
CS423 Finite Automata & Theory of
Computation

TTh 9:30 - 10:50 in Blow 331 (section 2)

TTh 12:30 - 13:50 in Small Physics Lab 111 (section 1)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

1

General Information
▶ Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -

3:00 on zoom or by email
▶ Grader: Idema, Jacob for section 1 (office hour under

instructor contact information on BB)
▶ Grader: Tran, Tung for section 2 (office hour under

instructor contact information on BB)
▶ Textbook: Intro to the theory of computation (any edition),

Michael Sipser. An e-book in PDF maybe available online.
▶ Prerequisites/background: Linear algebra, Data structures

and algorithms, and Discrete math

2

Part 1: Mathematical foundation and proofs
Sets and Languages (Sipser 0.2)
Languages are central concepts in automata theory.
▶ Alphabet Σ: Finite and nonempty, e.g., Σ= {0,1} and

Σ= {a,b, . . . ,z}.
▶ String (or word), e.g., w = 01110; empty string ε; length of

a string, |w |; concatenation of two strings w1w2; reverse of
a string wR, and substring of a string.
Example: aR = a, (wa)R = awR, (uv)R = vRuR,
(wR)R = w

▶ Language: A language is a set of strings, e.g., {ε}, /0, Σ,
A = {w | w has an equal number of 0s and 1s}=
{ε,01,10,0011,0110,1010, · · ·}, and
B = {0n1n|n ≥ 1}= {01,0011,000111, · · ·}. Note B ⊂ A.

3

▶ Regular operators: Let A and B be two languages.
▶ Union: A∪B = {x | x ∈ A or x ∈ B}.
▶ Concatenation: A ·B = {xy | x ∈ A and y ∈ B}.

Example: If A = {01,10} and B = {0,1}, then
AB = {010,011,100,101}.

▶ Star:
A∗ = {x1x2 · · ·xk | all k ≥ 0 and each xi ∈A for i = 1,2, . . . ,k}.
Note ε ∈ A∗

Example: If A = {0,1}, then
A∗ = {ε,0,1,00,01,10,11,000,001,010,011,111, . . .}
Example: If A = {01,11}, then
A∗ = {ε,01,11,01 01,11 01, . . . ,11 11 01 11, . . .}
Quiz 1: L∗ is the concatenation of any strings in L in any
order. If L = {ab,aa,baa}. Which of followings are in L∗?
(1) abaabaaabaa (2) aaaabaaaa (3) baaaaabaaaab
(4) baaaaabaa

4

▶ More operators
▶ Intersection: A∩B = {x | x ∈ A and x ∈ B}
▶ Complement: A is the set of all elements under

consideration that are not in A. Usually, A =Σ∗−A.
▶ Difference: A−B = A∩B. (anything in A but not in B)
▶ Power of language:

Ak = {x1x2 · · ·xk | xi ∈ A for i = 1,2, · · · ,k}= AAk−1.
▶ Observation:

▶ A0 = {ε}
▶ A∗ = A0 ∪A1 ∪A2 ∪·· · (zero or more)
▶ A+ = A1 ∪A2 ∪·· · (one or more)
▶ A∗ = A+∪{ε}

Quiz 2: If A = {1,01}, then A2 =?
Quiz 3: If A = {01,11,0}, then |A3|=?
Quiz 4: If |A|= n, then |Ak |= |A|k = nk . True or false?
Quiz 5: A+ = A∗−{ε}?

5

▶ Why languages, not problems:
▶ Meta Claim: Computational problem → decision problem.

Example: Traveling Saleman Problem (TSP)
Input: G = (V ,E ,w)
Goal: Find a tour (cycle) with minimun total weight

▶ Example: Decision problem for TSP
Input: G = (V ,E ,w) and B ≥ 0
Question: Is there a tour in G such that the total weight of
the tour is no more than B?

▶ Decision problem: Given an input x , does x satisfy property
P, or is x ∈ {y |y satisfies P}?
Input data of any form, such as matrix, graph, list, etc., can
be coded into strings

▶ Membership in a language: Given a language A and a
string w ∈ Σ∗, is w a member of A, or is w ∈ A?

6

Proof techniques (Sipser 0.3 and 0.4)
▶ Prove by contradiction: H → C is equivalent to C → H or

C ∧H → T , where T is an axiom, a proven truth/fact.
Example 1: The number of primes is infinite.

