ‖ ∇f(xk) ‖ = 0. The former re-
sult and Theorem 3.1 allow us to sharpen the latter result. Let the set U represent
a subsequence of unsuccessful iterates for which limk→∞,k∈U ∆k = 0 (such a sub-
sequence exists since lim infk→∞∆k = 0). Then Theorem 3.1 says that we have
limk→∞,k∈U ‖ ∇f(xk) ‖ = 0.

The general result lim infk→∞ ‖ ∇f(xk) ‖ = 0 for pattern search leaves open the
possibility that ‖ ∇f(xk) ‖ does not converge. In [1], Audet shows that this actually
can occur by constructing a pattern search algorithm and an objective function for
which {xk} has infinitely many limit points, one of which is not a stationary point of
the objective. However, in his example, the subsequence of iterates converging to the
non-stationary point of the objective function are all successful iterates. Theorem 3.1
reassures us that in practice we need not worry about convergence to non-stationary
points. If we stop the algorithm at the first unsuccessful iterate for which ∆k < ∆∗

for some suitably small stopping tolerance ∆∗, then Theorem 3.1 says that we may
reasonably expect ‖ ∇f(xk) ‖ to be small.

4. Local convergence. We now consider the local convergence of pattern search
methods. We begin with a collection of hypotheses and definitions we will need.

The first condition is a mild hypothesis on the generating matrices Ck that allows
us to bound the size of the steps {sk}.

Hypothesis 0. The columns of the generating matrices Ck =
[
c1k · · · c

pk

k

]
remain

bounded in norm, i.e., there exists C0 > 0 such that for all k, C0 >
∥
∥ cik

∥
∥, for all

i = 1, · · · , pk. Thus, there exists a constant c0 > 0 such that any step sk satisfies

‖ sk ‖ ≤ c0∆k.

We also impose the following condition on the step-length control parameter ∆k.
Hypothesis 1. There exists N for which ∆k is monotonically nonincreasing for

all k ≥ N .
Note that this is a condition we can explicitly enforce by not allowing increases in ∆k

after some iteration N ; ∆k can stay the same or decrease.
The local convergence results are concerned with the behavior of pattern search in

a neighborhood of an isolated local minimizer x∗. We make the following assumptions
about the behavior of f in a neighborhood of x∗.

Hypothesis 2. We assume the existence of an open ball B(x∗, r), r > 0, for
which f(x) is twice continuously differentiable on B(x∗, r), ∇

2f(x) is positive definite

7

on B(x∗, r), ∇f(x∗) = 0, and lower and upper bounds σmin and σmax on the singular
values of ∇2f(x) on B(x∗, r) exist. We further assume σmin > 0.

We then define

κ = σmax/σmin.(4.1)

We also define

η = r/(‖B ‖ Γ∗ + 1).(4.2)

This choice ensures that if ‖ xk − x∗ ‖ < η and ∆k < η, then for any step s ∈ ∆kBΓk

we have ‖ (xk + s)− x∗ ‖ < r.
Our first result relates ∆k to ‖ xk − x∗ ‖ at unsuccessful iterates.
Proposition 4.1. Under Hypothesis 2, there exists c4.1 > 0 for which the fol-

lowing holds. If xk is an unsuccessful iterate, ∆k < η, and ‖ xk − x∗ ‖ < η (where η
is as in (4.2)), then

‖ xk − x∗ ‖ ≤ c4.1∆k.

Proof. Proposition 2.1 assures us of the existence of a step s ∈ ∆kBΓk for which

−∇f(xk)
T s ≥ c2.1‖ ∇f(xk) ‖ ‖ s ‖.(4.3)

If iteration k is unsuccessful, it follows that

f(xk + s)− f(xk) ≥ 0 ∀ s ∈ ∆kBΓk.

