CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

>

>

Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -
3:00 on zoom or by email

Grader: Jay ldema for section 1 (zoom office hour
https://cwm.zoom.us/j/98189667842?pwd=bEFNaONsWkh1dIRm

Grader: Toon Tran for section 2 (zoom office hour
https://cwm.zoom.us/j/8420633189)

Textbook: Intro to the theory of computation (any edition),
Michael Sipser. An e-book in PDF maybe available online.

Prerequisites/background: Linear algebra, Data structures
and algorithms, and Discrete math

5.1 Context-free grammars (Sipser 2.1 pp. 100-105)

» CFG G=(V,%X,R,S), where V is the set of variables, ¥ is
the set of terminals (alphabet), R is the set of rules in the
form of V — (VUX)* (head—body), and S € V is the start
variable.

» The CFG that generates all palindromes (strings that read
the same forward and backward) over {0,1} is
G=({S},{0,1},R,S), where R contains
S — 0S0[{1S1|0[1]e.

» Any language that can be generated by a CFG is called
context-free.

» Let u,v,w be strings in (VUX)*. If A— w s arule, then
UAv yields uwv, written uAv —> uwv. We say u derives v,
written u = v, if Juy,..., ux € (VUX)* such that
U=— Uy = --- = Uy = V. Here, = means one step
and = means zero or more steps.

o *
i ivations: = @ =
> Leftmost and rightmost derivations: T e

» The language of a CFG G, L(G) = {w € £*|S = w}.
L(G) is said to be a CFL.

Some Simple CFGs and their CFLs

Example 1: L ={0"1"|n> 0} a context-free language. It can
be generated by the following context-free grammar.

S — 0S1]e.
Example 2: Given a CFG G, describe L(G).

S — AA, A— AAA|bA|Ab|a
Leftmost derivation: S = AA = bAA = baA = baa
Rightmost derivation: S = AA= Aa=- bAa=- baa

L(G) = {w € {a,b}*|w has an even (nonzero) number of a's}.

Example 3: A CFG for simple expressions in programming
languages:

S— S+5|S«S|(S)|/
I — la|lb] 0] 11|alb

5.2 Parse trees and ambiguity

S S S
/1N N /I
N TN /N
/s\ I s *#§ S§ + 8 I
0 1
@ (b) ‘ “ ‘ ©
b a a b

Figure 1: Parse trees and ambiguity

(a) Parse tree and derivation S= 051 = 00511 = 0011
(b) and (c) Two parse trees (or derivations) for string a+ bx a.

6

Parse trees
> A parse tree is a tree representation for a derivation, in
which each interior node is a variable, each leaf node is
either a terminal, or €, and if an interior node is a variable A
and its children are Xj,..., Xk, then there must be a rule
A— X1 cee Xk.
> Yield of a parse tree: Concatenation of the leaf nodes in a
parse tree rooted at the start variable.
» Four equivalent notions:
1. S=w;
2. S % w;
3. S r=2>7 w; and
4. A parse tree with root S and yield w.

Ambiguity in grammars and languages (Sipser 2.1 pp.
105-106)

» ACFG G=(V,X,R,S) is ambiguous if there is w € * for
which there are at least two parse trees (or leftmost
derivations).

» Grammar G: S — S+ S|Sx S|(S)|/and | — la|lb|I0|I1|a|b
is ambiguous since a+ bx* a has two parse trees.

» Some ambiguous grammars have an equivalent
unambiguous grammar. For example, an unambiguous

grammar for the simple expressionsis G: S — S+ T|T,
T — T«F|F, F—(S)|l,and | — la|lb|/0|1|alb.

> A context-free language is said to be inherently ambiguous
if all its grammars are ambiguous.

» There is no algorithm to determine whether a given CFG is
ambiguous. There is no algorithm to remove ambiguity
from an ambiguous CFG. There is no algorithm to
determine whether a given CFL is inherently ambiguous.

Chomsky normal form (Sipser 2.1 pp. 106-109)

The Chomsky Normal Form (CNF): Any nonempty CFL without
€ has a CFG G in which all rules are in one of the following two
forms: A— BC and A— a, where A, B, C are variables, and a is
a terminal. Note that one of the uses of CNF is to turn parse
trees into binary trees.