1. Assume ∃ a finite number of primes: p1,p2, · · · ,pk , where
pk is the largest.

2. Define a new prime p =Πk
i=1(p1 · · ·pk)+1 > pk .

3. Since p cannot be divisible by all primes, then p must be a
prime larger than pk .

4. A contradiction!
Example 2:

√
2 is irrational.

1. Assume
√

2 is not irrational, thus is rational. So
√

2 = a
b

2. Squaring both sides of the equation, we get 2 = a2

b2 or
2b2 = a2. So a = 2k for some k .

3. 2b2 = a2

4. 2b2 = (2k)2

5. 2b2 = 4k2

6. b2 = 2k2, So b = 2j for some j
7. So gcd(a,b) ̸= 1. A contradiction!

7

▶ Prove by induction: Used to prove a statement S(n)∀n ≥ c.
The logic behind the method:
S(n) for n ≥ c iff S(c)∧∀k(S(k)→ S(k +1)).
The proof includes (1) basis step, (2) inductive hypothesis, and
(3) inductive step.
Example 3: For n ≥ 1, ∑

n
i=1 i2 = 1

6n(n+1)(2n+1).

1. Base case: n = 1 then 1 = 1
6 ·1 ·2 ·3 = 1 (left=right)

2. Inductive hypothesis: Assume equation holds for n = k +1,
i.e., ∑

k+1
i=1 i2 = (∑k

i=1 i2)1
6k(k +1)(2k +1)

3. Consider
∑

k+1
i=1 i2 = ∑

k
i=1 i2 +(k +1)2 = 1

6k(k +1)(2k +1)+(k +1)2

4. Induction: n = k +1
5. L=∑

k+1
i=1 i2 =∑

k
i=1 i2+(k+1)2 = 1

6k(k+1)(2k+1)+(k+1)2

6. R = 1
6(k +1)(k +2)(2(k +1)+1) = 1

6(k +1)(k +2)(2k +3)
7. L = R Q.E.D.

8

A Quick Review of Languages
▶ Alphabet Σ, string or word, substring, language
▶ Common operations borrowed from set theory: union,

intersection, difference, complement
▶ New operations: concatenation, complement, star, power
▶ Proof techniques: By contradiction, induction, and

construction

9

A B

A B

A - B= A ⋂ "𝐵

A

A	⋂𝐵

𝐴̅
A	⋃𝐵

Figure 1: Regular operators in Venn diagrams

10

Part 2: DFA, NFA, and Regular Languages
2.1 Finite Automaton(Sipser 1.1 - 1.2, pp.31- 58)
▶ Finite automata are simple computational models for

computers with an extremely limited amount of memory.
▶ Use of automata theory includes: study of behavior of

digital circuits, lexical analyzer in compilers, text pattern
matching, and verification of finite-state systems.

▶ They are designed to accept some strings, therefore to
recognize a language, which is the set of accepted strings.

▶ Given an input string, a finite automaton reads the string,
one symbol at a time, from left to right. Using a transition
function, the FA changes from one state to another based
on what symbol is being read. Eventually, it reads all
symbols in the string. If at this time the FA enters a final
state, then the FA halts and the string is accepted.

11

Example 1 of a DFA
▶ Alphabet: Σ= {0,1}.
▶ Four states: q0,q1,q2,q3, in which q0 is the start state and

q3 is a final state.

▶ Transition function δ:

δ 0 1
→ q0 q0 q1

q1 q0 q2
q2 q0 q3
∗q3 q3 q3

▶ What does δ tell us?
δ(q0,0) = q0, δ(q0,1) = q1
δ(q1,0) = q0, δ(q1,1) = q2
δ(q2,0) = q0, δ(q2,1) = q3
δ(q3,0) = q3, δ(q3,1) = q3

12

Example 1 (continued)

0

0

0

0

1 2 3
1 1 1

0,1

Figure 2: A DFA that accepts strings with substring 111

Try w1 = 100111010 and w2 = 0011010001
The language recognized/accepted is
L1 = {w ∈ {0,1}∗ | w contains substring 111}

