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Abstract

The goal of the research reported here is to develop rigorous optimization algo-

rithms to apply to some engineering design problems for which direct application of

traditional optimization approaches is not practical. This paper presents and analyzes

a framework for generating a sequence of approximations to the objective function and

managing the use of these approximations as surrogates for optimization. The result is

to obtain convergence to a minimizer of an expensive objective function subject to sim-

ple constraints. The approach is widely applicable because it does not require, or even

explicitly approximate, derivatives of the objective. Numerical results are presented

for a 31-variable helicopter rotor blade design example and for a standard optimization

test example.
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1 Introduction

The use of computer simulations in engineering decision-making is growing in importance.
A prototypical example, described in Section 3, involves designing a low-vibration helicopter
rotor blade. This example poses an optimization problem in which evaluation of the objective
function requires running expensive analysis code(s). Existing methods for such optimization
problems are either impractical or ad hoc. In this paper, we present a rigorous framework for
optimizing expensive computer simulations through the use of inexpensive approximations
of expensive analysis codes.

We will set forth, for comment and criticism, a rigorous approach to solving the following
mathematical problem:

minimize f(x) (1)

subject to x ∈ B ≡ {x | a ≤ x ≤ b},

where f : <n → <∪ {∞}, a, b ∈ <n, and a ≤ b means that each coordinate satisfies ai ≤ bi.
The following characteristics distinguish the subset of such problems for which our methods
are intended:

1. The computation of f(x) is very expensive and the values obtained may have few
correct digits.

2. Even if x is feasible, the routines that evaluate f(x) may fail to return a value at the
same computational cost as if a value were returned.

3. It is impractical to accurately approximate derivatives of f .

4. If x is infeasible, then f(x) may not be available.

Typically, f(x) is expensive to evaluate because there are large numbers of ancillary or
system variables that must be determined for each choice of x before f(x) can be evaluated.
For example, in the helicopter rotor blade design problem, each x specifies a coupled system of
partial differential equations (PDEs) that must be solved in order to obtain dependent system
variables required to evaluate f(x). It may be quite difficult to obtain accurate solutions of
such systems, even after expending substantial computational resources. Furthermore, when
a coupled system of PDEs is solved by an iterative method, e.g. the notoriously unreliable
method of successive substitution, the method may fail to converge at all. Thus, one cannot
assume even that one will obtain an objective function value at each feasible point.

The difficulties implied by the first two properties are compounded if the intended opti-
mization algorithm requires derivative information. Actual derivatives are rarely available,
although we hope that this circumstance will change as automatic differentiation technol-
ogy advances. On the other hand, choosing an appropriate step size for approximating
derivatives by finite differences is itself a difficult undertaking. Moreover, the difficulties are
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compounded by the expense of function evaluation and the fact that a function value may
not be returned.

The foregoing considerations lead us to dismiss the possibility of using traditional quasi-
Newton methods to solve Problem (1). Indeed, even if actual derivative information were
available, quasi-Newton methods might be poor choices because they are adversely affected
by function inaccuracies [15]. Instead, we observe that direct search methods [13, 38, 42, 40]
do not require derivatives and are relatively insensitive to function inaccuracies. Their short-
coming, especially when function evaluation is expensive, is that in practice they tend to
require a great many function values. The essential observation of the present paper is that
inexpensive surrogate objective functions can be used to accelerate (certain methods of)
direct search for a solution without sacrificing theoretical guarantees of asymptotic conver-
gence.

The use of direct search methods provides a natural way to address the fact that f(x)
may be unavailable for some feasible x. When this occurs, we simply assign f(x) = ∞.
This assignment implicitly assumes that x is suboptimal if f(x) is not available. In fact,
the failure of f(x) to evaluate might result from failures in the analysis code rather than
from the physical suboptimality of the design x, but we do not attempt to distinguish these
possibilities in the present paper.

If the optimization method causes us to consider an infeasible x, then we decline to try
to evaluate f(x). In fact, it is common practice for optimization algorithms not to evaluate
the objective at points that violate simple bound constraints because such violations are
easily detected. In contrast, it is also common practice to evaluate the objective whenever
the bound constraints are satisfied, regardless of the possible violation of more complicated
(e.g. nonlinear equality) constraints. In the present paper, we skirt this issue by considering
formally only bound constraints. Of course, we are keenly aware that most problems also
include other types of constraints, but the rigorous management of such constraints is a topic
for future research—to consider it now would only cloud the issues that we wish to address
in this forum. Thus, we treat the linear inequality constraints in our helicopter rotor blade
test example by declining to evaluate f(x) when x is infeasible.

Problems of the type that we have described arise in disparate ways in engineering design
and in manufacturing process control. Furthermore, there is a standard engineering practice
[1] for attacking such problems:

1. Choose a surrogate s for f that is either

(a) a simplified physical model of f ; or

(b) an approximation of f obtained by evaluating f at selected design sites, x1, . . . , xd ∈
B, at which each f(xi) is finite, then interpolating or smoothing the function val-
ues thus obtained.

2. Minimize the surrogate s on B to obtain xs.
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3. Compute f(xs) to determine if improvement has been made over the best x found to
date, which may be some baseline x or one of the design sites (if that approach is used).