10

5.3 More CFGs design
Example 1: {a"b"c™""m,n > 0}
» Rewrite the pattern as a”b"c"c™
» S—aSc|T, T — bTcle
Example 2: {a"b™ c"d"|m,n>0}u{a"b"c"d”m,n> 0}
> S— 5SS
» Sy — AB, A— aAble, B— cBd|e
» S, — aSxd|C, C — bCcle

11

Example 3: {0™1"|m # n}

» Rewrite the language as {0™1"|m < n} U{0™1"|\m > n},

which is {0"17=m™1M} y{0"0™M "1}

> S— 5SS

> S; —0511|A, A— 1A/

> S, —+0S5:1|B, B— 0B|0
Example 4: Given the following grammar CFG G, what is its
language?

» S— aS|Sblalb

» S — aSbS|bSaS|e

12

Example 5: L= {a'b/ck € {a,b,c}* | i+j# k}
The grammar will pair a and ¢ until running out one of the two.
Then the grammar will consider the following cases.
L=LiUloUlLy
» Case 1:i=k. Thenj+#0,i.e,j>1.So Ly ={abtc'}
» Case 2:i> k. Thenj>0. So L, = {afatb*ck}
> Case3:i<k.Andj#k—i. SoLy={abckc'}
S—aSc|S1| S| Ss
S; — bS; | b (Casel: To generate b™)
S, — aS, | Sob | a(Case 2: To generate atb*) ‘
S3 — bSsc | Sy | C, C— cC | c (Case 3: To generate b/ and
kst j#k—i)

13

Example 6: L = {a'b/ | i # j and 2i # j}.
Draw an x-axis and mark two points, one for i and one for 2.
These two points divides the x-axis into three intervals: j </,
i<j<2i,andj> 2i.

LI L2 L3

i\ igeai Y pai

i 2i

Figure 2: Intervals that j falls in

L=LiUloULz: S— S |82 | S

Ly={ab|j<i}: Sy —aSib|A A—aA|a

Ly={ab |i<j<2i}: So—aS:b|aTb, T — aTbb | abb
Ls={ab |j>2i}: S aSsbb | B, B— Bb| b

14

Example 7: L= {x#y | x,y € {0.1}",|x| # |y|}
Consider two cases: |x| < |y| and |x| > |y|.

» Case 1 |x| < |y|: x=01and y =100. String
x#y = 01#100. After pairing 01 and 00, what’s left is #1.

» Case 2 |x| > |y|: x =110 and y = 00. String
x#y = 110#400. After pairing 11 and 00, what’s left is 0#.

S—0S0 051|180 | 181 | T# | #T
T—O0T[1T |01

15

6.1 PDAs (Sipser 2.2 pp. 102-114)

» PDA = NFA + Stack (still with limited memory but more
than that in FAs)
» PDAM=(Q,%,T,d,qo,F), where
> Q: A finite set of states
> 3 : Afinite set of input symbols (input alphabet)
> T Afinite set of stack symbols (stack alphabet)
» &: The transition function from Q x (X U{e}) x (TU{e}) to
2Qx(fu{e})
Qo: The start state
» F: The set of final states

v

16

o

ST X

Figure 3: How a transition step occurs within a PDA if
8(q,a,X) ={(p,Y)}

17

S T ® |

» What does (g, a,X) = {(p, Y)} mean? If the current state
is g, the current input symbol is a, and the stack symbol at
the top of the stack is X, then the automaton changes to
state p and replace X by Y.

» What if € replaces a, or X, or Y? For example,
3(g,e,X) ={(p,Y)}: No cursor move. X replaced by Y
(pop + push)
3(qg,a,e)={(p,Y)}: Push Y

5(q,a,X) = {(p,€)}: Pop X

(9.¢,€) ={(p, Y)}: No cursor move. Push Y

(g,a,¢) = {(p,€)}: No stack change

(g,€,X) = {p,€)}: No cursor move. Pop X
8(q.¢,€) = {(p,€)}: No change except state

» The state diagram of PDAs: For transition

8(q,a,X) ={(p,Y)}, draw an arc from state q to state p
labeled with a, X — Y.