13

2.2 DFA (Sipser 1.1, 35-44)
▶ DFA M = (Q,Σ,δ,q0,F), where

▶ Q is a finite set of states
▶ Σ is an alphabet
▶ q0 ∈ Q is the start state
▶ F ⊆ Q is a set of accept/final states
▶ δ : Q×Σ→ Q is a transition function, where δ(q,a) = p is

the next state of M if the current state is q and the current
symbol is a

▶ Components of a DFA
▶ A tape of squares, with the same length of the input string
▶ A control unit that keeps track of the current state and

follows the δ function
▶ The head that reads and moves to the right, one square at

a time
▶ The DFA accepts the input string if the head reaches the

end of the tape and the control unit sees the final state

14

▶ Extending δ to δ̂ : Q×Σ∗ → Q: For any q ∈ Q and any
w = xa ∈ Σ∗, define δ̂(q,x) recursively as below:
▶ δ̂(q,ε) = q and
▶ δ̂(q,w) = δ(δ̂(q,x),a)

▶ Language recognized by DFA M: L(M) = {w |δ̂(q0,w) ∈ F}.
▶ A language is called a regular language if some DFA

recognizes it.
▶ How does a DFA accept a string? A path in the diagram

that starts from q0 and ends at qf ∈ F such that the
concatenation of the symbols on the path matches the
input string.

15

Example 2
Let L2 = {w ∈ {0,1}∗ | w has even numbers of 0s and 1s}
Construct DFA M such that L(M) = L2.

ee

eo oo

0

0

1 1 1 1

0

0

oe

Figure 3: A DFA that accepts strings of even number of 0s and 1s

16

Example 3 (Sipser p. 36):
A DFA M is given below:

δ 0 1
→ q0 q0 q1
∗q1 q2 q1
q2 q1 q1

0 1 2

0

0

1

1

0, 1

Figure 4: Describe the language of the DFA

17

Example 3 (continued)

The DFA in this example accepts strings that have at least one
1 and an even number of 0s after the last 1.

Reminder: More on DFA design in Sipser pp. 37-44.

18

Example 4 Design a DFA that accepts
L4 = {w ∈ {0,1}∗|w contains substring 001}

0,1

0 0 1

1

1

0

0 1 2 3

Figure 5: A DFA that accepts strings with substring 001

19

Example 5 Give a DFA that accepts
L5 = {w ∈ {0,1}∗| numerical value of w is a multiple of 3}, e.g.,
for string 0110, its numerical value is 6, then it is in the
language, but for 101 with a numerical value of 5, it is not a
multiple of 3, thus is not in the language.

0 1 2

0

0

1

1

0 1

Figure 6: A DFA that accepts strings with numerical value that is a
multiple of 3. Each state represents a possible remainder.

20

Example 5 (continued)
Let x be a part of the input string being read so far.
Let [x] be the numerical value of x , e.g., if x = 0010, [x] = 2.
Entering state qi means that the string read so far has a
numerical value that has a remainder of i when divided by 3.
[x] = 3k [x] = 3k +1 [x] = 3k +2
[x0] = 6k [x0] = 6k +2 [x0] = 6k +4
[x1] = 6k +1 [x1] = 6k +3 [x1] = 6k +5
▶ Case 0: The current state is q0, then [x] = 3k . If the next

symbol is 0, then [x0] = 2 ·3k = 6k , a multiple of 3. So the
next state should be q0. But if the next symbol is 1, then
[x1] = 2 ·3k +1 = 6k +1, with a remiander of 1 when
divided by 3. So the next state should be q1.
δ(q0,0) = q0, δ(q0,1) = q1

▶ Case 1: Similar to Case 0. δ(q1,0) = q2, δ(q1,1) = q0

▶ Case 2: Similar to above. δ(q2,0) = q1, δ(q2,1) = q2

21

A Quick Review of DFAs
▶ Definitions of δ : Q×Σ→ Q and δ̂ : Q×Σ∗ → Q
▶ The language of DFA M:

L(M) = {w ∈ {0,1}∗ | δ̂(q0,w) ∈ F}
▶ A language accepted by a DFA is a regular language
▶ In designing a DFA with n nodes and alphabet Σ, the

following two properties must be satisfied:
▶ (1) each node must have |Σ| out-going arcs
▶ (2) the total number of arcs must be n · |Σ|
▶ A dead-end state may be added to a DFA to satisfy the

above properties
▶ An example of including a dead-end state in a DFA that

accepts strings that start with a 01:

0,1

1

0

0

1

DE

0 1
2

0,1

22

2.3 NFA (Sipser 1.2, pp. 47-54)
▶ NFA N = (Q,Σ,δ,q0,F), where

▶ Q is a finite set of states,
▶ Σ is an alphabet,
▶ q0 ∈ Q is the start state,
▶ F ⊆ Q is a set of accept/final states, and
▶ δ : Q× (Σ∪{ε})→ 2Q is a transition function, where

δ(q,a) = P is the set of states that N may enter if the
current state is q and the current symbol is a.
In the case of δ(q,ε) = P, N ignores the current symbol and
goes from q to any state in P without reading any symbol.