The standard practice violates a fundamental tenet of numerical optimization, that one
should not work too hard until one nears a solution. In fact, the standard practice is a
one-shot approach: except for the final validation of xs, all of the function evaluations are
performed at sites selected by experimental design criteria with no concern for optimization
per se. Furthermore, this approach begs a potentially embarrassing question, viz., what does
one do if (as is often the case) xs is not good enough to use as a solution to Problem (1)?

A natural modification of the standard practice is to use a sequence of surrogates to
identify promising regions in which to use successively better surrogates, either by adopt-
ing models with greater physical fidelity or by constructing approximations from a greater
concentration of design sites. Examples of this basic strategy include [6, 20, 14].

We present here a general methodology inspired by ideas in [14]. Our methodology is
built on top of a general class of direct search methods for numerical optimization, the
pattern search methods. We exploit in a novel way the convergence analysis for pattern
search methods presented in [39, 24, 25]. Key to our approach is the observation that the
convergence analysis allows great flexibility in the heuristics that one can employ to find the
next iterate. Accordingly, we perform a fairly extensive search on the current surrogate to
select new points at which to evaluate the objective. In this paper, we are concerned with
surrogates that are interpolating approximations of the objective and we use any new values
that we obtain to update the current approximation.

In the next section, we present our surrogate management framework (SMF) and demon-
strate that it works on a standard test problem from the global optimization literature [16].
In subsequent sections, we elaborate on the earlier presentation by examining a problem for
which the computational cost of evaluating the objective can be substantial. In Section 3,
we describe the helicopter rotor blade design problem. In Section 4, we describe a family of
interpolating approximations that has become popular in the literature on the design and
analysis of computer experiments (DACE). In Section 5, we sketch some ways of using DACE
approximations as optimization surrogates. Finally, in Section 6, we report some numerical
results.

Some indications of how this work fits into a larger effort are provided in Sections 2.3
and 7.

2 A Rigorous Framework for Optimization Using Sur-

rogates

In this section we describe SMF, our framework for managing surrogate objective functions to
facilitate the optimization of expensive computer simulations. The framework is sufficiently
general to accommodate surrogates that are (1) simplified physical models of the expensive
simulation; (2) approximations of the expensive simulation, constructed by interpolating or
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smoothing known values of the objective; or (3) model-approximation hybrids. For the sake
of clarity, however, we focus on the case of surrogates of the second type. In Section 4 we will
emphasize interpolating approximations constructed by kriging, but the simple example in
Section 2.3 illustrates that SMF also works with polynomial interpolants. Another example
using polynomial interpolants is presented in [32].

We begin, in Section 2.1, by describing the family of underlying optimization algorithms
on which SMF is based. Next, in Section 2.2, we formally define SMF. We conclude, in
Section 2.3, by using SMF to minimize a simple algebraic test function.

2.1 Pattern Search Algorithms

Pattern search algorithms are a class of direct search methods for numerical optimization.
A formal definition of pattern search, which includes various well-known algorithms, was
proposed in [39]. An elementary introduction to pattern search algorithms and a discussion
of their historical antecedents is available in [40].

Pattern search algorithms are characterized by two crucial notions, a sequence of meshes
and a list of polling conditions. A mesh is a lattice to which the search for an iterate is
restricted. As optimization progresses, the polling conditions govern when the current mesh
can be refined, ensuring that the algorithm will satisfy the demands of the convergence
theory for pattern search methods.

For our purposes, the primary polling condition that must be enforced to ensure con-
vergence is that the set of vectors formed by taking the differences between the set of trial
points at which the objective function is to be evaluated (the pattern) and the current iter-
ate xk must contain a positive basis for <n. A positive basis [11] is a set of vectors whose
nonnegative linear combinations span <n, but for which no proper subset has that property.
For our purposes, the relevance of a positive basis is that it ensures that if the gradient of
f at xk is not zero, then at least one vector in the positive basis defines a descent direction
for f from xk. This can be guaranteed without any knowledge of the gradient. Any positive
basis has at least n + 1 and at most 2n vectors; we call these minimal and maximal positive
bases, respectively.

For unconstrained problems, a minimal positive basis is sufficient to guarantee conver-
gence [25]. However, for problems with rectangular feasible regions, e.g. Problem (1), we use
a maximal positive basis that comprises all of the coordinate directions, both positive and
negative. This guarantees that it is possible to move along the boundary of the feasible re-
gion and thus prevents premature convergence to a point that is not a constrained stationary
point [24]. Recent work [26] has revealed that it is possible to construct adaptive pattern
search algorithms that identify only those constraints that are either binding or “almost”
binding at the current iterate so that the number of vectors needed at any given iteration
can vary between n + 1 and 2n, inclusively.

The following formulation of Generalized Pattern Search (GPS) differs from the formula-
tion of pattern search in [39, 24, 25, 26], but it is especially well-suited to our presentation.
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We remind the reader that if f(x) either is infeasible or cannot be evaluated successfully,
then we set f(x) = ∞.

