CS423 Finite Automata \& Theory of Computation

TTh 12:30-13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30-10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

- Office Hours: TTh 11:00-12:00 in 114 McGl and W 2:303:00 on zoom or by email
- Grader: TBD for section 1 (office hour TBD on BB)
- Grader: TBD for section 2 (office hour TBD on BB)
- Textbook: Intro to the theory of computation (any edition), Michael Sipser. An e-book in PDF maybe available online.
- Prerequisites/background: Linear algebra, Data structures and algorithms, and Discrete math

Computability Theory: An introduction

- A study of capability and limitation of computers, or equivalently, what they can do and what they cannot.
- Given a problem, can it be solved at all?
- The set of all problems can be divided into two subsets. One subset contains all solvable problems, such as sorting, finding shortest path in a graph. The other subset contains those unsolvable problems.
- Computability Theory is to study techniques to prove if a given problem is solvable or unsolvable.

Figure 1: Solvable vs. unsolvable

8.1 Unsolvable problems

- A problem is said to be unsolvable/undecidable if it cannot be solved/decided by any algorithm.
- Most interesting problems are optimization problems (OPT)
- Decision problems (DEC) ask a yes-no question.
- Example: The Traveling Salesman Problem (TSPOPT) Visit every city and go back home. Input: An edge-weighted graph $G=(V, E, w)$
Output: A tour (simple cycle of all vertices) with min total weight
- Corresponding decision problem (TSPDEC) Input: $G=(V, E, w)$ and $B \geq 0$
Question: Is there a tour in G with total weight $\leq B$?
- Meta Claim: DEC is no harder than its corresponding OPT
- So, to study hardness of an OPT, we focus on its DEC.
- Any DEC is actually a language since the yes-no question in DEC can be interpreted as asking membership of a string in a language.
- Example: Prime (DEC) Input: An integer $x \geq 2$ Question: Is x a prime? (This is a yes/no question.)
- $L_{\text {prime }}=\{\langle x\rangle \mid x$ is prime $\}$ (This is a language) $L_{\text {prime }}$ is actually the language of all prime numbers encoded in binary representation.
- Encoding anything to a binary string:
- Integer x to binary string $\langle x\rangle$
- Graph G to $<G>$
- Matrix M to $<M>$
- List L to $<L>$
- Revisit TSPDEC and its corresponding language :
- Input (or Instance): G and $B \geq 0$ Question: Does G contain a tour with the total weight $\leq B$?
- $L_{\text {TSPDEC }}=\{<G, B\rangle \mid$ There is a tour with total weight $\left.\leq B\right\}$ Is string $\left\langle G, B>\right.$ a member of language $L_{\text {TSPDEC }}$?
- The number of languages over a non-unary alphabet is uncountably infinite. So is the number of DECs (or decision problems).
- However, the number of programs that a computer can use to solve problems is countably infinite. Therefore, there are more problems than there are programs. Thus, there must be some unsolvable problems.
- An unsolvable (or undecidable) problem : The famous Halting Problem (by Turing):
- Input: Any Turing Machine M and any string s
- Question: Does M halt on s ?
- The modern version:
- Input: Any program P and any input I
- Output: "Yes" if P terminates on I and "No" otherwise. Or Question: Does P terminate on I?

Figure 2: Does P terminate/halt on I ?

8.2 Turing machine (Sipser 3.1, pp. 165-175)

- A Turing machine includes a control unit, a read-write head, and a one-way infinite tape.

Figure 3: Picture of a Turing Machine

- How to describe a snapshot of a TM without drawing a picture?
Use a configuration: 010010q11011
- TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
- Q: The finite set of states for the control unit.
- Σ : An alphabet of input symbols, not containing the "blank symbol", B.
- Γ : The complete set of tape symbols. $\Sigma \cup\{B\} \subset \Gamma$.
- δ : The transition function from $Q \times \Gamma$ to $Q \times \Gamma \times D$, where $D=\{L, R\}$.
- For example, $\delta(q, 0)=(p, X, L)$ and $\delta(p, Y)=(q, B, R)$.
- q_{0} : The start state.
- qaccept: The accept state.
- $q_{\text {reject }}$: The reject state.
- Configuration: Use a string to describe the look of a TM at a certain time, instead of drawing a picture of the TM. For example, string $X_{1} \cdots X_{i-1} q X_{i} \cdots X_{n}$ gives a description (snapshot) of the TM at a time, when the current state is q, the tape content is $X_{1} \cdots X_{n}$, and the head is scanning (pointing to) X_{i}. Such a string is called the configuration of the TM at a certain time.
- How a TM changes its configurations:
- If $\delta\left(q, X_{i}\right)=(p, Y, L)$, then $X_{1} \cdots X_{i-1} q X_{i} \cdots X_{n} \vdash X_{1} \cdots X_{i-2} p X_{i-1} Y X_{i+1} \cdots X_{n}$.
- If $\delta\left(q, X_{i}\right)=(p, Y, R)$, then $X_{1} \cdots X_{i-1} q X_{i} \cdots X_{n} \vdash X_{1} \cdots X_{i-1} Y p X_{i+1} \cdots X_{n}$.

