CS423 Finite Automata \& Theory of Computation

TTh 12:30-13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30-10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

- Office Hours: TTh 11:00-12:00 in 114 McGl and W 2:303:00 on zoom or by email
- Grader: Jay Idema for section 1 (zoom office hour https://cwm.zoom.us/j/98189667842?pwd=bEFNa0NsWkh1dIRm
- Grader: Toon Tran for section 2 (zoom office hour https://cwm.zoom.us/j/8420633189)
- Textbook: Intro to the theory of computation (any edition), Michael Sipser. An e-book in PDF maybe available online.
- Prerequisites/background: Linear algebra, Data structures and algorithms, and Discrete math
5.1 Context-free grammars (Sipser 2.1 pp. 100-105)
- CFG $G=(V, \Sigma, R, S)$, where V is the set of variables, Σ is the set of terminals (alphabet), R is the set of rules in the form of $V \rightarrow(V \cup \Sigma)^{*}$ (head \rightarrow body), and $S \in V$ is the start variable.
- The CFG that generates all palindromes (strings that read the same forward and backward) over $\{0,1\}$ is $G=(\{S\},\{0,1\}, R, S)$, where R contains $S \rightarrow 0 S 0|1 S 1| 0|1| \varepsilon$.
- Any language that can be generated by a CFG is called context-free.
- Let u, v, w be strings in $(V \cup \Sigma)^{*}$. If $A \rightarrow w$ is a rule, then $u A v$ yields $u w v$, written $u A v \Longrightarrow u w v$. We say u derives v, written $u \stackrel{*}{\Rightarrow} v$, if $\exists u_{1}, \ldots, u_{k} \in(V \cup \Sigma)^{*}$ such that $u \Longrightarrow u_{1} \Longrightarrow \cdots \Longrightarrow u_{k} \Longrightarrow v$. Here \Longrightarrow means one step and $\stackrel{*}{\Rightarrow}$ means zero or more steps.
- Leftmost and rightmost derivations: $\underset{l m}{\Rightarrow}, \stackrel{*}{\Rightarrow}, \underset{r m}{\Rightarrow}, \stackrel{*}{\Rightarrow}$.
- The language of a CFG $G, L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}$. $L(G)$ is said to be a CFL.

Some Simple CFGs and their CFLs

Example 1: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ a context-free language. It can be generated by the following context-free grammar.
$S \rightarrow 0 S 1 \mid \varepsilon$.
Example 2: Given a CFG G, describe $L(G)$.
$S \rightarrow A A, A \rightarrow A A A|b A| A b \mid a$
Leftmost derivation: $S \Rightarrow A A \Rightarrow b A A \Rightarrow b a A \Rightarrow b a a$
Rightmost derivation: $S \Rightarrow A A \Rightarrow A a \Rightarrow b A a \Rightarrow b a a$
$L(G)=\left\{w \in\{a, b\}^{*} \mid w\right.$ has an even (nonzero) number of $\left.a^{\prime} s\right\}$.
Example 3: A CFG for simple expressions in programming languages:
$S \rightarrow S+S|S * S|(S) \mid I$
$I \rightarrow I a|I b| I 0|I 1| a \mid b$
5.2 Parse trees and ambiguity

Figure 1: Parse trees and ambiguity
(a) Parse tree and derivation $S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 0011$
(b) and (c) Two parse trees (or derivations) for string $a+b * a$.

Parse trees

- A parse tree is a tree representation for a derivation, in which each interior node is a variable, each leaf node is either a terminal, or ε, and if an interior node is a variable A and its children are X_{1}, \ldots, X_{k}, then there must be a rule $A \rightarrow X_{1} \cdots X_{k}$.
- Yield of a parse tree: Concatenation of the leaf nodes in a parse tree rooted at the start variable.
- Four equivalent notions:

1. $S \stackrel{*}{\Rightarrow} w$;
2. $S \stackrel{*}{\Rightarrow} \underset{~ / ~}{\Rightarrow} w ;$
3. $S \stackrel{*}{\Rightarrow} \underset{r m}{\Rightarrow}$; and
4. A parse tree with root S and yield w.