GPS: Let M0 denote a mesh on B ≡ {x | a ≤ x ≤ b} and suppose that x0 ∈ M0 has been
given. (In typical practice, x0 ≈ x∗, where x∗ is a preliminary baseline solution, but any
choice of x0 ∈ M0 is possible.) Let X0 ⊂ M0 contain x0 and any 2n points adjacent to x0 for
which the differences between those points and x0 form a maximal positive basis (composed
of multiples of the coordinate vectors) for <n. As the algorithm generates xk ∈ Mk, let
Xk ⊂ Mk be defined in the same way. For k = 0, 1, . . ., do:

1. Search: Employ some finite strategy to try to choose xk+1 ∈ Mk such that f(xk+1) <
f(xk). If such an xk+1 is found, declare the Search successful, set Mk+1 = Mk, and
increment k;

2. else Poll:
if xk minimizes f(x) for x ∈ Xk, then declare the Poll unsuccessful, set xk+1 = xk,
and refine Mk to obtain Mk+1 by halving the mesh size (write this as Mk+1 = Mk/2);
else declare the Poll successful, set xk+1 to a point in Xk at which f(xk+1) < f(xk),
and set Mk+1 = Mk.
Increment k.

Step 2 provides the safeguard that guarantees convergence, as in the following result [24].

Theorem 2.1.1. If f is continuously differentiable on the feasible region B, then some
limit point of the sequence {xk} produced by a generalized pattern search (GPS) method
for bound constrained minimization is a constrained stationary point for problem (1).

Notice that this result guarantees that GPS will converge no matter how naive the search
strategy in Step 1. In practice, of course, the sophistication of the search strategy matters
a great deal. We now turn to SMF, which uses surrogate objective functions to try to
Search with greater parsimony and thereby reduce the total number of objective function
evaluations.

2.2 The Surrogate Management Framework

The description of SMF that we present here is a set of strategies for using approximations
in both the Search and Poll steps of a GPS algorithm. For greater clarity, we have also
identified a separate Evaluate/Calibrate step. In what follows, we assume that a fam-
ily of approximating functions has been specified, that an initial approximation has been
constructed, and that an algorithm to recalibrate the approximation is available.

SMF: Given s0, an initial approximation of f on B, and x0 ∈ M0, let X0 ⊂ M0 contain x0

and any 2n points adjacent to x0 for which the differences between those points and x0 form
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a maximal positive basis (composed of multiples of the coordinate vectors) for <n. As the
algorithm generates xk ∈ Mk, let Xk ⊂ Mk be defined in the same way. For k = 0, 1, . . ., do:

1. Search: Use any method to choose a trial set Tk ⊂ Mk. If Tk 6= ∅ is chosen, then it is
required to contain at least one point at which f(x) is not known. If Tk = ∅, then go
to Poll.

2. Evaluate/Calibrate: Evaluate f on elements in Tk until either it is found that xk

minimizes f on Tk or until xk+1 ∈ Tk is identified for which f(xk+1) < f(xk). If such an
xk+1 is found, then declare the Search successful. Recalibrate sk with the new values
of f computed at points in Tk.

3. If Search was successful, then set sk+1 = sk, Mk+1 = Mk, and increment k;
else return to Search with the recalibrated sk, but without incrementing k.

4. Poll:
If xk minimizes f(x) for x ∈ Xk, then declare the Poll unsuccessful, set xk+1 = xk,
and set Mk+1 = Mk/2;
else declare the Poll successful, set xk+1 to a point in Xk at which f(xk+1) < f(xk),
and set Mk+1 = Mk.
Recalibrate sk with the new values of f computed at points in Xk. Set sk+1 = sk.
Increment k.

We structure our discussion of SMF around the proof of the following corollary of Theorem
2.1.1. Notice that this result assumes nothing about the accuracy of the approximations. In
practice, of course, we would expect better approximations to yield better results.

Theorem 2.2.1. If f is continuously differentiable on the feasible region B, then some
limit point of the sequence {xk} produced by SMF for bound-constrained minimization is a
constrained stationary point for problem (1).

Proof: The proof is accomplished by showing that SMF is an instance of a generalized
pattern search method and so Theorem 2.1.1 applies.

First, we need to be sure that we have specified a finite Search step, i.e., that there is
a fixed upper bound on the number of unsuccessful search steps that will be tried before a
poll step is taken. This follows immediately because each choice of Tk 6= ∅ must contain at
least one point of Mk at which f is unknown and Mk is a mesh on a compact set B, hence
a finite set.

We finish the proof by noting that the Poll step is still intact. From the perspective of
the optimization algorithm, Poll is functionally unchanged by the recalibration step that it
now includes.

�

The key to a successful implementation of SMF is to define the Search strategy in a way
that efficiently exploits the current approximation sk. One obvious approach is to search
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for points that minimize sk. In [41], for example, a finite-difference quasi-Newton method
was started from the current iterate with sk as the objective function. A more ambitious
strategy would be to explore sk globally for multiple prospective basins, e.g. by performing
a comprehensive grid search. For the examples in this paper, we performed a comprehensive
search on a subset of the current mesh, Mk.