Because ∆k < η, we know that (xk + s) ∈ B(x∗, r), where f is differentiable and we
can apply the mean value theorem. In addition, using (4.3) and the Cauchy–Schwarz
inequality, for some ξ in the line segment connecting xk and xk + s we have

0 ≤ f(xk + s)− f(xk) ≤ −c2.1‖ ∇f(xk) ‖ ‖ s ‖+ ‖ ∇f(ξ)−∇f(xk) ‖ ‖ s ‖,

where s is the step for which (4.3) holds. Thus

c2.1‖ ∇f(xk) ‖ ≤ ‖ ∇f(ξ)−∇f(xk) ‖.(4.4)

By the integral form of the mean value theorem,

‖ ∇f(ξ)−∇f(xk) ‖ =

∥
∥
∥
∥

∫ 1

0

[
∇2f(xk + t(ξ − xk))(ξ − xk)

]
dt

∥
∥
∥
∥

≤ σmax‖ ξ − xk ‖ ≤ σmax ∆k ‖B ‖ Γ
∗.

Meanwhile, since ∇f(x∗) = 0, we have

‖ ∇f(xk) ‖ = ‖ ∇f(xk)−∇f(x∗) ‖(4.5)

=

∥
∥
∥
∥

∫ 1

0

[
∇2f(x∗ + t(xk − x∗))(xk − x∗)

]
dt

∥
∥
∥
∥
≥ σmin‖ xk − x∗ ‖.

Combining (4.4) and (4.5) yields

c2.1 σmin ‖ xk − x∗ ‖ ≤ c2.1 ‖ ∇f(xk) ‖ ≤ σmax ‖B ‖ Γ
∗ ∆k.

8

Setting c4.1 = (σmax ‖B ‖ Γ
∗)/(c2.1 σmin) completes the proof.

Next we have the following elementary result concerning the level sets of f near
an isolated local minimizer x∗.

Proposition 4.2. Under Hypothesis 2, if x, y ∈ B(x∗, η) and f(x) ≤ f(y), then

‖ x− x∗ ‖ ≤ κ
1

2 ‖ y − x∗ ‖,(4.6)

where κ is as defined in (4.1).
Proof. Suppose x, y ∈ B(x∗, η) and f(x) ≤ f(y). From Taylor’s theorem with

remainder and the fact that ∇f(x∗) = 0, we have

f(y) = f(x∗) +
1

2
(y − x∗)

T∇2f(ξ)(y − x∗)

f(x) = f(x∗) +
1

2
(x− x∗)

T∇2f(ω)(x− x∗)

for ξ and ω on the line segments connecting x∗ with y and x, respectively. Since
f(x) ≤ f(y), we obtain

0 ≤ f(y)− f(x) =
1

2
(y − x∗)

T∇2f(ξ)(y − x∗)−
1

2
(x− x∗)

T∇2f(ω)(x− x∗),

whence

0 ≤ σmax‖ y − x∗ ‖
2 − σmin‖ x− x∗ ‖

2,

and thus (4.6).
We use the previous proposition to show that if we start sufficiently close to

x∗ with a sufficiently small step-length control parameter ∆k and we have stopped
allowing increases in ∆k (Hypothesis 1), then pattern search will not move away from
a neighborhood of x∗.

Proposition 4.3. Under Hypotheses 0, 1, and 2, there exist δ4.3 > 0 and ε4.3 > 0
for which the following holds. For k ≥ N , where N is as defined in Hypothesis 1, if
xk is an iterate for which ∆k < δ4.3 and ‖ xk − x∗ ‖ < ε4.3, then for all ` ≥ k,

‖ x` − x∗ ‖ < η,

where η is as in (4.2).
Proof. Choose δ4.3 and ε4.3 to satisfy

δ4.3 <
η

2c0

ε4.3 <
1

2
κ−

1

2 η,

where the constant c0 comes from Hypothesis 0 and the definition of κ appears as
(4.1). Observe that the definition of κ means that for any choice of η > 0,

1

2
κ−

1

2 η ≤
η

2
.

The proof is by induction. First consider xk+1 = xk + sk. Hypothesis 0 gives us
‖ xk+1 − xk ‖ = ‖ sk ‖ ≤ c0∆k. We have, a priori,

‖ xk+1 − x∗ ‖ ≤ ‖ xk+1 − xk ‖+ ‖ xk − x∗ ‖ < c0∆k + ε4.3 < η.

9

Now consider any ` ≥ k + 1, and suppose

‖ x` − x∗ ‖ < η.