23

▶ ε-closure: For any P ⊆ Q, E(P) is the set of all states
reachable from any state in P via ≥ 0 ε-transitions.

▶ Extending δ to δ̂ : Q×Σ∗ → 2Q: For any q ∈ Q and any
w = xa ∈ Σ∗, define
▶ δ̂(q,ε) = E({q}) and
▶ δ̂(q,w) = E(∪k

i=1δ(pi ,a)) if w = xa and
δ̂(q,x) = {p1, . . . ,pk}.

▶ Language of NFA N: L(N) = {w |δ̂(q0,w)∩F ̸= /0}.
▶ How does an NFA accept a string? Among all paths from

q0 to qf ∈ F , there is some path such that the
concatenation of symbols on the path matches the string.

24

Example 1: Language of strings that contain substring 111

0, 10, 1

1 1 1
0 1 2 3

Figure 7: An NFA that accepts strings with substring 111

25

Example 2: A = {w ∈ {0,1}∗|w has 101 or 11 as substrings}

0, 10, 1

1 1
0 1 2 3

0, ε

Figure 8: An NFA that accepts strings with substrings 101 or 11

Clarification:
▶ Consider string 001011. There are at least two paths from

q0 to q3

▶ Examples of ε-closure (or E-closure): E({q0}) = {q0};
E({q0,q1}) = {q0,q1,q2}

26

Example 3:
B = {w ∈ {0,1}∗|w has a 1 in the 3rd position from the right end}

0, 1

1

0 1 2 3

0, 10, 1

Figure 9: An NFA that accepts strings with a 1 in the third position
from the right end

27

Example 4: An NFA that accepts decimal numbers (a number
that may have + or − preceding it, but must have a decimal
point, e.g., .123, 23., +1.2, -1.0).

0−9

0−9

0−9

ε

+, −

0−9

.

.

0 1

2

3

4

Figure 10: An NFA that accepts strings that are decimal numbers with
or without signs

28

2.4 DFAs ⇔ NFAs (Sipser 1.2, pp.54-58)
Subset construction method: Given NFA N = (Q,Σ,δ,q0,F),
construct a DFA M = (Q′,Σ,δ′,q′

0,F
′) such that L(M) = L(N).

▶ Q′ = 2Q (power set), i.e., Q′ contains all subsets of Q.
Note that if |Q|= n then |Q′|= 2n. This is just the worst
case. Since many states in M are inaccessible or
dead-end states and thus may be thrown away, so in
practice, |Q′| may be much less than 2n.

▶ q′
0 = E({q0}).

▶ F ′ = {R ∈ Q′|R∩F ̸= /0}.
▶ For each R ∈ Q′ and each a ∈ Σ, δ′(R,a) = E(∪p∈Rδ(p,a)).

Definition: Any language that can be accepted by DFA or NFA
is called a regular language (RL).
Theorem: The equivalence of DFAs, NFAs, and RLs.

29

Converting an NFA to a DFA with subset construction
Example 1:

0, 10, 1

1 1
0 1 2 3

0, ε

0

0,2

0,1,2 0,1,2,3

0,3

NFA

DFA

0,2,3

0
0

0
0

0

0

1 1

1
1

1

1

Figure 11: Converting an NFA to DFA with subset construction

30

Example 2:

0

0

0,1

1
ε

0

1 2

0,2 1,2

2

1

0

0,1

0

0 01

0
1

1

1

φ

1

DFANFA

0,1,2

Figure 12: Converting an NFA to a DFA

31

Example 3:

0

01

1

03

1

0

013

0
02

0
0 1

1

1
0123012

1

1

023

0

1

0

0

0

DFA1

0, 1

1

0 1 2 3

0, 10, 1

NFA

Figure 13: Converting an NFA to a DFA with subset construction

32

Example 3: (continued)
Without using the subset construction method, can a DFA be
designed to accept all strings that has a 1 in the third position
from the right end?