Notice that we do not require f to be evaluated at all points in Tk or Xk before declaring
a successful Search or Poll step. Once we have identified a point in either Tk or Xk with
an objective value strictly less than f(xk), we can declare the iteration to be successful and
increment k. This practical flexibility derives from a powerful and crucial aspect of the
convergence theory developed in [39, 24, 25, 26]: it is not necessary for a pattern search
algorithm to find the best point on the current mesh Mk, or even the best point in Xk—any
point that produces decrease on f(xk) will suffice.

The convergence theory states that any point on the current mesh, Mk, that produces
decrease on f(xk) can be used as the next iterate, xk+1. Traditional pattern search algorithms
evaluate f at a predetermined subset of Mk (a pattern) in order to try to discover such points.
To try to reduce the number of function evaluations required to discover a point that produces
decrease, SMF uses the current approximation to predict points in Mk at which we expect to
realize decrease. The set Tk contains our list of potential candidates. If Tk contains multiple
candidates, then we choose those that are considered most promising. If the approximation
does not predict any such decrease, then we may choose to set Tk = ∅ and Poll.

SMF affords complete flexibility in deciding how many points to include in Tk. One
obvious possibility is to include a single point: the one at which the surrogate predicts the
greatest decrease on f(xk). This is precisely what we did to obtain the results reported in
Section 2.3. In other situations, however, it may be desirable to include several points. One
such circumstance arises when attempts to evaluate the objective are prone to failure. For
example, for the helicopter rotor blade design problem we have performed runs in which 60%
of our attempts to evaluate f at a feasible x failed. Thus, to obtain the results reported in
Section 6, we choose Tk to contain three points in an effort to ensure that at least one of
the points in Tk can be evaluated successfully. Another circumstance arises in parallel or
distributed computing environments. If several processors are available to perform simulta-
neous function evaluations, then it is natural to provide Tk with one point for each available
processor.

We also allow Tk to contain points at which the approximation does not predict decrease.
This flexibility is desirable because the step Evaluate/Calibrate actually serves two pur-
poses. On the one hand, we obviously want to find an xk+1 ∈ Tk for which f(xk+1) < f(xk).
On the other hand, after each step we know more objective function values and we therefore
compute a new (and presumably more accurate) approximation. However, the points that
most decrease the objective may not be the points that most improve the accuracy of the
approximation. In fact, it may be desirable to select trial points that balance the compet-
ing goals of decreasing the objective and constructing a better approximation. By selecting
trial points that lead to better approximations, we may gain greater insight into the global
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behavior of f , accelerating optimization by improving the quality of future searches. This
idea will be discussed in Section 5.

Except for recalibration, the Poll steps for GPS and SMF are identical. Although SMF
does not specify the order in which f is to be evaluated at the points in Xk, it is natural to
evaluate them in increasing order of the objective values predicted by sk.

If the current iterate is sufficiently near a minimizer of the true objective function, then
the current mesh must be refined in order for optimization to progress. It is the Poll step
that guarantees convergence, but this guarantee can be costly. For bound-constrained opti-
mization, an unsuccessful Poll step requires between n and 2n evaluations of the objective
function [25], so we would like to avoid Poll steps whenever possible. One possibility is to
employ a hybrid approach that starts with SMF and assumes that an unsuccessful Poll step
signals a basin of attraction for a local method, which we then call to see if it can succeed.
Of course, we might need to revert to SMF if we switch too hastily. A natural candidate
for the second phase of such a hybrid approach is the derivative-free optimization (DFO)
algorithm described in [8, 7]. The development of an SMF-DFO hybrid is one objective of
the larger effort mentioned in Sections 2.3 and 7.

2.3 Sample Test Results

We now apply SMF to a standard global optimization test problem, the six-variable Hartman
problem [16], which has a single global minimizer and several nonglobal minimizers. In
realistic applications, objective functions are expensive to evaluate and computed values
have only several digits of accuracy. Hence, we only attempt to solve the Hartman problem
approximately, and we are prepared to decrease the chance of converging to the global
minimizer in order to restrict the total number of objective function evaluations.

Figure 1 presents run histories for two implementations of SMF, as well as the final values
obtained from nine runs of the DFO algorithm described in [8, 7]. We imposed bounds of
B = [0, 1]6 and started each run from x0 = (.5, .5, .5, .5, .5, .5)T . (The nine runs of DFO pro-
duced different results because the DFO algorithm includes a stochastic decision.) The only
difference between the two implementations of SMF is the choice of approximating families:
one choice interpolated known function values with variable-order multivariate polynomials
[12] whose degrees were increased as more function values were obtained; the other choice
interpolated known function values by kriging. The latter family of approximations, which
we also used for the helicopter rotor blade design problem, is discussed in Section 4. In each
implementation, the initial approximation was constructed by interpolating the same set of
16 known function values. Each time that Search was called, the current approximation
was evaluated on a 7280-point subset of the current mesh. Because the Hartman objective
can always be evaluated, Search returned only a single point from the subgrid at which the
approximation predicted the greatest decrease in the Hartman objective.