)
o
)

18

Instantaneous description (ID) of a PDA: (q,w,Y)
represents the configuration of a PDA in the state of g with
the remaining input of w yet to be read and the stack
content of y. (The convention is that the leftmost symbol in
vis at the top of the stack.)

Binary relation - on ID’s: (q,aw, XB) - (p, w, YB) if

8(q,a, X) contains (p, Y). - represents one move of the
PDA, and represents zero or more moves of the PDA.
Language of a PDA M (or language recognized by M) is
L(M) = {w|(qo, w.&) - (£,&,7) for f € F}.

How does a PDA check the stack is empty? At the
beginning of any computation, it pushes a special symbol $

to the initially empty stack by having transition
8(q07878) = {(q7$)}

19

Example 1 (Sipser p. 112): A PDA that recognizes
{0™M"|n> 0}.

OO Q=0

0,e—>0 1,0—>¢

Figure 4: An example of a PDA

20

Example 2 (Sipser p. 114): A PDA that recognizes
{@bick|i,j,k>0,i=jori=k}={a"b"c*}u{a"b*c"}.

b,a —>¢
c £—>¢
s e—>¢ .
1=]
s e>$ » $>¢

€, E>¢€

i=]
a, £—> a €, e—>¢ @ g, $>¢ @

b, e->¢ c,a =€

Figure 5: Another PDA

Example: How the PDA in the above example accepts input
aabbcc.
Theorem: The equivalence of PDA, CFG, and CFL

21

7.1 Proving non-CFLs by pumping lemma (Sipser 2.3 (pp.
125-129))

Theorem 2.34 (The pumping lemma for CFLs)
Let Abe a CFL. Then there exists a constant p such that Vs € A
with |s| > p, we can write s = uvxyz such that

1. |vy| > 0; (not allow v =y =¢)
2. |vxy| < p;and
3. Vi>0, string uv'xy’z € A.
Recall in the PL for RLs, s is partitioned into x, y, z satisfying
1. |y[>0;
2. |xy| < p;and
3. Vi>0,string xy'zc A

22

How to use the pumping lemma to prove that a language A
is not Context-free?

» Assume that A is context-free by contradiction. Then the
pumping lemma applies to A. Let p be the constant in the
pumping lemma. (Always begin the proof with these three
steps.)

» Select s € Awith |s| = f(p) > p. (This may be tricky. But
start with an intuitive simple string that uses p in the
length.)

> By the pumping lemma, s = uvxyz with (1)|vy| > 0,
(@)|vxy| <p, and (3)uv'xy'ze A, Vi > 0.

> Prove for ANY u,v,x,y,z such that s = uvxyz, lvy| >0,
and |vxy| < p, find i > 0 such that uv'xy'z ¢ A.

A contradiction to (3) in PL!

23

Example 2.36 (Sipser p.128): Prove B= {a"b"c"|n> 0} is
non-CF.
Pf. Assume B is CF. Then PL applies. Let p be the constant.

>

vy

vvyyypwy

Select s=aPbPcP=a---b---c--- € B, with |s| =3p > p.

By PL, s = uvxyz with |vy| > 0 and |vxy| < p.

Consider what vxy can be. Imagine vxy is a sliding window
that moves left to right within s.

Case 1: vxy contains one symbol type (a*, b™, or c™)
Case 2: vxy contains two symbol types (a"b* or b™c™)
Choose i = 0 for both cases. Then uv®xy%z ¢ B for both.
A contradiction to the PL!

24

Example 2.38 (Sipser p. 129): Prove D = {ww|w € {0,1}*} is
non-CF.
Pf. Three sentences to start the proof. Then,

» Select s=0°P10°P1=0---010---01€ D, |s|=2p+2>p.
» By PL, s = uvxyz with |vy| >0 and |vxy| < p
» We consider the following partition:
s=0°P1.0-1.0-0°""1, whereu=0°"1v=0, x=1,
y=0,and z=0°P""1.
» Forany />0,
uvixy’z=0°P"1.0".1.0".0°" 11 = 0P~ "*+.1.0"P 1.1 € D
» No contradiction. Need to choose a different s.
» Try s=0P1P0P1P and i=0
(Exercise or read p. 129 bottom)

25

Example 3: Prove that A = {0/1/°} is non-CF.

| 2
>
>

Select s = 0P17* = uvxyz € A, where |vy| > 0 and |vxy| < p.
vxy =07,1" or 0T1% (three cases)

For the first two cases, choose i = 0 to shrink the 0 and 1
blocks, respectively, thus making the string uxz ¢ A

Case 3: vxy =01+,

Case 3.1: v or y contains both0 and 1, i.e., vor y =0"17.