1

000

001

100 010 110

101 011 111

0

0

0

0
1

1

1

1

1 1

1

0
0

0

0

DFA2

Figure 14: Design the same DFA from scratch

33

Example 4: A bad case for the subset construction:
|QN |= n+1 and |QD|= 2n.

0 1 2 n−1 n
1 0,1 0,10,10,1

0,1

Figure 15: A case that converting an NFA to a DFA causes an
exponential increase of states in the DFA

34

2.5 Closure Properties of RL’s (Sisper 1.1, pp. 44-47 and 1.2
pp. 58-63)
▶ Union: If A and B are regular, so is A∪B.
▶ Concatenation: If A and B are regular, so is AB.
▶ Star: If A is regular, so is A∗. (Need a new start state.)

35

▶ Complementation: If A is regular, so is A (which is Σ∗−A).
▶ Intersection: If A and B are regular, so is A∩B (which is

A∪B).
▶ Difference: If A and B are regular, so is A−B (which is

A∩B.
▶ Reverse: If A is regular, so is AR.
▶ Homomorphism: If A is regular, so is h(A) (which is

{h(w)|w ∈ A} for a homomorphism h : Σ→ (Σ′)∗).
(Discuss later)

▶ Inverse homomorphism: If A is regular, so is h−1(A) (where
h−1(A) = {w |h(w) ∈ A}).

36

Example: Prove that A = {w ∈ {a,b}∗|w is of odd length and
contains an even number of a’s} is regular.
▶ Let A1 = {w |w is of odd length} Let A2 = {w |w has an

even number of a’s}
▶ Since DFAs exist to accept A1 and A2, both are RLs
▶ A = A1 ∩A2. By the CP of RLs under intersection, A1 ∩A2

is RL. So A is RL

DFA for A2DFA for A1

a,b

a,b

a

ab b

Figure 16: DFAs for A1 and A2

37

3.1 Definition of REs (Sipser 1.3 (pp. 63-66))
Regular expressions (REs) are to represent regular languages.
Let L(R) be the language that regular expression R represents.
A recursive definition is given below:
▶ Basis: ε and /0 are REs, and L(ε) = {ε} and L(/0) = /0.

For any a ∈ Σ, a is an RE and L(a) = {a}.
▶ Induction: If R1 and R2 are REs, then

▶ R1 ∪R2 is an RE, with L(R1 ∪R2) = L(R1)∪L(R2),
▶ R1R2 is an RE, with L(R1R2) = L(R1)L(R2),
▶ R∗

1 is an RE, with L(R∗
1) = (L(R1))

∗, and
▶ (R1) is an RE, with L((R1)) = L(R1).

38

Remark:
▶ Precedence order for regular-expression operators: Star,

concatenation, and finally union. () may override this order.
▶ Use of R+ and Rk .
▶ Algebraic laws:

▶ R1 ∪R2 = R2 ∪R1, (R1 ∪R2)∪R3 = R1 ∪ (R2 ∪R3), and
(R1R2)R3 = R1(R2R3).

▶ /0∪R = R∪ /0 = R, εR = Rε = R, /0R = R /0 = /0, and
R∪R = R.

▶ R1(R2 ∪R3) = R1R2 ∪R1R3 and
(R1 ∪R2)R3 = R1R3 ∪R2R3.

▶ (R∗)∗ = R∗, /0∗ = ε, R+ = RR∗ = R∗R, and R∗ = R+∪ ε.

39

3.2 Understanding REs
▶ RE is a pattern for all strings in a RL. The goal is to make

the RE as simple and readable as possible. Consider the
following examples to simplify REs

▶ 1∪10∗ ⇒ 10∗

▶ (0∗1∗)∗ ⇒ (0∪1)∗

▶ ((0∪1)(0∪1)∗)∗ ⇒ (0∪1)∗

40

Given a language, design its RE

Example 1: {w has no substring 10}: 0∗1∗

Example 2: {w has even number of 1’s}: (0∗10∗10∗)∗∪0∗

Example 3: {w has odd length}: ((0∪1)(0∪1))∗(0∪1)
Example 4: {There is a 1 in the 3rd position to the right end}:
(0∪1)∗1(0∪1)(0∪1)
Example 5: {w has a 1 in 3rd or 2nd position from right end}:
(0∪1)∗1(0∪1)(0∪1)∪ (0∪1)∗1(0∪1)⇒
(0∪1)∗1(0∪1)((0∪1)∪ ε)⇒
(0∪1)∗1(0∪1)(0∪1∪ ε)
Example 6: A language of strings that consists of alternating
0s and 1s: (01)∗∪ (10)∗∪0(10)∗∪1(01)∗.