The global minimum of the Hartman function is -3.322. Except for one run of DFO, each
run produced (approximately) this value. Of particular note is the fact that SMF worked
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effectively with each of two different families of approximations. The SMF run histories
exhibit the characteristic plateaus that result when Poll steps are executed on a sequential
computer. The actual (“wall clock”) time spent on these steps can be reduced if opportunities
for parallel or distributed computing exist. If a sufficient number of processors are available
to evaluate all of the required function values concurrently, and if the abscissa indicates
actual time rather than number of function evaluations, then the plateaus usually disappear.
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Figure 1: Results for the six variable Hartman problem
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Span segments

Possible variables
in each segment are —

• mass
• CG offset, and
• stiffnesses in 3 directions

Figure 2: Rotor blade design variables

3 The Helicopter Rotor Blade Design Problem

Helicopter rotor blade design is used here for illustrating concepts and motivating algorithmic
requirements for SMF applied to industrial problems. The particular task we consider is
structural design of helicopter rotor blades for minimum vibration transmitted to the hub.

As indicated in Figure 2, the design variables consist of up to five structural parameters
for each span segment. The variations on this problem that we have considered have between
10 variables and 56 variables. As described below the objective function is a weighted sum
of various harmonics of forces and moments. The analysis code used is Tech01 [33].

Tech01 is a multidisciplinary analysis code. The disciplines include dynamic structures,
aerodynamics, wake modeling, and controls. The run time for a Tech01 fixed-wake analysis is
roughly 20 minutes on a mid-level workstation. However, the run time can increase to several
days on the same machine if wake updating is invoked. The full wake analysis has greater
fidelity to the physics of the problem. Our main focus is on the use of approximations to the
analysis code results as objective function surrogates for optimization. Thus, to facilitate
studies of algorithmic issues for surrogate optimization, the test results discussed here use
fixed-wake analyses.

A more detailed statement of the optimization problem is

minimize f(x) =
nh∑

i=1

wi

|hi(x)|

|hi(xB) + 1|
with respect to x ∈ <n

subject to xuj ≥ xj ≥ xlj , j = 1, . . . , n
cuk ≥ ck(x) ≥ clk, k = 1, . . . , ncon.

(2)

In the above equation, the hi, i = 1, . . . , nh, are output responses from Tech01. The sub-
script i is an index that maps from the response function vector elements to forces in three
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Example Variables Objective Constraints
31 Variable 10 masses, weighted sum of 1st upper bound on

10 centers of gravity, and 2nd harmonics sum of masses
11 stiffnesses in for two flight
a single direction conditions

Table 1: Rotor blade design example

directions, moments in three directions, and harmonic numbers for each force and moment.
In addition, the indexing may span several flight conditions, such as hover and forward flight
at various speeds. Normalization to account for the different physical units of the responses
is accomplished by including hi(xB) in the denominator of the objective function terms,
where xB is the baseline design.

The objective function components are weighted by factors wi. The limits xuj, xlj, cuk,
and clk are upper and lower bounds on the variables and constraints, respectively. The
constraints ck(x) can be quantities such as required rotor horsepower, centrifugal force,
autorotational inertia, snow load, and limits on total mass. Aside from the bounds on
the independent variables, the only constraint in the examples considered here is total mass.
Since the masses are a subset of the design variables, the mass constraint is a linear constraint
involving a subset of the variables. Thus, it is independent of the analysis results, and does
not require consideration of issues involving the construction of surrogate approximations of
constraint functions.

The helicopter rotor blade design problem is summarized in Table 1. Note that this
problem has upper and lower bounds on all the variables.

4 Constructing the Surrogates

Even with fixed wake, the helicopter rotor blade design examples are not easily modeled using
simplified, less expensive simulations. In consequence, we concentrate on approximations
constructed by interpolating or smoothing a set of known objective function values. In this
section we describe our method of choosing a set of initial design sites at which the objective
function f is evaluated before optimization commences, our choice of a class of function
approximations from which the initial surrogate s is to be selected, our method of selecting
s from this class, and some diagnostic procedures for extracting useful information from s.

The problem of choosing a set of initial design sites, x1, . . . , xd ∈ B, is a problem in the
design of experiments. This problem has been studied extensively in the recent literature on
the design and analysis of computer experiments (DACE), surveys of which include [31, 2, 22].

We seek designs that are “space-filling” (for lack of a better term), i.e. that will allow us
to sample the behavior of the objective function throughout the feasible region. We want
to avoid designs that are tied to a narrow class of approximating functions, e.g. linear or
quadratic functions. We want to be able to generate designs somewhat automatically, and
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we would like to be able to generate designs for irregular (nonrectangular) feasible regions.
We have opted for designs that are used in quasi-Monte Carlo integration: Latin hy-

percube sampling (LHS) [27, 35], orthogonal arrays (OA) [28] and OA-based LHS [36]. In
LHS, each of the n variables is chosen from d equally spaced values. The OAs we use are
space-filling in the following sense: the variables in the experimental design are assigned from
l distinct values. In every subset of k variables every one of the lk combinations of values
occurs the same number of times. Arrays with this property are of strength k. LHS designs
are of strength 1. Typically we use OAs of strength 2. This is a straightforward process
because LHS designs are easily generated and efficient code for generating OA designs is
available from STATLIB (http://lib.stat.cmu.edu).