Ambiguity in grammars and languages (Sipser 2.1 pp . 105-106)

- A CFG $G=(V, \Sigma, R, S)$ is ambiguous if there is $w \in \Sigma^{*}$ for which there are at least two parse trees (or leftmost derivations).
- Grammar G: $S \rightarrow S+S|S * S|(S) \mid I$ and $I \rightarrow|a| I b|I O| 11|a| b$ is ambiguous since $a+b * a$ has two parse trees.
- Some ambiguous grammars have an equivalent unambiguous grammar. For example, an unambiguous grammar for the simple expressions is $G^{\prime}: S \rightarrow S+T \mid T$, $T \rightarrow T * F|F, F \rightarrow(S)| I$, and $I \rightarrow I a|I b| / 0|/ 1| a \mid b$.
- A context-free language is said to be inherently ambiguous if all its grammars are ambiguous.
- There is no algorithm to determine whether a given CFG is ambiguous. There is no algorithm to remove ambiguity from an ambiguous CFG. There is no algorithm to determine whether a given CFL is inherently ambiguous.

Chomsky normal form (Sipser 2.1 pp. 106-109)
The Chomsky Normal Form (CNF): Any nonempty CFL without ε has a CFG G in which all rules are in one of the following two forms: $A \rightarrow B C$ and $A \rightarrow a$, where A, B, C are variables, and a is a terminal. Note that one of the uses of CNF is to turn parse trees into binary trees.

5.3 More CFGs design

Example 1: $\left\{a^{m} b^{n} c^{m+n} \mid m, n \geq 0\right\}$

- Rewrite the pattern as $a^{m} b^{n} c^{n} c^{m}$
- $S \rightarrow a S c|T, T \rightarrow b T c| \varepsilon$

Example 2: $\left\{\underline{a^{m} b^{m}} \underline{c}^{n} d^{n} \mid m, n \geq 0\right\} \cup\left\{a^{m} \underline{b^{n} c^{n}} d^{m} \mid m, n \geq 0\right\}$

- $S \rightarrow S_{1} \mid S_{2}$
- $S_{1} \rightarrow A B, A \rightarrow a A b|\varepsilon, B \rightarrow c B d| \varepsilon$
- $S_{2} \rightarrow a S_{2} d|C, C \rightarrow b C c| \varepsilon$

Example 3: $\left\{0^{m} 1^{n} \mid m \neq n\right\}$

- Rewrite the language as $\left\{0^{m} 1^{n} \mid m<n\right\} \cup\left\{0^{m} 1^{n} \mid m>n\right\}$, which is $\left\{0^{m} 1^{n-m} 1^{m}\right\} \cup\left\{0^{n} 0^{m-n} 1^{n}\right\}$
- $S \rightarrow S_{1} \mid S_{2}$
- $S_{1} \rightarrow 0 S_{1} 1|A, A \rightarrow 1 A| 1$
- $S_{2} \rightarrow 0 S_{2} 1|B, B \rightarrow 0 B| 0$

Example 4: Given the following grammar CFG G, what is its language?

- $S \rightarrow a S|S b| a \mid b$
- $S \rightarrow a S b S|b S a S| \varepsilon$

Example 5: $L=\left\{a^{i} b^{j} c^{k} \in\{a, b, c\}^{*} \mid i+j \neq k\right\}$
The grammar will pair a and c until running out one of the two.
Then the grammar will consider the following cases.
$L=L_{1} \cup L_{2} \cup L_{3}$

- Case 1: $i=k$. Then $j \neq 0$, i.e., $j \geq 1$. So $L_{1}=\left\{a^{i} b^{+} c^{i}\right\}$
- Case 2: $i>k$. Then $j \geq 0$. So $L_{2}=\left\{a^{k} a^{+} b^{*} c^{k}\right\}$
- Case 3: $i<k$. And $j \neq k-i$. So $L_{3}=\left\{a^{i} b^{j} c^{k-i} c^{i}\right\}$
$S \rightarrow a S c\left|S_{1}\right| S_{2} \mid S_{3}$
$S_{1} \rightarrow b S_{1} \mid b$ (Case1: To generate b^{+})
$S_{2} \rightarrow a S_{2}\left|S_{2} b\right| a$ (Case 2: To generate $a^{+} b^{*}$)
$S_{3} \rightarrow b S_{3} c\left|S_{1}\right| C, C \rightarrow c C \mid c$ (Case 3: To generate b^{j} and c^{k-i} s.t. $\left.j \neq k-i\right)$

Example 6: $L=\left\{a^{i} b^{j} \mid i \neq j\right.$ and $\left.2 i \neq j\right\}$.
Draw an x-axis and mark two points, one for i and one for $2 i$. These two points divides the x-axis into three intervals: $j<i$, $i<j<2 i$, and $j>2 i$.