Figure 4: Transitions applied on configurations

- Three important configurations:
(1) Starting configuration $q_{0} w$,
(2) accepting configuration $u q_{a c c e p t} v$,
(3) rejecting configuration $u q_{\text {reject }} v$, where (2) and (3) are called the halting configurations.
- Language of a Turing machine M (or language recognized/accepted by M) is

$$
L(M)=\left\{w \in \Sigma^{*} \mid q_{0} w \stackrel{*}{\vdash} \alpha q_{a c c e p t} \beta \text { for any } \alpha, \beta \in \Gamma^{*}\right\}
$$

- Note: To produce \vdash, type "backslash vdash" in the math mode.
- For any given input, a TM has three possible outcomes: accept, reject, and loop. Accept and reject mean that the TM halts on the given input, but loop means that the TM does not halt on the input.
- TRL: A language A is Turing-recognizable if there is a TM M such that $A=L(M)$. In other words,
- $\forall w \in A, M$ accepts w by entering $q_{\text {accept }}$.
- $\forall w \notin A, M$ does not accept (i.e., it may reject or loop).
- TDL: A language A is Turing-decidable if there is a TM M such that $A=L(M)$ and M halts on all inputs. In other words,
- $\forall w \in A, M$ accepts w.
- $\forall w \notin A, M$ rejects w.

Such TMs are a good model for algorithms.

A TM to accept/recognize/verify

Figure 5: TRLs vs. TDLs

How to design a TM that recognizes/accepts a language?

Example 1: Give a implementation-level description of a TM M that accepts $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, i.e., $L(M)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Idea: $w=000111 \Rightarrow X 00 Y 11 \Rightarrow X X 0 Y Y 1 \Rightarrow X X X Y Y Y$
$M=$ "On input string $w=0^{n 1 n}$

1. If $w=\varepsilon$, accept
2. Mark the first 0 with X, move right to mark the first 1 with Y
3. Move left to find the leftmost 0 . If no 0 , accept, else go to stage 2"

Example 1: (more) Define a TM that accepts $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

δ	0	1	X	Y	B
q_{0}	$\left(q_{1}, X, R\right)^{1}$	-	-	$\left(q_{3}, Y, R\right)^{8}$	$\left(q_{a}, B, R\right)^{0}$
q_{1}	$\left(q_{1}, 0, R\right)^{2}$	$\left(q_{2}, Y, L\right)^{4}$	-	$\left(q_{1}, Y, R\right)^{3}$	-
q_{2}	$\left(q_{2}, 0, L\right)^{6}$	-	$\left(q_{0}, X, R\right)^{7}$	$\left(q_{2}, Y, L\right)^{5}$	-
q_{3}	-	-	-	$\left(q_{3}, Y, R\right)^{9}$	$\left(q_{\mathrm{a}}, B, R\right)^{10}$
q_{a}	-	-	-	-	-

Figure 6: Transition diagram for TM

Example 2: Give an implementation-level description of a TM M that decides $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
$M=$ "On any input string $w \in\{0,1\}^{*}$

1. If $w \neq 0^{*} 1^{*}$, reject
2. Sweep left to right. If no 0 and 1 are found, accept. If only 0 is found or 1 is found, but not both, reject. If both 0 and 1 are found, go to stage 3
3. Mark the leftmost 0 with X. Move head to right to find and mark the first 1 with Y
4. Move head to left end, and then go to stage 2"

Example 3.7 (Sipser p. 171): Give a TM M that decides $A=\left\{0^{2^{n}} \mid n \geq 0\right\}=\{0,00,0000,00000000, \cdots\}$.