LHS and OA were devised for rectangular regions. In the helicopter rotor blade design ex-
amples, the mass constraint induces a nonrectangular feasible region. We have experimented
with various strategies for adapting OA designs to this region, e.g.

• Generate a design with d points in the rectangle defined by the variable bounds, then
alter the design so that the d points satisfy the mass constraint.

• Generate a design with many points in the rectangle defined by the variable bounds,
then discard the points that are outside a slightly expanded mass constraint boundary.

After the design sites have been chosen and the objective function f has been evaluated
at them, the initial surrogate s can be constructed. This surrogate is intended to be an
approximation of f throughout the region of interest that is inexpensive to evaluate. It will
be recalibrated as new function values are obtained in the course of solving the optimization
problem. Because we do not want to make a priori assumptions about the structure of f ,
we require a large, flexible class of functions from which surrogates can be selected.

Plausible families of approximating functions include neural networks and low degree
interpolating polynomials [12]. In §2.3 we gave evidence that the SMF can use different
families of approximation. We have opted for the family of functions defined by the krig-
ing procedures discussed in the DACE literature. The kriging parameterization, defined by
means and covariances of function values, is more intuitive for the present applications than
other approximations in the response surface literature. For some choices of covariance func-
tion, kriging is equivalent to spline interpolation, a correspondence that has been discussed
in the geostatistics literature [43].

It is quite common in the statistics literature to motivate kriging by assuming that f
is a realization of a stationary Gaussian spatial process. As implausible as this assumption
may seem in the present context, it does suggest useful ways to proceed with the selection
of a surrogate objective function from the family of approximating functions. Upon making
this assumption, it becomes possible to estimate mean and covariance parameters from
f(x1), . . . , f(xd) by the method of maximum likelihood estimation (MLE) and thereby to
specify a well-defined procedure for selecting s.

Although MLE has been criticized in the spatial statistics literature, e.g. [30], it has
been defended by others as a crude form of cross-validation [19, 10]. Our experience to
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date has been similar to that reported in [31]: “crude MLE’s lead to useful prediction. . . .”
Assuming that the covariances in question are a constant unknown variance times unknown
correlations of a specified form, there exist closed-form expressions for the MLEs of the mean
and variance parameters. To obtain MLEs of the correlation parameters, we have attempted
global optimization of the (log) likelihood function via an implementation of the algorithm
in [29].

One technical difficulty with kriging should be noted. Kriging calculations require in-
version of the matrix of estimated correlations between function values at the design sites.
The initial correlation matrix usually is well-conditioned but as the function is sampled at
additional sites that cluster near a minimizer, the process of recalibration generally causes
subsequent correlation matrices to become ill-conditioned. We have addressed this difficulty
by adding a small number (10−6) to the diagonal of the correlation matrix. With this ad-
dition, the approximating functions do not exactly interpolate the observed function values;
however, they retain their flexibility and predict observations very closely.

Once a surrogate function s has been constructed, one can use it to predict values of f(x)
and also to approximately bound the errors in such predictions. The latter is accomplished
by calculating mean squared error (MSE) under the assumption of a stationary Gaussian
process. It has been argued in [31, 21] that this is a reasonable framework in which to bound
future prediction errors, particularly if one can assess the plausibility of the assumption
of a stationary Gaussian process. Since larger values of MSE are associated with larger
uncertainty in prediction, we have used MSE to guide our choice of new sites at which data
would be of particular value in improving the accuracy of the surrogate.

One also might predict future prediction errors by examining the cross-validation resid-
uals. These error estimates are obtained at each observation by kriging (with the original
MLE parameters) the other observations and predicting the designated observation. Simi-
larly, it was suggested in [21] that one might cross-validate the MSEs to assess their predictive
capabilities.

Finally, we have found that performing a functional analysis of variance [17, 28, 31] on the
surrogate function s is a useful way of identifying lower-dimensional subspaces in which most
of the variation in s resides. This ANOVA technique, which can in principle be applied to
any square-integrable function, decomposes s into main effects (contributions of individual
variables to variation in s) and interaction effects (contributions of combinations of variables
to variation in s). The hope is that one can identify a few key variables that account for
most of the variation in f , then optimize solely with respect to those variables at reduced
expense.

5 DACE Model Refinement by Balanced Searches

The Search phase of SMF allows us to use any method to choose a trial set of new mesh
points at which to evaluate the true objective function. In this section we discuss several
search strategies with which we have experimented.
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Whatever approximations are used as surrogates for the objective function, a straight-
forward search strategy is to optimize (either locally or globally, depending on one’s goals)
the current approximation and to return trial points that reside on the mesh Mk near the
solution(s) thus obtained.

A simple implementation of this strategy, in which a finite-difference quasi-Newton
method was used to find a local minimizer of the current DACE approximation (see §4),
is the model-assisted grid search (MAGS) described in [41]. MAGS was intended for situa-
tions in which only a relatively small number of function evaluations are permitted. Because
it approximates the objective function over the entire feasible region, recalibration of the
approximation is made using one new objective value at a time, as these values are produced
by the optimization procedure.