Then

‖ x`+1 − x∗ ‖ ≤ ‖ x`+1 − x` ‖+ ‖ x` − x∗ ‖.(4.7)

Hypothesis 1 assures us that ∆` ≤ ∆k for ` ≥ k, so

‖ x`+1 − x` ‖ ≤ c0∆` ≤ c0∆k.

Meanwhile, by the induction hypothesis, x` ∈ B(x∗, η). Since f(x`) ≤ f(xk) as well,
Proposition 4.2 and the assumption ‖ xk − x∗ ‖ < ε4.3 say that

‖ x` − x∗ ‖ ≤ κ
1

2 ‖ xk − x∗ ‖ < κ
1

2 ε4.3.

Thus (4.7) yields

‖ x`+1 − x∗ ‖ < c0∆k + κ
1

2 ε4.3 < η.

An immediate consequence of Proposition 4.3 is the following, which is simply a
localized version of Theorem 3.3 from [16].

Proposition 4.4. Suppose Hypotheses 0–2 hold. Let δ4.3 > 0 and ε4.3 > 0 be
as in Proposition 4.3. If for some k ≥ N , where N is as defined in Hypothesis 1, we
have ∆k < δ4.3 and ‖ xk − x∗ ‖ < ε4.3, then limj→∞∆j = 0.

Proof. The proof proceeds by contradiction. Suppose limj→∞∆j 6= 0. Then ∆j

has some minimum value ∆min > 0, which implies that after some iteration k we have
an infinite number of successful iterations. From Proposition 4.3 and Hypothesis 0,
we see that all possible iterates after k remain in a bounded set. As discussed in
Section 2.2, the structure of pattern search algorithms is such that all possible iterates
must lie on a translated integer lattice that depends on ∆min. The intersection of a
bounded set with a translated integer lattice is finite. So if we do not reduce ∆j

beyond ∆min, there is only a finite number of points that we can consider that remain
in the bounded set. Thus, if there is an infinite number of successful iterations, there
must exist at least one point x̂ in the lattice for which xj = x̂ for more than one value
of j. This leads to a contradiction because we can only have a successful iteration and
avoid decreasing ∆j if f(xj) < f(xj−1). Therefore, we must have limj→∞∆j = 0.

This argument is analogous to the basic reasoning found in the proof of Theo-
rem 3.3 in [16], in which it is shown that lim infk→+∞∆k = 0 under the assumption
that L(x0) is compact.

Putting the pieces together, we obtain the following local convergence result. It
says that if at some iteration the entire set of trial points is sufficiently close to a
local minimizer x∗ satisfying Hypothesis 2, then the sequence of subsequent iterates
will converge to x∗. We use the suggestive notation xk + ∆kPk to represent the set
of all possible trial points at iteration k,

{
xk +∆kBc

i
k | i = 1, . . . , pk

}
, where B is

the basis matrix and ci
k is a column of the generating matrix Ck.

Theorem 4.5. Given a pattern search algorithm satisfying Hypotheses 0–1, let
N be as in Hypothesis 1. Suppose Hypothesis 2 holds and that, in particular, x∗ is a
point satisfying Hypothesis 2.

10

Then there exist ρ > 0 and c4.5 > 0 for which the following hold. Suppose that
at some iteration K, K ≥ N , we have xK + ∆KPK ⊂ B(x∗, ρ). Let K̄ be the first
unsuccessful iteration after K. Then for all k > K̄,

‖ xk − x∗ ‖ ≤ c4.5∆m(k),(4.8)

where m(k) is the last unsuccessful iteration preceding or including k. As a conse-
quence, we have limk→∞ xk = x∗.