41

Example 7: D = {w has odd number of alternating blocks of 0s
and 1’s} (Note: ε ̸∈ D)
▶ 0|1|0 ∈ D, 0|1|0|1 ̸∈ D, 11|00|111 ∈ D, 0|11|000|11|0|1 ̸∈ D
▶ Observation 1: Odd number of blocks implies strings in D

must start and end with the same symbol.
▶ RE for D based on ob.1: 0(0∪1)∗0∪1(0∪1)∗1∪0∪1
▶ Observation 2: Draw boundaries between blocks. Near

each boundary, we see substring 01 or 10. A string in D
must have equal number of substrings of 01 and 10.

▶ RE for D based on ob.2: 0+(1+0+)∗∪1+(0+1+)∗

42

Example 8: E = {w | In w , each 1 is immediately preceeded by
a 0 and followed by a 0}
▶ Look for substring 010
▶ 0010001000010010 ∈ E . Rewrite the string as

(001)(0001)(00001)(001)(0)⇒
(0+1)(0+1)(0+1)(0+1)(0+)

▶ RE: (0+1)∗0+∪ ε or equally correct, 0+(10+)∗∪ ε

43

Proof of Closure Properties of RLs
Union, concatenation and star:

N*

N1

N2

Union

Concat

Star

ε

ε

ε

ε

ε

ε

ε

An example:

0,1

1

1

0 0 0,1

1

1

0

0

ε

100 accepted100 not accepted

N1 N2

N

44

RE ⇒ NFA (Sipser 1.3 pp. 67-69)
Since REs are defined recursively, it is suitable to construct the
equivalent NFAs recursively.
▶ Basis: NFAs for simple RE: ε, /0, and a for a ∈ Σ.
▶ Induction: Given the NFAs for REs R1 and R2, what are

the NFAs for R1 ∪R2, R1R2, and R∗
1?

Example 1: Converting RE (0∗10∗10∗)∗ to an NFA (which NFA
is correct?)

ε

0 0 0

1 1

ε

0 0 0

1 1

ε

Figure 17: Converting a RE to an NFA

45

Example 2: Converting RE (00∗1)∗(ε∪10∗)

1

0

0

0

1

ε

Figure 18: Converting a RE to an NFA

Theorem: DFA, NFA, and RE are equivalent ways to accept or
represent RLs. In particular, RE⇒NFA, NFA⇒DFA, DFA⇒RE
(will not discuss in our class)

46

4.1 Regular versus nonregular languages
▶ A = {0∗1∗} (Regular)
▶ B = {0n1n|n ≥ 0} (Non-regular)
▶ C = {w ∈ {0,1}∗|w has an equal number of 0s and 1s}

(Non-regular)
▶ D = {w ∈ {0,1}∗|w has an equal # of substrings 01 and 10}

(Regular)
Surprisingly, D is regular, whose RE is
0+(1+0+)∗∪1+(0+1+)∗ if ε ̸∈ D.

47

The Pumping Lemma for RLs: (Sipser 1.4,77-82) For any RL
A, there is p (whose value depends on A) such that ∀s ∈ A with
|s| ≥ p, s can be partitioned into three substrings s = xyz s.t.

1. |y |> 0; (y cannot be the empty string ε)
2. |xy | ≤ p; and
3. ∀i ≥ 0, string xy iz ∈ A. (Note: xy0z = xz, xy2z = xyyz)

The pumping lemma for RLs is a lemma that describes an
essential property of all RLs. Informally, any sufficiently long
strings in a RL may be pumped, or have a middle section of the
string repeated any number of times to produce a new string
that is also part of the RL.
The pumping lemma is useful for disproving the regularity of a
specific language in question. It was first proven by Michael
Rabin and Dana Scott in 1959 and rediscovered later by
Yehoshua Bar-Hillel, et. al. in 1961 as a simplification of their
pumping lemma for context-free languages.