Figure 2: Intervals that j falls in

$$
\begin{aligned}
& L=L_{1} \cup L_{2} \cup L_{3}: S \rightarrow S_{1}\left|S_{2}\right| S_{3} \\
& L_{1}=\left\{a^{i} b^{j} \mid j<i\right\}: S_{1} \rightarrow a S_{1} b|A, A \rightarrow a A| a \\
& L_{2}=\left\{a^{i} b^{j} \mid i<j<2 i\right\}: S_{2} \rightarrow a S_{2} b|a T b, T \rightarrow a T b b| a b b \\
& L_{3}=\left\{a^{i} b^{j} \mid j>2 i\right\}: S_{3} \rightarrow a S_{3} b b|B, B \rightarrow B b| b
\end{aligned}
$$

Example 7: $L=\left\{x \# y\left|x, y \in\{0,1\}^{*},|x| \neq|y|\right\}\right.$
Consider two cases: $|x|<|y|$ and $|x|>|y|$.

- Case $1|x|<|y|: x=01$ and $y=100$. String $x \# y=01 \# 100$. After pairing 01 and 00, what's left is \#1.
- Case $2|x|>|y|: x=110$ and $y=00$. String $x \# y=110 \# 00$. After pairing 11 and 00, what's left is $0 \#$.
$S \rightarrow 0 S 0|0 S 1| 1 S 0|1 S 1| T \# \mid \# T$
$T \rightarrow 0 T|1 T| 0 \mid 1$
6.1 PDAs (Sipser 2.2 pp. 102-114)
- PDA = NFA + Stack (still with limited memory but more than that in FAs)
- PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where
- Q: A finite set of states
- Σ : A finite set of input symbols (input alphabet)
- 「: A finite set of stack symbols (stack alphabet)
- δ : The transition function from $Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\})$ to $2^{Q \times(\Gamma \cup\{\varepsilon\})}$
- q_{0} : The start state
- F: The set of final states

Figure 3: How a transition step occurs within a PDA if $\delta(q, a, X)=\{(p, Y)\}$

- What does $\delta(q, a, X)=\{(p, Y)\}$ mean? If the current state is q, the current input symbol is a, and the stack symbol at the top of the stack is X, then the automaton changes to state p and replace X by Y.
- What if ε replaces a, or X, or Y ? For example, $\delta(q, \varepsilon, X)=\{(p, Y)\}$: No cursor move. X replaced by Y (pop + push)
$\delta(q, a, \varepsilon)=\{(p, Y)\}:$ Push Y
$\delta(q, a, X)=\{(p, \varepsilon)\}: \operatorname{Pop} X$
$\delta(q, \varepsilon, \varepsilon)=\{(p, Y)\}:$ No cursor move. Push Y
$\delta(q, a, \varepsilon)=\{(p, \varepsilon)\}$: No stack change
$\delta(q, \varepsilon, X)=\{p, \varepsilon)\}$: No cursor move. Pop X
$\delta(q, \varepsilon, \varepsilon)=\{(p, \varepsilon)\}$: No change except state
- The state diagram of PDAs: For transition $\delta(q, a, X)=\{(p, Y)\}$, draw an arc from state q to state p labeled with $a, X \rightarrow Y$.
- Instantaneous description (ID) of a PDA: (q, w, γ) represents the configuration of a PDA in the state of q with the remaining input of w yet to be read and the stack content of γ. (The convention is that the leftmost symbol in γ is at the top of the stack.)
- Binary relation \vdash on ID's: $(q, a w, X \beta) \vdash(p, w, Y \beta)$ if $\delta(q, a, X)$ contains $(p, Y) . \vdash$ represents one move of the PDA, and $\stackrel{*}{\vdash}$ represents zero or more moves of the PDA.
- Language of a PDA M (or language recognized by M) is $L(M)=\left\{w \mid\left(q_{0}, w, \varepsilon\right) \stackrel{*}{\vdash}(f, \varepsilon, \gamma)\right.$ for $\left.f \in F\right\}$.
- How does a PDA check the stack is empty? At the beginning of any computation, it pushes a special symbol \$ to the initially empty stack by having transition $\delta\left(q_{0}, \varepsilon, \varepsilon\right)=\{(q, \$)\}$.

Example 1 (Sipser p. 112): A PDA that recognizes $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Figure 4: An example of a PDA

Example 2 (Sipser p. 114): A PDA that recognizes $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0, i=j\right.$ or $\left.i=k\right\}=\left\{a^{n} b^{n} c^{*}\right\} \cup\left\{a^{n} b^{*} c^{n}\right\}$.

