
CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

1

General Information
▶ Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -

3:00 on zoom or by email
▶ Grader: Jay Idema for section 1 (zoom office hour

https://cwm.zoom.us/j/98189667842?pwd=bEFNa0NsWkh1dlRmM2RPSitacjd0UT09)
▶ Grader: Toon Tran for section 2 (zoom office hour

https://cwm.zoom.us/j/8420633189)
▶ Textbook: Intro to the theory of computation (any edition),

Michael Sipser. An e-book in PDF maybe available online.
▶ Prerequisites/background: Linear algebra, Data structures

and algorithms, and Discrete math

2

5.1 Context-free grammars (Sipser 2.1 pp. 100-105)
▶ CFG G = (V ,Σ,R,S), where V is the set of variables, Σ is

the set of terminals (alphabet), R is the set of rules in the
form of V → (V ∪Σ)∗ (head→body), and S ∈ V is the start
variable.

▶ The CFG that generates all palindromes (strings that read
the same forward and backward) over {0,1} is
G = ({S},{0,1},R,S), where R contains
S → 0S0|1S1|0|1|ε.

▶ Any language that can be generated by a CFG is called
context-free.

3

▶ Let u,v ,w be strings in (V ∪Σ)∗. If A → w is a rule, then
uAv yields uwv , written uAv =⇒ uwv . We say u derives v ,
written u ∗⇒ v , if ∃u1, . . . ,uk ∈ (V ∪Σ)∗ such that
u =⇒ u1 =⇒ ···=⇒ uk =⇒ v . Here, =⇒ means one step
and ∗⇒ means zero or more steps.

▶ Leftmost and rightmost derivations: ⇒
lm ,

∗⇒
lm , ⇒

rm ,
∗⇒

rm .

▶ The language of a CFG G, L(G) = {w ∈ Σ∗|S ∗⇒ w}.
L(G) is said to be a CFL.

4

Some Simple CFGs and their CFLs

Example 1: L = {0n1n|n ≥ 0} a context-free language. It can
be generated by the following context-free grammar.

S → 0S1|ε.

Example 2: Given a CFG G, describe L(G).

S → AA, A → AAA|bA|Ab|a
Leftmost derivation: S ⇒ AA ⇒ bAA ⇒ baA ⇒ baa
Rightmost derivation: S ⇒ AA ⇒ Aa ⇒ bAa ⇒ baa

L(G) = {w ∈ {a,b}∗|w has an even (nonzero) number of a′s}.

Example 3: A CFG for simple expressions in programming
languages:

S → S+S|S ∗S|(S)|I
I → Ia|Ib|I0|I1|a|b

5

5.2 Parse trees and ambiguity

ε

S

S

S

0

0

(a)

S

S S+

I S S

a I I

a

*

b

S

S S

S S+ I

I I a

a b

*

(c)(b)

1

1

Figure 1: Parse trees and ambiguity

(a) Parse tree and derivation S ⇒ 0S1 ⇒ 00S11 ⇒ 0011
(b) and (c) Two parse trees (or derivations) for string a+b ∗a.

6

Parse trees
▶ A parse tree is a tree representation for a derivation, in

which each interior node is a variable, each leaf node is
either a terminal, or ε, and if an interior node is a variable A
and its children are X1, . . . ,Xk , then there must be a rule
A → X1 · · ·Xk .

▶ Yield of a parse tree: Concatenation of the leaf nodes in a
parse tree rooted at the start variable.

▶ Four equivalent notions:
1. S ∗⇒ w ;
2. S

∗⇒
lm w ;

3. S
∗⇒

rm w ; and
4. A parse tree with root S and yield w .

7

Ambiguity in grammars and languages (Sipser 2.1 pp.
105-106)
▶ A CFG G = (V ,Σ,R,S) is ambiguous if there is w ∈ Σ∗ for

which there are at least two parse trees (or leftmost
derivations).

▶ Grammar G: S → S+S|S ∗S|(S)|I and I → Ia|Ib|I0|I1|a|b
is ambiguous since a+b ∗a has two parse trees.

▶ Some ambiguous grammars have an equivalent
unambiguous grammar. For example, an unambiguous
grammar for the simple expressions is G′: S → S+T |T ,
T → T ∗F |F , F → (S)|I, and I → Ia|Ib|I0|I1|a|b.

8

▶ A context-free language is said to be inherently ambiguous
if all its grammars are ambiguous.

▶ There is no algorithm to determine whether a given CFG is
ambiguous. There is no algorithm to remove ambiguity
from an ambiguous CFG. There is no algorithm to
determine whether a given CFL is inherently ambiguous.

9

Chomsky normal form (Sipser 2.1 pp. 106-109)

The Chomsky Normal Form (CNF): Any nonempty CFL without
ε has a CFG G in which all rules are in one of the following two
forms: A → BC and A → a, where A,B,C are variables, and a is
a terminal. Note that one of the uses of CNF is to turn parse
trees into binary trees.