Consider the following strings to figure out an algorithm (TM): (1) odd length, e.g., $w_{1}=00000 \Rightarrow 0 X 0 X 0$;
(2) even length, e.g.,
$w_{2}=00000000 \Rightarrow 0 X 0 X 0 X 0 X \Rightarrow 0 X X X 0 X X X \Rightarrow 0 X X X X X X X$;
$w_{3}=000000 \Rightarrow 0 X 0 X 0 X$
TM $M=$ "On input string $w \in\{0\}^{*}$:

1. Sweep left to right, crossing off every other 0
2. If in stage 1 the tape contained a single 0 , accept (e.g., w_{2})
3. If in stage 1 the tape contained more than a single 0 and the number of 0 s was odd, reject (e.g., w_{1} and w_{3})
4. Move head to the left end of the tape
5. Go to stage $1 "$
8.4 Variations of TMs (Sipser 3.2 (pp. 148-159))

- TM with multi-tapes (and multi-heads)

$$
\left(\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}\right)
$$

- TM with multi-strings (and multi-heads).
- TM with multi-heads.
- TM with multi-tracks.
- TM with two-way infinite tape.
- TM with multi-dimensional tape.
- Nondeterministic TM's $\left(\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times D}\right)$. Consider a move in NTM, $\delta\left(q_{3}, X\right)=\left\{\left(q_{5}, Y, R\right),\left(q_{3}, X, L\right)\right\}$. How does the NTM know which step it should take? One way to look at this is: the NTM is the "luckiest possible guesser" and it always picks a transition that eventually leads to an accepting state if there is such a transition.

Theorem: The equivalent computing power of the above TM's:

For any language L, if $L=L\left(M_{1}\right)$ for some TM M_{1} with multi-tapes, multi-strings, multi-heads, multi-tracks, two-way infinite tape, multi-dimensional tape, or nondeterminism, then $L=L\left(M_{2}\right)$ for some basic TM M_{2}.

Theorem: The equivalent computing speed of the above TM's except for nondeterministic TM's:

For any language L, if $L=L\left(M_{1}\right)$ for some TM M_{1} with multi-tapes, multi-strings, multi-heads, multi-tracks, two-way infinite tape, or multi-dimensional tape in a polynomial number of steps, then $L=L\left(M_{2}\right)$ for some basic TM M_{2} in a polynomial number of steps (with a higher degree).

Or in other words, all reasonable models of computation can simulate each other with only a polynomial loss of efficiency.

Note: The speed-up of a nondeterministic TM vs. a basic TM is exponential.

The Church-Turing Thesis:

Any reasonable attempt to model mathematically algorithms and their time performance is bound to end up with a model of computation and associated time cost that is equivalent to Turing machines within a polynomial. (The power of TM.)

Nondeterministic TMs

$-\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times D}$.

- Consider a move in NTM, $\delta\left(q_{3}, X\right)=\left\{\left(q_{5}, Y, R\right),\left(q_{3}, X, L\right)\right\}$. How does the NTM know which step it should take?
- One way to look at this is that the NTM is the "luckiest possible guesser" and it always picks a transition that eventually leads to an accepting state if there is such a transition.
- The other way is to imagine that the NTM branches into many copies, each of which follows one of the possible transition.
- DTM (path) versus NTM (tree): See the wiki page for "Nondeterministic Turing Machine".

Theorem: A TDL is also a TRL, but not vice versa.
Theorem: About A and \bar{A} :

1. If A is Turing-decidable, so is \bar{A}.
2. If A and \bar{A} are both Turing-recognizable, then A is Turing-decidable. (See Theorem 4.22, p.210)
3. For any A and \bar{A}, we have one of the following possibilities:
(1) Both are Turing-decidable;
(2) Neither is Turing-recognizable;
(3) One is Turing-recognizable but not decidable, the other is not Turing-recognizable.

Figure 7: A language and its complement

Some closure properties:
TRLs and TDLs are both closed under

- Union
- Intersection
- Concatenation
- Star

In addition, TDLs are closed under complement, and TRLs are closed under homomorphism.

Examples to prove closure properties:

Example 1: If L_{1} and L_{2} are TD, so is $L_{1} \cup L_{2}$.
Pf: Let TM M_{1} and TM M_{2} decide L_{1} and L_{2}, respectively. Then we have the following TM M to decide $L_{1} \cup L_{2}$.