Let i = 2. Then uv2xy?z contains substring 0T170+1+,
thus not in A.

Case 3.2: v and y do not contain both 0 and 1, which
means that v and y each contain at most one symbol type,
i.e. v=0Mand y = 1. (Note: v or y may be € but not
both)

26

Continue with Case 3.2
> Leti=2. Then uvexy2z = OPFIvl. 1741yl
Is (p+|vI)? = (P* +1y1)?
Is p? +2p|v|+|v|* = p? +y|?
Is 2p|v|+ |v|? = |y|? Or Left = Right?
If |y| =0 and |v| # 0: Left > Right
If |y| # 0 and |v| = 0: Left < Right

If |y| #0 and |v| # 0:

Left = 2p|v|+|v|?> > p > |vxy| > |y| = Right

So Left > Right

» So for all combinations of |v| and |y|, Left # Right. So
uvlxy’z ¢ A

» A contradiction!

vVvYVvyvVvyyvYyy

27

Example 4: Prove that L = {a'b/c’'d/ | i,j > 0} is non-CF.
» Assume L is CF. Then the PL applies to L. Let p be the
constant.
» Select s=aPbPcPdP. se Land |s|=4p>p.
By PL, s = uvxyz with |vy| > 0 and |vxy| < p.
» Since |vxy| < p, v and y cannot contain both a's and c’s,
nor can it contain both b’s and d’s. Further |vy| > 0. We
have uvxy%z = uxz ¢ L, because it either contains fewer

a’s than c’s, or fewer c¢’s then a’s, or fewer b’s than d’s, or
fewer d’s than b’s.

» A contradiction to the PL.
» So L is non-CF.

v

28

7.2 Proving non-CFLs by closure properties

» Closed under union: If Aand B are CF, so is AUB.
Proof: CFG G4 with S4 — --- and CFG Gg with Sg — ---.
Define a CFG that generates AuB as S — S4 | Sg plus the
grammars Ga and Gg.

» Closed under concatenation: If A and B are context-free,
so is AB.

Proof: CFG Gj with Sy — --- and CFG Gg with Sg — - --.
Define a CFG that generates AB as S — S5 Sg plus the
grammars Ga and Gg.

» Closed under star: If A is context-free, so is A*.

Proof: Consider CFG G with Sy — ---. Define a CFG that
generates A* as S — SSj | € plus the grammar G.

29

» Closed under reverse: If Ais context-free, so is AF.

» Not closed under intersection: Consider A= {a"b"c"} and
B={a"b"c"}.

» Not closed under complementation: Note that
ANB=AUB.

» Not closed under difference: Note that A= ¥* — A.

30

> Intersect with a regular language: If A is context-free and B
is regular, then AN B is context-free.

» Difference from a regular language: If A is context-free and
Bis regular, then A— B is context-free. Note that
A—-B=ANB.

31

How can closure properties of CFLs be used to prove that
a given language is nhon-CF?

Example 1: A={w e {a,b,c}*|na(w) = np(w) = ne(w)} is
non-CF. (Note: ng(w) is defined to be the number of &'s in w.)
» Assume Ais CF. Let B={a*b*c*}, a RL.

» ANB={a"b"c"} must be CF by the closure property of
the intersection of a CFL and a RL.

» But we proved before that {a"b"c"} is non-CF.
» A contradiction.
So A must be non-CF.

v

32

How can closure properties of CFLs be used to prove that
a given language is CF?
Example 2: B= {a'b/cX|j > i+ k} is CF.
» Sincej>i+k,letj=i+k+ hforsome h>0.
> abick=a prkth.ck =g . p+h. pk.ck = (a'b')(b*)(b¥cK)
» This is the concatenation of three CFLs.

» By the closure property of CFLs under concatenation, B is
CF.

33