10

5.3 More CFGs design

Example 1: {ambncm+n|m,n ≥ 0}
▶ Rewrite the pattern as ambncncm

▶ S → aSc|T , T → bTc|ε
Example 2: {ambm cndn|m,n ≥ 0}∪{ambncndm|m,n ≥ 0}
▶ S → S1|S2

▶ S1 → AB, A → aAb|ε, B → cBd |ε
▶ S2 → aS2d |C, C → bCc|ε

11

Example 3: {0m1n|m ̸= n}
▶ Rewrite the language as {0m1n|m < n}∪{0m1n|m > n},

which is {0m1n−m1m}∪{0n0m−n1n}
▶ S → S1|S2

▶ S1 → 0S11|A, A → 1A|1
▶ S2 → 0S21|B, B → 0B|0

Example 4: Given the following grammar CFG G, what is its
language?
▶ S → aS|Sb|a|b
▶ S → aSbS|bSaS|ε

12

Example 5: L = {aibjck ∈ {a,b,c}∗ | i + j ̸= k}
The grammar will pair a and c until running out one of the two.
Then the grammar will consider the following cases.
L = L1 ∪L2 ∪L3

▶ Case 1: i = k . Then j ̸= 0, i.e., j ≥ 1. So L1 = {aib+c i}
▶ Case 2: i > k . Then j ≥ 0. So L2 = {aka+b∗ck}
▶ Case 3: i < k . And j ̸= k − i . So L3 = {aibjck−ic i}

S → aSc | S1 | S2 | S3
S1 → bS1 | b (Case1: To generate b+)
S2 → aS2 | S2b | a (Case 2: To generate a+b∗)
S3 → bS3c | S1 | C, C → cC | c (Case 3: To generate bj and
ck−i s.t. j ̸= k − i)

13

Example 6: L = {aibj | i ̸= j and 2i ̸= j}.
Draw an x-axis and mark two points, one for i and one for 2i .
These two points divides the x-axis into three intervals: j < i ,
i < j < 2i , and j > 2i .

L3

i 2i

j<i j>2ii<j<2i

L2L1

Figure 2: Intervals that j falls in

L = L1 ∪L2 ∪L3: S → S1 | S2 | S3
L1 = {aibj | j < i}: S1 → aS1b | A, A → aA | a
L2 = {aibj | i < j < 2i}: S2 → aS2b | aTb, T → aTbb | abb
L3 = {aibj | j > 2i}: S3 → aS3bb | B, B → Bb | b

14

Example 7: L = {x#y | x ,y ∈ {0,1}∗, |x | ̸= |y |}
Consider two cases: |x |< |y | and |x |> |y |.
▶ Case 1 |x |< |y |: x = 01 and y = 100. String

x#y = 01#100. After pairing 01 and 00, what’s left is #1.
▶ Case 2 |x |> |y |: x = 110 and y = 00. String

x#y = 110#00. After pairing 11 and 00, what’s left is 0#.
S → 0S0 | 0S1 | 1S0 | 1S1 | T# | #T
T → 0T | 1T | 0 | 1

15

6.1 PDAs (Sipser 2.2 pp. 102-114)
▶ PDA = NFA + Stack (still with limited memory but more

than that in FAs)
▶ PDA M = (Q,Σ,Γ,δ,q0,F), where

▶ Q: A finite set of states
▶ Σ: A finite set of input symbols (input alphabet)
▶ Γ: A finite set of stack symbols (stack alphabet)
▶ δ: The transition function from Q× (Σ∪{ε})× (Γ∪{ε}) to

2Q×(Γ∪{ε})

▶ q0: The start state
▶ F : The set of final states

16

a

q pX

H H

Y

aab b b b b a b a

a

b b

Figure 3: How a transition step occurs within a PDA if
δ(q,a,X) = {(p,Y)}

17

▶ What does δ(q,a,X) = {(p,Y)} mean? If the current state
is q, the current input symbol is a, and the stack symbol at
the top of the stack is X , then the automaton changes to
state p and replace X by Y .

▶ What if ε replaces a, or X , or Y? For example,
δ(q,ε,X) = {(p,Y)}: No cursor move. X replaced by Y
(pop + push)
δ(q,a,ε) = {(p,Y)}: Push Y
δ(q,a,X) = {(p,ε)}: Pop X
δ(q,ε,ε) = {(p,Y)}: No cursor move. Push Y
δ(q,a,ε) = {(p,ε)}: No stack change
δ(q,ε,X) = {p,ε)}: No cursor move. Pop X
δ(q,ε,ε) = {(p,ε)}: No change except state

▶ The state diagram of PDAs: For transition
δ(q,a,X) = {(p,Y)}, draw an arc from state q to state p
labeled with a,X → Y .