TM $M=$ "On input w :

1. Run M_{1} on w
2. If M_{1} accepts, accept
3. else run M_{2} on w
4. If M_{2} accepts, accept
5. else reject"

Example 2: If L_{1} and L_{2} are TR, so is $L_{1} \cup L_{2}$.
Pf: Let TM M_{1} and TM M_{2} recognize L_{1} and L_{2}, respectively. Then we have the following TM M to recognize $L_{1} \cup L_{2}$.

TM $M=$ "On input $w \in L_{1} \cup L_{2}$

1. Run M_{1} and M_{2} alternately on w, one step at a time
2. If either accepts, accept"

Example 3: If L is TD, so is L^{*}.
Pf: Let TM M decide L. Then we have the following TM M^{*} to decide L^{*}.
Note: $w \in L^{*}$ if $w=w_{1} w_{2} \cdots w_{k}$ for some $k \in[1,|w|]$, where $w_{i} \in L$ for $i=1, \cdots, k$.

TM $M^{*}=$ "On input w

1. If $w=\varepsilon$, accept
2. $\forall k=1,2, \cdots,|w|$
3. $\quad \forall$ partitions of w into k substrings, i.e., $w_{1}, w_{2}, \cdots, w_{k}$
4. Run M on $w_{1}, w_{2}, \cdots, w_{k}$
5. If M accepts $w_{i}, \forall i=1, \cdots k$, accept
6. reject"

Example 4: If L is TR, so is L^{*}
Pf: Let TM M recognize L. Then we have the following NTM N to recognize L^{*}

NTM $N=$ "On input $w \in L^{*}$

1. Nondeterministically generate (guess) a partition of w into $w_{1}, w_{2}, \cdots, w_{k}$
2. Run M on $w_{1}, w_{2}, \cdots, w_{k}$
3. If M accepts $w_{i}, \forall i=1,2, \cdots, k$, accept"

9.1 A binary encoding scheme for TMs

- $\mathrm{TM} \Leftrightarrow$ binary number.
$Q=\left\{q_{1}, q_{2}, \ldots, q_{|Q|}\right\}$ with q_{1} to be the start state, q_{2} to be the accept state, and q_{3} to be the reject state.
$\Gamma=\left\{X_{1}, X_{2}, \ldots, X_{|\Gamma|}\right\}$.
$D=\left\{D_{1}, D_{2}\right\}$ with D_{1} to be L and D_{2} to be R.
A transition $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ is coded as
$0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$.
A TM is coded as $C_{1} 11 C_{2} 11 \cdots 11 C_{n}$, where each C is the code for a transition.
- An example: $\delta\left(q_{2}, X_{3}\right)=\left(q_{1}, X_{4}, D_{1}\right)$ can be coded as 001000101000010
- An example: 000010010100100 is the encoding of $\delta\left(q_{4}, X_{2}\right)=\left(q_{1}, X_{2}, D_{2}\right)$
- TM M with input w is represented by $<M, w>$ and encoded as $<M>111 w$.
- Using similar schemes, we can encode DFA, NFA, PDA, RE, and CFG into binary strings.
9.2 Decidable languages (Sipser 4.1, pp. 194-201)
- $A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts string $w\}$.
- $A_{\text {NFA }}=\{<B, w\rangle \mid B$ is an NFA that accepts string $\left.w\right\}$.
- $A_{R E X}=\{<R, w\rangle \mid R$ is a RE that generates string $\left.w\right\}$.
- $E_{D F A}=\{\mid B$ is a DFA and $L(B)=\emptyset\}$.
- $E Q_{D F A}=\left\{<B_{1}, B_{2}>\mid B_{1}\right.$ and B_{2} are DFAs and $L\left(B_{1}\right)=$ $\left.L\left(B_{2}\right)\right\}$.
- $A_{C F G}=\{<G, w>\mid G$ is a CFG that generates string $w\}$.
- $E_{C F G}=\{<G>\mid G$ is a CFG and $L(G)=\emptyset\}$.
- Every CFL is decidable.

Note: The proofs of these TDLs can be found in Sipser's book.