Proof. We begin by noting that the integrality of the generating matrix Ck guar-
antees that for all k

min
i∈{1,...,(pk−1)}

∥
∥ cik

∥
∥ ≥ 1.(4.9)

The bound in (4.9) excludes the last column of Ck, which allows the zero step. We
also know that for all k ≥ 0 any trial step si

k ∈ ∆kPk satisfies

∥
∥ si

k

∥
∥ = ∆k

∥
∥Bcik

∥
∥ ≥ ∆kσn(B)

∥
∥ cik

∥
∥ ,(4.10)

where σn(B) denotes the smallest singular value of the basis matrix B.
Our assumption that xK + ∆KPK ⊂ B(x∗, ρ) means that for any si

K ∈ ∆KPK

we have

∥
∥ si

K

∥
∥ < 2ρ.(4.11)

Combining (4.9), (4.10), and (4.11), we obtain

∆K <
2ρ

σn(B)
∥
∥ ciK

∥
∥
≤

2ρ

σn(B)
,

for all i ∈ {1, . . . , (pK − 1)}. The assumption that xK +∆KPK ⊂ B(x∗, ρ) also yields

‖ xK − x∗ ‖ < ρ.

Thus we can choose ρ > 0 to be so small that if xK +∆KPK ⊂ B(x∗, ρ), then

∆K < min{η, δ4.3} and ‖ xK − x∗ ‖ < min{η, ε4.3},

where η is as in (4.2) and δ4.3, ε4.3 are as in Proposition 4.3. Proposition 4.3 then
gives us

‖ xk − x∗ ‖ < η for all k ≥ K.(4.12)

By assumption, K̄ is the first unsuccessful iteration after K. We now consider
two cases.

First, for all unsuccessful iterates xk with k ≥ K̄, Proposition 4.1 gives us

‖ xk − x∗ ‖ ≤ c4.1∆k.(4.13)

Since xk is an unsuccessful iterate and ∆k has not yet been reduced, k = m(k); and
we can restate (4.13) as

‖ xm(k) − x∗ ‖ ≤ c4.1∆m(k) for all k ≥ K̄.(4.14)

11

Second, for all successful iterations k > K̄, we have f(xk) < f(xm(k)). Since
k > K̄ ≥ K, (4.12) assures us that xk, xm(k) ∈ B(x∗, η). It then follows from Propo-
sition 4.2 that

‖ xk − x∗ ‖ ≤ κ
1

2 ‖ xm(k) − x∗ ‖,(4.15)

where κ is as in (4.1).

Together (4.14) and (4.15) imply that for all k > K̄, (4.8) holds with c4.5 = κ
1

2 c4.1
since the definition of κ in (4.1) ensures that κ

1

2 ≥ 1.
Finally, since Proposition 4.4 says ∆k → 0, it follows that limk→∞ xk = x∗.
This theorem complements Theorem 3.7 of [16], where it is shown, under different

hypotheses and a more stringent criterion for accepting a step, that ‖ ∇f(xk) ‖ → 0.
The trade-off is that while here we relax the criterion for accepting a step, Hypothesis 2
places stronger assumptions on f than those used in [16], where all that is assumed
about f is that it is continuously differentiable on a neighborhood of L(x0).

Theorem 4.5 is similar to local convergence results for other minimization algo-
rithms. The standard convergence results for Newton’s method and quasi-Newton
methods (with exact gradients) say that if we start sufficiently close to a point x∗
satisfying Hypothesis 2, then the sequence of subsequent iterates will converge to x∗
[15]. Our result is even more like the local convergence results for minimization with
finite-difference estimates of the gradient, with which pattern search can be aptly
compared. Theorem 5.1 in [3], an example of such a result, requires the points from
whose objective values the finite-difference estimate of the gradients is constructed to
lie sufficiently close to x∗. Our requirement that the entire pattern be close to x∗ is
similar.

Theorem 4.5 says that for the subsequence of unsuccessful iterates, the rate of
convergence is R-linear. Theorem 4.5 says nothing about what may happen at the
successful iterations, nor how many such iterations there may be between unsuccessful
iterations. The obstruction to sharpening the rate of convergence result is that we
do not know a priori how much improvement we obtain in f(x) at the successful
iterations. We have a sort of multi-step R-linear rate of convergence, but one for
which we do not know and, as our numerical tests reported in Section 5.3 suggest,
cannot predict, the number of intervening steps. For want of an existing term for this
notion of convergence, we call it desultory R-linear convergence.

More positively, Theorem 4.5 suggests how one can “accelerate” the local conver-
gence of pattern search algorithms. One need only rename the formerly unsuccessful
iterates successful iterates and drop the formerly successful iterates from discussion.
Then, mirabile dictu, this simple modification makes the successful iterates an R-
linearly convergent sequence.