Figure 5: Another PDA

Example: How the PDA in the above example accepts input aabbcc.
Theorem: The equivalence of PDA, CFG, and CFL
7.1 Proving non-CFLs by pumping lemma (Sipser 2.3 (pp. 125-129))

Theorem 2.34 (The pumping lemma for CFLs)
Let A be a CFL. Then there exists a constant p such that $\forall s \in A$ with $|s| \geq p$, we can write $s=u v x y z$ such that

1. $|v y|>0$; (not allow $v=y=\varepsilon$)
2. $|v x y| \leq p$; and
3. $\forall i \geq 0$, string $u v^{i} x y^{i} z \in A$.

Recall in the PL for RLs, s is partitioned into x, y, z satisfying

1. $|y|>0$;
2. $|x y| \leq p$; and
3. $\forall i \geq 0$, string $x y^{i} z \in A$

How to use the pumping lemma to prove that a language A is not Context-free?

- Assume that A is context-free by contradiction. Then the pumping lemma applies to A. Let p be the constant in the pumping lemma. (Always begin the proof with these three steps.)
- Select $s \in A$ with $|s|=f(p) \geq p$. (This may be tricky. But start with an intuitive simple string that uses p in the length.)
- By the pumping lemma, $s=u v x y z$ with (1) $|v y|>0$, (2) $|v x y| \leq p$, and (3) $u v^{i} x y^{i} z \in A, \forall i \geq 0$.
- Prove for ANY u, v, x, y, z such that $s=u v x y z,|v y|>0$, and $|v x y| \leq p$, find $i \geq 0$ such that $u v^{i} x y^{i} z \notin A$. A contradiction to (3) in PL!

Example 2.36 (Sipser p.128): Prove $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-CF.
Pf. Assume B is CF. Then PL applies. Let p be the constant.

- Select $s=a^{p} b^{p} c^{p}=a \cdots b \cdots c \cdots \in B$, with $|s|=3 p>p$.
- By PL, $s=u v x y z$ with $|v y|>0$ and $|v x y| \leq p$.
- Consider what $v x y$ can be. Imagine vxy is a sliding window that moves left to right within s.
- Case 1: vxy contains one symbol type (a^{+}, b^{+}, or c^{+})
- Case 2: vxy contains two symbol types ($a^{+} b^{+}$or $b^{+} c^{+}$)
- Choose $i=0$ for both cases. Then $u v^{0} x y^{0} z \notin B$ for both.
- A contradiction to the PL!

Example 2.38 (Sipser p. 129): Prove $D=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is non-CF.
Pf. Three sentences to start the proof. Then,

- Select $s=0^{p} 10^{p} 1=0 \cdots 010 \cdots 01 \in D,|s|=2 p+2>p$.
- By PL, $s=u v x y z$ with $|v y|>0$ and $|v x y| \leq p$
- We consider the following partition: $s=0^{p-1} \cdot 0 \cdot 1 \cdot 0 \cdot 0^{p-1} 1$, where $u=0^{p-1}, v=0, x=1$, $y=0$, and $z=0^{p-1} 1$.
- For any $i \geq 0$, $u v^{i} x y^{i} z=0^{p-1} \cdot 0^{i} \cdot 1 \cdot 0^{j} \cdot 0^{p-1} 1=0^{p-1+i} \cdot 1 \cdot 0^{i+p-1} \cdot 1 \in D$
- No contradiction. Need to choose a different s.
- Try $s=0^{p} 1^{p} 0^{\rho} 1^{p}$ and $i=0$
(Exercise or read p. 129 bottom)

Example 3: Prove that $A=\left\{0^{j} 1^{j}\right\}$ is non-CF.

- Select $s=0^{p} 1^{p^{2}}=u v x y z \in A$, where $|v y|>0$ and $|v x y| \leq p$.
- $v x y=0^{+}, 1^{+}$, or $0^{+} 1^{+}$(three cases)
- For the first two cases, choose $i=0$ to shrink the 0 and 1 blocks, respectively, thus making the string $u x z \notin A$
- Case 3: $v x y=0^{+} 1^{+}$.
- Case 3.1: v or y contains both 0 and 1, i.e., v or $y=0^{+} 1^{+}$. Let $i=2$. Then $u v^{2} x y^{2} z$ contains substring $0^{+} 1^{+} 0^{+} 1^{+}$, thus not in A.
- Case 3.2: v and y do not contain both 0 and 1 , which means that v and y each contain at most one symbol type, i.e. $v=0^{|v|}$ and $y=1^{|y|}$. (Note: v or y may be ε but not both)