48

How to use the pumping lemma to prove that a language A is
not regular:
▶ (1)Assume that A is regular by contradiction.
▶ (2)Then the pumping lemma applies to A.
▶ (3) Let p be the constant in the pumping lemma. (three

steps to start the proof)
▶ Select s ∈ A with |s|= f (p)≥ p.
▶ By the pumping lemma, ∃x ,y ,z such that s = xyz with

|y |> 0, |xy | ≤ p and xy iz ∈ A for any i ≥ 0.
▶ For any x ,y ,z such that s = xyz, |y |> 0, and |xy | ≤ p, find

i ≥ 0 such that xy iz ̸∈ A. A contradiction!

49

Example 1 (Sipser p. 80): Prove B = {0n1n|n ≥ 0} is non-RL.
How to use the PL to prove that a language B is not regular:
▶ (1) (2) (3) Three sentences to start the proof.
▶ Select s ∈ B with |s|= f (p)≥ p.
▶ By the PL, ∃x ,y ,z s.t. s = xyz with |y |> 0, |xy | ≤ p and

xy iz ∈ B for any i ≥ 0.
▶ For any x ,y ,z such that s = xyz, |y |> 0, and |xy | ≤ p, find

i ≥ 0 s.t. xy iz ̸∈ B. A contradiction!

▶ Assume B is RL. Then PL applies to B. Let p be the
constant in PL.

▶ Select s = 0p1p ∈ B with |s|= 2p > p
▶ By PL, s = 0 . . .0︸ ︷︷ ︸

p

1 . . .1︸ ︷︷ ︸
p

= xyz, |y |> 0 and |xy | ≤ p

▶ Since y ̸= ε and |xy | ≤ p, then y = 0+

▶ Choose i = 0. Then xy0z = xz = 0p′
1p for p′ < p

▶ So xy0z ̸∈ B. A contradiction to PL. So B is non-R.
50

Example 2 (Sipser p. 81): Prove that F = {ww |w ∈ {0,1}∗} is
not regular.
▶ Assume F is RL. Then PL applies to F . Let p be the

constant in PL.
▶ Select s = 0p10p1 ∈ F with |s|= 2p+2 > p
▶ By PL, s = 0 . . .0︸ ︷︷ ︸

p

10 . . .0︸ ︷︷ ︸
p

1 = xyz, |y |> 0, |xy | ≤ p

▶ Since y ̸= ε and |xy | ≤ p, then y = 0+

▶ Choose i = 2. Then xy2z = xyyz = 0p′
10p1 for p′ > p

▶ So xy2z ̸∈ F . A contradiction to PL. So F is non-R.

51

Example 3: Prove that A = {1r |r is a prime} is not regular.
▶ Some strings in A: 11, 111, 11111, 1111111, etc..
▶ Assume A is RL. Then PL applies. Let p be the constant.
▶ Select s = 1q, where q is a prime and q ≥ p
▶ By PL, s = 1 . . .1︸ ︷︷ ︸

q

= xyz, x = 1h1 (h1 ≥ 0), y = 1h2 (h2 > 0),

z = 1q−h1−h2

▶ By PL, ∀i ≥ 0, xy iz = 1h1+i ·h2+(q−h1−h2) = 1(i−1)h2+q ∈ A
▶ Choose i = q+1. Then xy iz = xyq+1z = 1q(h2+1) ̸∈ A
▶ A contradiction to PL. So A is non-R.

Note: |xy iz|= xyq+1z = 1h1+ih2+q−h1−h2 = 1q+h2(i−1) = 1q(1+h2)

52

Example 4: (Sipser p. 82) Prove that D = {1n2 |n ≥ 1} is non-R.
▶ Some strings in D: 1, 1111, 111111111, etc.
▶ Assume D is RL. Then PL applies. Let p be the constant
▶ Select s = 1p2 ∈ D, |s|= p2 ≥ p
▶ By PL, s = 1 . . .1︸ ︷︷ ︸

p2

= xyz, x = 1h1 (h1 ≥ 0), y = 1h2 (h2 > 0),

z = 1p2−h1−h2 , and h2 ≤ |xy | ≤ p (Note: h2 is length of y)
▶ By PL, ∀i , xy iz ∈ D
▶ Choose i = 2. Consider |xy2z|

= h1 +2h2 +(p2 −h1 −h2) = h2 +p2. A perfect square?
▶ Some algebra:

p2 = 0+p2 < (h2 +p2)≤ p+p2 < 1+2p+p2 = (p+1)2

p2 < |xy2z|< (p+1)2. So |xy2z| is not a perfect square.
Then xy2z ̸∈ D. A contradiction to PL. So D is non-R.