All joking aside, this suggestion is based on the observation that we can rewrite
pattern search algorithms to have an inner iteration/outer iteration structure. The
outer iterations consist of those iterates at which we reduce ∆k because no more local
reduction in f can be found using the current pattern ∆kPk. The inner iterations
comprise those iterates which identify simple decrease for some sk ∈ ∆kPk. Theo-
rem 4.5 allows us to say something about the asymptotic behavior of such “outer”
iterations in pattern search.

In that sense, our results are similar to the local convergence for, say, steepest
descent with a line search strategy. In steepest descent, the line search is an inner
iteration that may require multiple evaluations of the objective in order to generate
the ostensible next iterate. In this way both pattern search and steepest descent

12

generate R-linearly convergent sequences. However, we do not see a way to say
anything, asymptotically, about the behavior of the pattern search “inner” iterations.
By contrast, one can bound, asymptotically, the number of steps required for the
inner iterations of steepest descent devoted to the exercise of a linesearch strategy,
since in the worst case one builds a quadratic model of the objective along the search
direction. Once again, for the pattern search analysis the gap lies in the lack of both
an explicit estimate of the gradient and a local model of f with which to work. Faster
local convergence seems to require better local models.

We close by noting that the only other local convergence result for pattern search
similar to Theorem 4.5 of which we are aware is due to Yu [18]. The result is restricted
to positive definite quadratic functions (though the extension to nonlinear objectives
is straightforward). The fact that f is a quadratic figures explicitly in the derivation
of a result similar to (4.8).

5. Numerical results. We now present some numerical experiments that illus-
trate the practical implications of our convergence analysis. The first round of testing,
summarized in Section 5.2, supports the analysis; the second round, summarized in
Section 5.3, shows its limitations. The numerical results regarding the effectiveness
of ∆k as a measure of stationarity, reported in Section 5.2, summarize some of the
numerical results reported in [6]. The second round of results, given in Section 5.3,
was generated using the implementation of pattern search from [6].

5.1. The testing environment. Full details of the numerical experiments can
be found in [6]. The tests we report here were done with randomly generated quadratic
functions. This is a reasonable choice, since we are interested in the local convergence
behavior of pattern search, and any function that is twice continuously differentiable
looks like a convex quadratic in the neighborhood of an isolated local minimizer.
The quadratics tested were of the form f(x) = xTAx + c, where A = HTH and
H ∈ R(n+2)×n is a matrix with entries that are normal random variates with means
of zero and standard deviations of one. The absence of a linear term may be thought
of as shifting the quadratic so that the solution lies at the origin, which simplifies our
calculations of ‖ xk − x∗ ‖. The constant term c is not interesting for the purposes
of the optimization but provides a useful tag for identifying individual functions. For
the testing in [6], 2 ≤ n ≤ 5; we show a result for n = 5.

In addition to randomly generating the entries of the matrix H, we also randomly
generated ∆0 and the entries of the vector x0. The entries for the starting point x0
were also normal random variates with means of zero and standard deviations of one.
The choice for ∆0 was an exponential variate with a mean of one. Since the starting
points are randomly generated, the absence of a linear term in the quadratic should
not unduly influence the outcome of the searches.

The software described in [6] was written in C++ to make use of C++ classes, a
convenient way to establish the key features of pattern search and then easily derive
specific variants. Several of these variants were implemented and tested, as described
in [6]. We show results using HJSearch, an implementation of the classical pattern
search algorithm of Hooke and Jeeves [8]; CompassSearch, the pattern search algo-
rithm described in Section 2; and NLessSearch, a pattern search algorithm that takes
advantage of the fact that a minimal positive basis requires only n+1 vectors [11], as
opposed to the 2n coordinate vectors used in most traditional pattern search methods,
including compass search and Hooke and Jeeves.

13

5.2. Measuring stationarity. The first question we ask is: how effective is
∆k as a measure of stationarity? Not too surprisingly, the results of our tests showed
that ∆k is a reliable measure of progress toward a solution. Furthermore, our numbers
make quite clear the R-linear convergence of the subsequence of unsuccessful iterates.