18

▶ Instantaneous description (ID) of a PDA: (q,w ,γ)
represents the configuration of a PDA in the state of q with
the remaining input of w yet to be read and the stack
content of γ. (The convention is that the leftmost symbol in
γ is at the top of the stack.)

▶ Binary relation ⊢ on ID’s: (q,aw ,Xβ) ⊢ (p,w ,Y β) if
δ(q,a,X) contains (p,Y). ⊢ represents one move of the

PDA, and
∗
⊢ represents zero or more moves of the PDA.

▶ Language of a PDA M (or language recognized by M) is

L(M) = {w |(q0,w ,ε)
∗
⊢ (f ,ε,γ) for f ∈ F}.

▶ How does a PDA check the stack is empty? At the
beginning of any computation, it pushes a special symbol $
to the initially empty stack by having transition
δ(q0,ε,ε) = {(q,$)}.

19

Example 1 (Sipser p. 112): A PDA that recognizes
{0n1n|n ≥ 0}.

0, ε−>0 1, 0−>ε

1, 0−>εε, ε−> $ ε, −>ε$

Figure 4: An example of a PDA

20

Example 2 (Sipser p. 114): A PDA that recognizes
{aibjck |i , j ,k ≥ 0, i = j or i = k}= {anbnc∗}∪{anb∗cn}.

ε, ε−>ε

ε, ε−>ε

ε, ε−> $ ε, −>ε$

ε, −>ε$ε−>

ε, ε−>ε

a,

b, a −>ε

ε−>εb,

ε −>εc,

−>εc, a

a
i=k

i=j

Figure 5: Another PDA

Example: How the PDA in the above example accepts input
aabbcc.
Theorem: The equivalence of PDA, CFG, and CFL

21

7.1 Proving non-CFLs by pumping lemma (Sipser 2.3 (pp.
125-129))

Theorem 2.34 (The pumping lemma for CFLs)
Let A be a CFL. Then there exists a constant p such that ∀s ∈ A
with |s| ≥ p, we can write s = uvxyz such that

1. |vy |> 0; (not allow v = y = ε)
2. |vxy | ≤ p; and
3. ∀i ≥ 0, string uv ixy iz ∈ A.

Recall in the PL for RLs, s is partitioned into x ,y ,z satisfying
1. |y |> 0;
2. |xy | ≤ p; and
3. ∀i ≥ 0, string xy iz ∈ A

22

How to use the pumping lemma to prove that a language A
is not Context-free?
▶ Assume that A is context-free by contradiction. Then the

pumping lemma applies to A. Let p be the constant in the
pumping lemma. (Always begin the proof with these three
steps.)

▶ Select s ∈ A with |s|= f (p)≥ p. (This may be tricky. But
start with an intuitive simple string that uses p in the
length.)

▶ By the pumping lemma, s = uvxyz with (1)|vy |> 0,
(2)|vxy | ≤ p, and (3)uv ixy iz ∈ A, ∀i ≥ 0.

▶ Prove for ANY u,v ,x ,y ,z such that s = uvxyz, |vy |> 0,
and |vxy | ≤ p, find i ≥ 0 such that uv ixy iz ̸∈ A.
A contradiction to (3) in PL!

23

Example 2.36 (Sipser p.128): Prove B = {anbncn|n ≥ 0} is
non-CF.
Pf. Assume B is CF. Then PL applies. Let p be the constant.
▶ Select s = apbpcp = a · · ·b · · ·c · · · ∈ B, with |s|= 3p > p.
▶ By PL, s = uvxyz with |vy |> 0 and |vxy | ≤ p.
▶ Consider what vxy can be. Imagine vxy is a sliding window

that moves left to right within s.
▶ Case 1: vxy contains one symbol type (a+, b+, or c+)
▶ Case 2: vxy contains two symbol types (a+b+ or b+c+)
▶ Choose i = 0 for both cases. Then uv0xy0z ̸∈ B for both.
▶ A contradiction to the PL!

24

Example 2.38 (Sipser p. 129): Prove D = {ww |w ∈ {0,1}∗} is
non-CF.
Pf. Three sentences to start the proof. Then,
▶ Select s = 0p10p1 = 0 · · ·010 · · ·01 ∈ D, |s|= 2p+2 > p.
▶ By PL, s = uvxyz with |vy |> 0 and |vxy | ≤ p
▶ We consider the following partition:

s = 0p−1 ·0 ·1 ·0 ·0p−11, where u = 0p−1,v = 0, x = 1,
y = 0, and z = 0p−11.