Continue with Case 3.2

- Let $i=2$. Then $u v^{2} x y^{2} z=0^{p+|v|} \cdot 1^{p^{2}+|y|}$
- Is $(p+|v|)^{2}=\left(p^{2}+|y|\right)$?
- Is $p^{2}+2 p|v|+|v|^{2}=p^{2}+|y|$?
- Is $2 p|v|+|v|^{2}=|y|$? Or Left = Right?
- If $|y|=0$ and $|v| \neq 0$: Left $>$ Right
- If $|y| \neq 0$ and $|v|=0$: Left $<$ Right
- If $|y| \neq 0$ and $|v| \neq 0$:

Left $=2 p|v|+|v|^{2}>p \geq|v x y| \geq|y|=$ Right So Left > Right

- So for all combinations of $|v|$ and $|y|$, Left \neq Right. So $u v^{2} x y^{2} z \notin A$
- A contradiction!

Example 4: Prove that $L=\left\{a^{i} b^{j} c^{i} d^{j} \mid i, j \geq 0\right\}$ is non-CF.

- Assume L is CF. Then the PL applies to L. Let p be the constant.
- Select $s=a^{p} b^{p} c^{p} d^{p} . s \in L$ and $|s|=4 p>p$.
- By PL, $s=u v x y z$ with $|v y|>0$ and $|v x y| \leq p$.
- Since $|v x y| \leq p, v$ and y cannot contain both a's and c's, nor can it contain both b 's and d 's. Further $|v y|>0$. We have $u v^{0} x y^{0} z=u x z \notin L$, because it either contains fewer a 's than c 's, or fewer c 's then a 's, or fewer b 's than d 's, or fewer d 's than b 's.
- A contradiction to the PL.
- So L is non-CF.

7.2 Proving non-CFLs by closure properties

- Closed under union: If A and B are CF, so is $A \cup B$. Proof: CFG G_{A} with $S_{A} \rightarrow \cdots$ and CFG G_{B} with $S_{B} \rightarrow \cdots$. Define a CFG that generates $A \cup B$ as $S \rightarrow S_{A} \mid S_{B}$ plus the grammars G_{A} and G_{B}.
- Closed under concatenation: If A and B are context-free, so is $A B$.
Proof: CFG G_{A} with $S_{A} \rightarrow \cdots$ and CFG G_{B} with $S_{B} \rightarrow \cdots$. Define a CFG that generates $A B$ as $S \rightarrow S_{A} S_{B}$ plus the grammars G_{A} and G_{B}.
- Closed under star: If A is context-free, so is A^{*}. Proof: Consider CFG G with $S_{1} \rightarrow \cdots$. Define a CFG that generates A^{*} as $S \rightarrow S S_{1} \mid \varepsilon$ plus the grammar G.
- Closed under reverse: If A is context-free, so is A^{R}.
- Not closed under intersection: Consider $A=\left\{a^{n} b^{n} c^{m}\right\}$ and $B=\left\{a^{m} b^{n} c^{n}\right\}$.
- Not closed under complementation: Note that $A \cap B=\overline{\bar{A}} \cup \bar{B}$.
- Not closed under difference: Note that $\bar{A}=\Sigma^{*}-A$.
- Intersect with a regular language: If A is context-free and B is regular, then $A \cap B$ is context-free.
- Difference from a regular language: If A is context-free and B is regular, then $A-B$ is context-free. Note that $A-B=A \cap \bar{B}$.

How can closure properties of CFLs be used to prove that a given language is non-CF?

Example 1: $A=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)=n_{b}(w)=n_{c}(w)\right\}$ is non-CF. (Note: $n_{a}(w)$ is defined to be the number of a^{\prime} s in w.)

- Assume A is CF. Let $B=\left\{a^{*} b^{*} c^{*}\right\}$, a RL.
- $A \cap B=\left\{a^{n} b^{n} c^{n}\right\}$ must be CF by the closure property of the intersection of a CFL and a RL.
- But we proved before that $\left\{a^{n} b^{n} c^{n}\right\}$ is non-CF.
- A contradiction.
- So A must be non-CF.

How can closure properties of CFLs be used to prove that a given language is CF?

Example 2: $B=\left\{a^{i} b^{j} c^{k} \mid j>i+k\right\}$ is CF.

- Since $j>i+k$, let $j=i+k+h$ for some $h>0$.
$-a^{i} b^{j} c^{k}=a^{i} \cdot b^{i+k+h} \cdot c^{k}=a^{i} \cdot b^{i+h} \cdot b^{k} \cdot c^{k}=\left(a^{i} b^{i}\right)\left(b^{+}\right)\left(b^{k} c^{k}\right)$
- This is the concatenation of three CFLs.
- By the closure property of CFLs under concatenation, B is CF.