After any unsuccessful iteration, a pattern search method is required to reduce
∆k. We used the standard reduction factor of 12 so that after an unsuccessful iteration,
∆k+1 =

1
2∆k. Before proceeding to the next iteration, we recorded the value of ∆k,

‖∇f(xk)‖, | f(xk)− f(x∗) |, and ‖xk−x∗ ‖ (though since we knew x∗ ≡ 0, we simply
had to compute ‖ xk ‖). Representative results from one particular test are given in
Table 5.1.

Table 5.1

HJSearch in five variables

∆k ‖ ∇f(xk) ‖ | f(xk)− f(x∗) | ‖ xk − x∗ ‖

0 .696226813823902 3.718628968450993 3.96639084353257 2.396301558944381
0 .348113406911951 1.370661155865317 0 .44618879006458 0 .698389592313846
0 .174056703455976 0 .993386770046628 0 .19091214014793 0 .450386903073632
0.0 87028351727988 0 .236893510661273 0.0 1477525409286 0 .153943970082610
0.0 43514175863994 0 .314026005456998 0.0 1421309666224 0 .119315177505950
0.0 21757087931997 0 .131650296045321 0.00 223337373949 0.0 34002609804365
0.0 10878543965999 0.0 42526372212693 0.000 28996796577 0.0 15791910616849
0.00 5439271982999 0.0 32921235371376 0.000 18078437086 0.0 14678346820778
0.00 2719635991500 0.0 12854930063180 0.000 14567060113 0.0 16582990396810
0.00 1359817995750 0.00 5667414556147 0.0000 1023084696 0.00 3757596625046
0.000 679908997875 0.00 4101406209192 0.00000 429756349 0.00 2612852810391
0.000 339954498938 0.00 1396318029208 0.000000 50775161 0.000 854609846084
0.000 169977249469 0.000 833651146770 0.000000 49903818 0.000 985750547712
0.0000 84988624734 0.000 563050121378 0.0000000 2356890 0.0000 74244150774
0.0000 42494312367 0.000 112117511534 0.00000000 325088 0.0000 43510325021
0.0000 21247156184 0.0000 97664692564 0.00000000 266601 0.0000 32689236837
0.0000 10623578092 0.0000 35578092711 0.000000000 26108 0.0000 13878637584
0.00000 5311789046 0.0000 10624256256 0.000000000 15362 0.0000 17458315183

The point of the results we report in Table 5.1 is not to demand close scrutiny
of each entry but rather to demonstrate the trends in each of the four quantities
measured. We clearly see the R-linear behavior the analysis tells us to expect: by the
time we halve ∆k, we have roughly halved the error in the solution.

We report here the results from only one experiment, but they are representative
of results from ten thousand runs over multiple quadratics, in multiple dimensions,
from multiple starting points, with multiple choices of ∆0, using four different pattern
search methods [6]. We found that across all these tests, ∆k gave us a consistent
measure of the accuracy of the solution. Further, these results conform both with a
long-standing recommendation for a stopping criterion (see [8]) as well as with our
observations when applying pattern search algorithms to general (i.e., non-quadratic)
functions.

One practical benefit of using ∆k as a measure of stationarity is that it is already
present in pattern search algorithms; no additional computation is required. Another
good reason for using ∆k as a measure of stationarity is that it is largely insusceptible
to numerical error. Since pattern search methods often are recommended when the
evaluations of the objective function are subject to numerical “noise,” the fact that
∆k will not be affected by numerical noise in the computed values of the objective

14

function suggests that ∆k provides a particularly suitable stopping criterion. One last
observation to be made about the practical utility of ∆k as a measure of stationarity
is that pattern searches only requires ranking, or order, information to drive the
search—no numeric values for the objective are necessary [11]. In such a setting, ∆k

is a feasible measure of progress whereas measures based on the numeric values of the
objective function are not.