▶ For any i ≥ 0,
uv ixy iz = 0p−1 ·0i ·1 ·0i ·0p−11 = 0p−1+i ·1 ·0i+p−1 ·1 ∈ D

▶ No contradiction. Need to choose a different s.
▶ Try s = 0p1p0p1p and i = 0

(Exercise or read p. 129 bottom)

25

Example 3: Prove that A = {0j1j2} is non-CF.
▶ Select s = 0p1p2

= uvxyz ∈ A, where |vy |> 0 and |vxy | ≤ p.
▶ vxy = 0+,1+,or 0+1+ (three cases)
▶ For the first two cases, choose i = 0 to shrink the 0 and 1

blocks, respectively, thus making the string uxz ̸∈ A
▶ Case 3: vxy = 0+1+.
▶ Case 3.1: v or y contains both 0 and 1, i.e., v or y = 0+1+.

Let i = 2. Then uv2xy2z contains substring 0+1+0+1+,
thus not in A.

▶ Case 3.2: v and y do not contain both 0 and 1, which
means that v and y each contain at most one symbol type,
i.e. v = 0|v | and y = 1|y |. (Note: v or y may be ε but not
both)

26

Continue with Case 3.2
▶ Let i = 2. Then uv2xy2z = 0p+|v | ·1p2+|y |

▶ Is (p+ |v |)2 = (p2 + |y |)?
▶ Is p2 +2p|v |+ |v |2 = p2 + |y |?
▶ Is 2p|v |+ |v |2 = |y |? Or Left = Right?
▶ If |y |= 0 and |v | ̸= 0: Left > Right
▶ If |y | ̸= 0 and |v |= 0: Left < Right
▶ If |y | ̸= 0 and |v | ̸= 0:

Left = 2p|v |+ |v |2 > p ≥ |vxy | ≥ |y |= Right
So Left > Right

▶ So for all combinations of |v | and |y |, Left ̸= Right. So
uv2xy2z ̸∈ A

▶ A contradiction!

27

Example 4: Prove that L = {aibjc id j | i , j ≥ 0} is non-CF.
▶ Assume L is CF. Then the PL applies to L. Let p be the

constant.
▶ Select s = apbpcpdp. s ∈ L and |s|= 4p > p.
▶ By PL, s = uvxyz with |vy |> 0 and |vxy | ≤ p.
▶ Since |vxy | ≤ p, v and y cannot contain both a’s and c’s,

nor can it contain both b’s and d ’s. Further |vy |> 0. We
have uv0xy0z = uxz ̸∈ L, because it either contains fewer
a’s than c’s, or fewer c’s then a’s, or fewer b’s than d ’s, or
fewer d ’s than b’s.

▶ A contradiction to the PL.
▶ So L is non-CF.

28

7.2 Proving non-CFLs by closure properties
▶ Closed under union: If A and B are CF, so is A∪B.

Proof: CFG GA with SA → ··· and CFG GB with SB → ··· .
Define a CFG that generates A∪B as S → SA | SB plus the
grammars GA and GB.

▶ Closed under concatenation: If A and B are context-free,
so is AB.
Proof: CFG GA with SA → ··· and CFG GB with SB → ··· .
Define a CFG that generates AB as S → SASB plus the
grammars GA and GB.

▶ Closed under star: If A is context-free, so is A∗.
Proof: Consider CFG G with S1 → ··· . Define a CFG that
generates A∗ as S → SS1 | ε plus the grammar G.

29

▶ Closed under reverse: If A is context-free, so is AR.
▶ Not closed under intersection: Consider A = {anbncm} and

B = {ambncn}.
▶ Not closed under complementation: Note that

A∩B = A∪B.
▶ Not closed under difference: Note that A =Σ∗−A.

30

▶ Intersect with a regular language: If A is context-free and B
is regular, then A∩B is context-free.

▶ Difference from a regular language: If A is context-free and
B is regular, then A−B is context-free. Note that
A−B = A∩B.

31

How can closure properties of CFLs be used to prove that
a given language is non-CF?

Example 1: A = {w ∈ {a,b,c}∗|na(w) = nb(w) = nc(w)} is
non-CF. (Note: na(w) is defined to be the number of a′s in w .)
▶ Assume A is CF. Let B = {a∗b∗c∗}, a RL.
▶ A∩B = {anbncn} must be CF by the closure property of

the intersection of a CFL and a RL.
▶ But we proved before that {anbncn} is non-CF.
▶ A contradiction.
▶ So A must be non-CF.

32

How can closure properties of CFLs be used to prove that
a given language is CF?

Example 2: B = {aibjck |j > i +k} is CF.
▶ Since j > i +k , let j = i +k +h for some h > 0.
▶ aibjck = ai ·bi+k+h ·ck = ai ·bi+h ·bk ·ck = (aibi)(b+)(bkck)

▶ This is the concatenation of three CFLs.
▶ By the closure property of CFLs under concatenation, B is

CF.

33