In contrast to MAGS, a “zoom-in” method for local refinement was proposed in [18].
This strategy uses the existing approximation to determine an interesting subregion of the
design space for further exploration. The optimization process is halted, additional function
values are obtained in the subregion, and a new approximation is formed. The expectation is
that the approximation constructed in the subregion will be more accurate than the original
approximation because it will be based on a higher density of data.

One method for determining the zoom-in region is to locate the local minima of the
original approximation and determine the extent of their basins. For a specified value greater
than the function value at a local minimum, the extent of its basin is assessed in terms of the
distance of the minimum in each coordinate direction to the nearest level set corresponding
to the specified value (or the distance to the coordinate bound if the specified level is not
attained.)

Zoom-in methods favor exploration in the vicinity of local solutions of the current ap-
proximation. Hence, they may fail to find basins of better local solutions elsewhere in the
design space. In the parlance of global optimization, they are purely local in nature. A
purely global method for determining new points at which to evaluate f is to minimize an
estimate of the integrated mean squared error (IMSE, [31]) of the resulting new approxima-
tion. This method is space-filling in that it tends to place new design points in previously
unexplored regions. In contrast to zoom-in methods, the IMSE-optimal methods defer ex-
amining promising regions in the interest of obtaining a better “global” picture of the design
space. The result is that they tend to converge slowly to a minimizer of the objective.

To address both local and global concerns, we have experimented with a balanced search
strategy. This method is based on our observation that, at any location in design space,
the current DACE approximation can supply two key pieces of information: an approximate
value of the objective and an estimate of the approximation’s mean squared error (MSE) at
the point. The former provides purely local information; the latter, which increases with the
distance from the subject point to the nearest design site and with the degree of nonlinearity
of the data, quantifies uncertainty about the behavior of the true objective function and
hence provides some degree of global information.

Based on local concerns, one would evaluate f at points that the approximation indicates
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have low values. Based on global concerns, one would evaluate f at points with high MSE
values. The balanced search method selects a portion of the total of the trial set Tk based on
each measure. Ideally, one would measure the approximate values and MSEs at each point
on a fine grid in design space and select the best candidates, as in [9]. Unfortunately, in high-
dimensional design spaces it is impossible to consider even a crude grid formed by splitting
each dimension in two; hence, the balanced search algorithm described below considers each
member of a “dense cloud” of (say 5000) trial sites. To ensure that this cloud is space-filling,
it is generated from an OA-based LHS.

Balanced Search Algorithm for New Site Selection
Given: an existing approximation, current design sites, a list of local minimizers of the
current approximation, the number nlocal of new design sites to be based on local concerns,
the number nglobal of new design sites to be based on global concerns, and a tolerance τ
equal to the minimum distance that will be allowed between any two sites.

1. Create an initial list of (say) 5000 trial sites using an OA-based LHS.

2. Add the local minimizers of the current approximation to the list of trial sites.

3. Calculate the distances from each of the trial sites to each other and to each of the
design sites for the current approximation.

4. Sort the trial sites in order of increasing values as determined by the current approxi-
mation.

5. Select as new design sites the nlocal trial sites with the smallest values determined
by the current approximation, maintaining the condition that each design site is ≥ τ
distant from every other design site.

6. Compute the MSE at each of the remaining trial sites using the correlation parameters
of the current approximation, but after updating the model parameters to reflect MSE
= 0 at the newly selected design sites.

7. For i = 1, . . . , nglobal, do:

(a) Select as a new design site the trial site with the largest MSE value, maintaining
the condition that each design site is ≥ τ distant from every other design site.

(b) Update the approximation to reflect MSE = 0 at the newest design site, then
recompute the MSE at each of the remaining trial sites.
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6 Test Results for Rotor Blade Design

We now summarize the performance of several optimization methods when applied to the
helicopter rotor blade design problem described in Section 3. We remind the reader that
this problem has a linear inequality constraint which we treat by declining to evaluate f(x)
for any infeasible x. The optimization methods that we considered are the following:

• MMF: This is Serafini’s [32] implementation of the surrogate management framework,
SMF, described in Section 2.2. An initial approximation was constructed from 59 suc-
cessful function evaluations using the DACEPAC software package [2, 3]. The initial
iterate was a baseline solution provided by Boeing. Search evaluated the current ap-
proximation on a 29,800-point subset of the current mesh and returned the three points
with the lowest values. The true objective function was then evaluated sequentially at
each of these points until one was found to be better than the current iterate.

• DFO: This is the derivative-free optimization method discussed in [7, 8]. The results
that we report, which include final values but not run histories, were provided by
Katya Scheinberg. The initial iterate was the baseline solution provided by Boeing.
Two variants of DFO were implemented, one that scales the decision variables to be
of comparable magnitude and one that leaves the decision variables unscaled. (The
significance of this distinction will be discussed below.) Because DFO randomly chooses
the second point at which the objective function is evaluated, multiple runs of each
variant were performed (nine for the scaled variant, ten for the unscaled variant).