We close with the observation that the conditioning of the Hessian does play a
role in the progress of the search, as is true for steepest descent. For the example
in Table 5.1 this is not an issue since the smallest singular value for the Hessian
is 0.4661 and the condition number of the Hessian is 37.5767. However, in limited
tests, we parameterized the Hessian of a two-dimensional quadratic to control the
condition number of A. As the Hessian became increasingly less well-conditioned,
the number of iterations between each unsuccessful iteration grew; however, we still
saw the same trends evident in Table 5.1. The effect the conditioning of the Hessian
has on our experimental results should not be surprising since the constant c4.1 in
Proposition 4.1 explicitly depends on σmin; as σmin → 0, c4.1 → ∞. For a similar
observation regarding the connection between conditioning and the performance of
steepest descent with finite-difference gradients, see [3].

5.3. How many successful iterates?. Theorem 4.5 says that the subsequence
of unsuccessful iterates converges R-linearly once we are in a neighborhood of a so-
lution. A natural question to then ask is: how many iterations occur in practice
between each iterate included in this subsequence? If a reasonable a priori bound for
the number of intervening iterations could be derived, then we could establish the rate
of convergence for the entire sequence of iterates. Since we could see no analytical
approach to answering this question, as discussed at the end of Section 4, we decided
to conduct some numerical studies. As it happens, our experiments shed little light
on the question. We give only a few specific results in Figures 5.1–5.2.

In all instances, we terminate the search when ∆k+1 < 2 × 10−8. Along the
horizontal axis, we list the number of unsuccessful iterations; i.e., the number of times
we halve ∆k before it is less than the stopping tolerance. Each bar then represents
the number of successful iterations that preceded an unsuccessful iteration plus the
(single) unsuccessful iteration so that summing all the entries gives us the total number
of iterations for the search.

Notice that for the three algorithms we tested the scale on the vertical axes varies
considerably. For NLessSearch, the number of successful iterations preceding an
unsuccessful iteration can be considerably higher than, say, for HJSearch, but over all
of our tests, the results are mixed. We cannot predict how many successful iterations
may precede an unsuccessful iteration, nor does there seem to be any particular trend.
However, a few useful observations emerged.

One trend that can be seen in Figures 5.1–5.2 is the apparent superiority, in
terms of the total number of iterations required to satisfy our stopping criterion,
of the algorithm of Hooke and Jeeves when applied to quadratic functions. This is
consistent with the results in [6]. As yet we can offer no analytical explanation for this
behavior, but it seems that the “pattern step” in the Hooke and Jeeves algorithm,
which captures some limited history of prior successes and potentially enables a much
longer trial step than allowed by the core pattern, helps the overall progress of the
search.

Another point is illustrated by the example shown in Figure 5.2. The poor scaling
of the graphs in Figure 5.2, a consequence of the relatively huge number of iterations

15

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

Fig. 5.1. NLessSearch (left), CompassSearch (middle), and HJSearch (right) in 8 variables.

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12 14 16

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

lo
ca

l s
ea

rc
h

ite
ra

tio
ns

delta decrease

Number of Local Search Iterations for each Decrease in Delta

Fig. 5.2. NLessSearch (left), CompassSearch (middle), and HJSearch (right) in 4 variables.

taken before the first reduction in ∆, precludes close examination—but that under-
scores the point we wish to make.

The relatively huge number of successful iterations before ∆k is ever reduced is
due to the small initial value of ∆0. For our experiments, the value of ∆0 was drawn
randomly. In this example it is so small (0.001128116614106) that initially there is
a long sequence of successful iterations, but progress is remarkably slow because we
start with such a small choice of ∆0 that all the trial steps are quite short. After the
first reduction in ∆, the number of iterations between each subsequent reduction in
∆ demonstrates the same unpredictable behavior we see in the graphs in Figure 5.1.

This suggests two conjectures. The first is that in general it is best to start the
search with a relatively large value of ∆0. This is consistent with pattern search/direct
search lore (e.g., see the discussion found in [17] on choosing the size of the initial
simplex). The second conjecture is that there is merit to allowing ∆k to increase
so as to recover from an inappropriate choice of ∆0. While the analyses in [16, 11]
support such a specification for pattern search algorithms, most analyses require ∆k

to be monotonically nonincreasing. Furthermore, we are aware of only two publicly-
available implementations of pattern search methods [7, 9] that allow ∆k to increase.
Even the analysis we present here assumes that eventually ∆k is monotonically non-
increasing. The practical compromise, implicit in Hypothesis 1, is that we allow
increases in ∆k only up to some finite number of iterations, after which we require
∆k to be nonincreasing. This allows for some initial adjustments in the step-length
control parameter if the first few iterations of the search suggest that the choice of ∆0
may have been too conservative. However, if we disable any further increases in ∆k

once k ≥ N , then we preserve the global and local convergence properties presented
in Sections 3 and 4.