53

Example 5: Prove that A = {10n1n | n ≥ 0} is not regular.
▶ Assume A is RL. The PL applies. Let p be the constant.
▶ Select s = 10p1p ∈ A. |s|= 2p+1 > p
▶ By PL, s = 10 . . .0︸ ︷︷ ︸

p

1 . . .1︸ ︷︷ ︸
p

= xyz, |y |> 0, |xy | ≤ p

▶ By PL, ∀i , xy iz ∈ A. Consider two cases for y .
▶ Case 1. y contains the first 1: x = ε, y = 10∗.

Choose i = 0. xy0z = xz = 0p′
1p ̸∈ A, for p′ ≤ p

▶ Case 2. y does not contain the first 1: x = 10∗, y = 0+.
Choose i = 0. xy0z = xz = 10p′

1p ̸∈ A, for p′ < p
▶ For both cases, we have found contradiction to PL. So A is

non-R.

54

Example 6: Prove that A = {(01)a0b|a > b ≥ 0} is not regular.
▶ Assume A is RL. The PL applies. Let p be the constant.
▶ Select s = (01)p0p−1 ∈ A. |s|= 3p−1.
▶ By PL, s = 01 . . .01︸ ︷︷ ︸

2p

0 . . .0︸ ︷︷ ︸
p−1

= xyz, |y |> 0, |xy | ≤ p

▶ Consider y which is entirely in (01)p.
▶ Case 1: Even length, i.e., y = 01 . . .01 or y = 10 . . .10.

Choose i = 0 to remove at least a substring 01 or 10,
violating a > b

▶ Case 2: Odd length, i.e., y = 01 . . .10 or y = 10 . . .01 or
y = 0 or y = 1. Choose i = 2 to create substrings of 00 or
11, which is not allowed .

▶ In each case listed, we can find an i such that xy iz ̸∈ A. A
contradiction to the PL. So A is non-R.

55

4.2 Prove nonregularity by closure properties
To prove that A is non-regular, assume it is regular. Find a
regular language B and a language operator that preserves
regularity, and then apply the operator on A and B to get a
regular language C. If C is known to be non-regular, a
contradiction is found.

Example 1: Prove that
C = {w ∈ {0,1}∗|w has an equal # of 0s and 1s} is not regular.
▶ Assume C is regular
▶ Let B = {0∗1∗}. B is known to be RL
▶ Let D = C ∩B = {0n1n}. D is known to be non-R
▶ But D is regular by CP under intersection
▶ A contradiction! So C is non-R

56

Example 2: Prove that A = {0m1n | m ̸= n} is not regular.
▶ Assume A is RL
▶ {0∗1∗}= {0n1n}∪A (two disjoint sets)
▶ {0n1n}= {0∗1∗}−A
▶ Since {0∗1∗} and A are both RL, the difference of the two

RLs is still RL by CP.
▶ So {0n1n} is RL. A contradiction.
▶ A is non-R

m!= n

m = n
0*1*

0*1* A

!
∗
=	 {0,1}∗

Figure 19: Second method: {0∗1∗}−A = {0n1n}

57

Example 3: Prove that A = {ambncm+n | m,n ≥ 0} is non-R
About homomorphism:
h : Σ→ (Σ1)

∗, e.g., h(a) = 01, h(b) = 0, h(c) = ε

h : Σ∗ → (Σ1)
∗, e.g., h(ab) = 010

h : h(A) = {h(w) | ∀w ∈ A}
▶ Assume A is RL.
▶ Define homomorphism h such that h(a) = 0, h(b) = 0,

h(c) = 1
▶ h(A) = {0m0n1m+n}= {0m+n1m+n}= {0n1n}
▶ By CP under homomorphism, since A is RL, so is {0n1n}
▶ A contradiction. So A is non-R

58