• PDS: This is Torczon’s implementation [37] of the parallel direct search method of
[13], with modifications by Serafini to support constraints and the standard Message
Passing Interface (MPI) parallel communications library [34]. The initial iterate was
the baseline solution provided by Boeing. PDS was executed using 96 evaluations of
the objective per iteration, more than the minimal number (62) required to ensure
convergence.

• GA: This is a genetic algorithm from PGAPack [23]. On the advice of its author,
David Levine of the Boeing Company, we used a steady-state reproductive strategy
with a population size of 200 and a replacement rate of 10% of the population per
iteration.

• BLGS: This implementation of the SMF is due to Booker and Frank [4] and was dis-
cussed in Section 5. The initial approximation was the same as for MMF. The current
approximation was refined twice, each time by adding 50 new values of the objective
function. Some of these 50 new sites were chosen because the current approximation
predicted that they would have objective function values lower than that of the cur-
rent iterate; others were chosen because they were relatively far from any previously
selected sites.

17



• Sampling: This is a simple sampling algorithm that generates OA-based LHS of the
Bose type [28]. Each sample contains the initial design, and in addition, samples that
contain 58, 200, 380, and 684 convergent points were generated independently. For
each sample, the best value of the objective function was taken to be the minimum
of the objective function values computed at the points in that sample, if this value
improved on the best found in prior samples. We include these results only as a simple
strawman, and for this reason we did not count the rather larger number of points in
each sample for which the f(x) did not return a value, nor did we try to implement a
more sophisticated sampling algorithm.

For each of the above optimization methods, the best objective function value obtained
after selected numbers of function evaluations was plotted against the number of function
evaluations. The resulting graph, adapted from [5, 32], is displayed in Figure 3. We report
the total number of attempts to evaluate the objective function, whether or not the attempt
was successful. However, we did not count unsuccessful attempts encountered during the
construction of initial approximations, prior to commencement of the optimization algorithm.
Thus, for MMF and BLGS, our count includes the 59 successful function evaluations obtained
by DACEPAC, but not the additional 97 evaluation attempts that failed. For the sampling
algorithm, only successful function evaluations were counted.

The results summarized in Figure 3 are quite encouraging—so good, in fact, that it may
be that the 31-variable helicopter rotor blade design problem is substantially easier to solve
than we anticipated. Both GA and PDS performed as advertised. GA produced substantial
decrease with a small number of function evaluations, but then had difficulty descending
below a fairly high value of the objective function. PDS descended somewhat more steadily
to an appreciably lower value of the objective function. Both DFO and MMF found even
lower objective function values in a number of function evaluations that would be considered
extremely small for finite-difference quasi-Newton methods.

Except for one variant of DFO, all of the algorithms for which we have reported results
scale the decision variables to be of comparable magnitudes. The variables in the 31-variable
helicopter rotor blade design problem differ by ten orders of magnitude, yet the single lowest
value of the objective function was found by the variant of DFO that did not scale the
variables. This apparent paradox deserves further comment.

When DFO is applied to the unscaled problem, its trust region precludes appreciable
change in the variables of large magnitude but hardly restricts changes in the variables
of small magnitude. In effect, DFO thereby restricts its search to the subspace defined
by the variables of small magnitude. A subsequent ANOVA decomposition of a DACE
approximation of the 31-variable helicopter rotor blade design objective function revealed
that the objective does not vary much with respect to the variables of large magnitude. Thus,
the unscaled variant of the DFO implementation was actually solving a lower-dimensional
problem coincidentally generated by the most important variables. (This is a dramatic
illustration of the diagnostic value of the ANOVA decomposition.) We are now investigating
the lower-dimensional problem in greater detail.
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Finally, we observe that most of the above algorithms can exploit parallelism to reduce
the “wall clock” time required to get a solution, principally by concurrent evaluations of the
objective function. The implementations used here differ with respect to how many con-
current evaluations can be used effectively. In particular, two of the codes, PDS and GA,
were designed explicitly to be executed in parallel and so they have the advantage that they
can use any number of processors without any recoding. Given this implementation philos-
ophy, the total number of function evaluations these methods take to reach a solution does
not compare favorably with the sequential implementations of the other algorithms. How-
ever, when executed in parallel, the “wall clock” time for PDS and GA is more competitive.
Nonetheless, for the tests reported here, MMF and some runs of DFO found feasible solu-
tions with appreciably lower values of the objective and required far fewer total evaluations
of the objective function in the process.

7 Conclusions

The results reported in Section 6 lend credence to our overall plan to develop approximation-
based optimization methods that use SMF. Our current intent is to construct DACE ap-
proximations of sufficient accuracy that ANOVA decomposition will provide insight into the
problem at hand. Subsequently, some variant of SMF, perhaps one with a BLGS flavor, will
be used to identify the basin of a promising minimizer of the true objective function.

Of course, much remains to be done. We would like to find ways to accelerate the search
for a minimizer after SMF has identified a basin and its reduction of the objective function
has begun to slow. One possibility is then to use known objective function values to provide
an initial approximation for DFO, as there are reasons to be believe that DFO enjoys faster
local convergence properties than SMF. Another important challenge is to extend SMF to
address problems with general constraints, particularly constraints that involve outputs of
expensive analysis codes. We are currently working to address these issues.
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