6. Conclusion. The results given here round out the convergence analysis of
pattern search. The analysis and numerical experiments reported here show that
∆k can be used as a reliable stopping criterion. Moreover, these tests show that the
correlations predicted by Theorems 3.1 and 4.5 between ∆k, ‖∇f(xk)‖, and ‖xk−x∗‖

16

are manifest in practice. These results vindicate the intuition of the early developers
of direct search methods.

Acknowledgments. We are indebted to Natalia Alexandrov for a conversation
that led to the term “desultory convergence” in connection with Theorem 4.5. We
thank Stephen Nash for a lively discussion about stopping criteria.

We also thank both referees and the associate editor for their careful reading of
the earlier drafts of this paper. They caught an oversight in one of the proofs and
made many helpful suggestions for improving the overall presentation. We greatly
appreciate their efforts.

REFERENCES

[1] C. Audet, Convergence results for pattern search algorithms are tight, Tech. Rep. 98–24, De-
partment of Computational and Applied Mathematics, Rice University, 6100 Main Street,
MS 134, Houston, Texas 77005–1892, 1998.

[2] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[3] P. T. Boggs and J. J. E. Dennis, A stability analysis for perturbed nonlinear iterative methods,
Mathematics of Computation, 30 (1976), pp. 199–215.

[4] M. J. Box, D. Davies, and W. H. Swann, Non-Linear Optimization Techniques, ICI Mono-
graph No. 5, Oliver & Boyd, Edinburgh, 1969.

[5] C. Davis, Theory of positive linear dependence, American Journal of Mathematics, 76 (1954),
pp. 733–746.

[6] E. D. Dolan, Pattern search behavior in nonlinear optimization. Honors Thesis, Department
of Computer Science, College of William & Mary, Williamsburg, Virginia 23187–8795, May
1999. Accepted with Highest Honors. Available at http://www.cs.wm.edu/̃ va/CS495/.

[7] A. P. Gurson, Simplex search behavior in nonlinear optimization. Honors Thesis, Department
of Computer Science, College of William & Mary, Williamsburg, Virginia 23187–8795, May
2000. Accepted with Highest Honors. Available at http://www.cs.wm.edu/̃ va/CS495/.

[8] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,
Journal of the Association for Computing Machinery, 8 (1961), pp. 212–229.

[9] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for
nonlinear optimization, SIAM Journal on Scientific Computing, 23 (2001), pp. 134–156.

[10] T. G. Kolda and V. J. Torczon, On the convergence of asynchronous parallel pattern search,
Tech. Rep. SAND2001–8696, Sandia National Laboratories, Livermore, California, Febru-
ary 2002. Revised July 2002 for SIAM Journal on Optimization.

[11] R. M. Lewis and V. J. Torczon, Rank ordering and positive bases in pattern search algo-
rithms, Tech. Rep. 96–71, Institute for Computer Applications in Science and Engineering,
Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681–2199, 1996.

[12] , Pattern search algorithms for bound constrained minimization, SIAM Journal on Op-
timization, 9 (1999), pp. 1082–1099.

[13] , Pattern search methods for linearly constrained minimization, SIAM Journal on Opti-
mization, 10 (2000), pp. 917–941.

[14] , A globally convergent augmented Lagrangian pattern search algorithm for optimization
with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002),
pp. 1075–1089.

[15] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw–Hill, New York,
1996.

[16] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on Optimization,
7 (1997), pp. 1–25.

[17] F. H. Walters, L. R. Parker, Jr., S. L. Morgan, and S. N. Deming, Sequential Simplex
Optimization, Chemometrics Series, CRC Press, Inc., Boca Raton, Florida, 1991.

[18] W. Yu, Positive basis and a class of direct search techniques, Scientia Sinica, Special Issue of
Mathematics, 1 (1979), pp. 53–67.

17