Example 1. Prove that $A_{D F A}=\{\langle B, w\rangle \mid w \in L(B)\}$ is TD.
TM M $=$ On input $<B, w>$
Simulate B on input w
If B ends in $q \in F$, accept else reject

Example 2. Prove that $E_{D F A}=\{\langle B\rangle \mid L(B)=\emptyset\}$ is TD.
TM M = On input $$
Create the state diagram G for B
Use DFS to generate all simple paths from q_{0} to any $q \in F$ If no path is found, accept else reject

Countable and uncountable sets

- The size of an infinite set: Countably infinite (or countable) and uncountably infinite (or uncountable).
- A set A is countable if there is a 1-1 correspondence with $N=\{1,2,3, \ldots\}$ (the set of natural numbers).
- The following sets are countable.

1. The set of even (or odd) numbers
2. The set of rationale numbers
3. The set of binary strings
4. The set of TMs

- But, the set of languages is uncountable.
- There are more languages than there are TMs. So there must be languages that are non-TRL.

9.4 A non-TRL

- Consider the binary alphabet.
- Order and label strings: $\varepsilon, 0,1,00,01,10,11, \cdots$. Let w_{i} be i th string in the above lexicographic ordering.
- Order and label TMs: $M_{1}, M_{2}, M_{3}, \cdots$. Let M_{i} be the TM whose code is w_{i}, i.e. $\left\langle M_{i}\right\rangle=w_{i}$. In case w_{i} is not a valid TM code, let M_{i} be the TM that immediately rejects any input, i.e., $L\left(M_{i}\right)=\emptyset$.

ε	0	1	00	01	10	11	000	\cdots
w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	\cdots
M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	M_{8}	\cdots

- For any string w_{i}, there is a TM M_{i}
- For any TM M_{i}, there is a string w_{i}, where $<M_{i}>=w_{i}$.
- Define diagonalization language $A_{D}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$.
- The corresponding decision problem: Input: Any binary string w_{i}
Question: Is w_{i} not accepted by M_{i} ?
- Prove that A_{D} is non-TR (not a TRL).

Proof:

1. Suppose, by contradiction, A_{D} is TR, i.e., there is a TM M such that $A_{D}=L(M)$.
2. Then $M=M_{i}$ with code w_{i} for some i.
3. $w_{i} \in A_{D}$ iff $w_{i} \notin L\left(M_{i}\right)$ by definition of A_{D}.
4. $w_{i} \in A_{D}$ iff $w_{i} \in L\left(M_{i}\right)$ by $A_{D}=L\left(M_{i}\right)$.
5. A contradiction within the two iff statements

A summary of some new concepts learned recently

- Encoding of TM, DFA, NFA, PDA, RE, Graph, Matrix, list, etc. to binary strings: e.g., $\left.\langle M\rangle,<M, w\rangle,<M_{1}, M_{2}\right\rangle$
- Infinite sets: Countable vs. uncountable. Compare the set of TMs (countable) vs. the set of languages (uncountable). There are languages without a TM to accept/recognize.
- Correspondence between binary strings and Turing machines, i.e., for any w_{i}, there is a M_{i} and for any M, there is i s.t. $<M>=w_{i}$. Thus M can be renamed as M_{i}
- The diagonalization language $A_{D}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$ non-TR.
9.5 A TRL but non-TDL (Sipser 4.2 (pp. 173-174 and

179-182))

- A universal TM:
- Each TM (among those discussed) can only solve a single problem, however, a computer can run arbitrary algorithms. Can we design a general-purposed TM that can solve a wide variety of problems just as a computer?
- Theorem: There is a universal TM U which simulates an arbitrary TM M with input w and produces the same output.
TM $U=$ "On input $<M, w>$
Run M on w"
- TM U is an abstract model for computers just as TM M is a formal notion for algorithms.

Figure 8: The universal Turing machine

- Let $A_{T M}=\{<M, w>\mid M$ accepts string $w\}$ Or equivalently $A_{T M}=\{<M, w>\mid w \in L(M)\}$
Or equivalently as a decision problem Input: A TM M and a string w
Question: Is w accepted by M ?
$A_{T M}$ is called the universal language.
$A_{T M}$ is TR since it can be recognized by TM U.
TM $U=$ "On input $<M, w>\in A_{T M}$
Run M on w
If M accepts w, accept"
- $A_{T M}=\{<M, w>\mid w \in L(M)\}$ is non-TD. (By C\&C)

1. Assume that $A_{T M}$ is decided by TM T.

Input to T is $<M, w>$
Output from T is accept if $w \in L(M)$ and reject if $w \notin L(M)$
2. On input $<M, w>, T$ accepts $<M, w>$ iff M accepts w. (We can also say, T rejects $<M, w>$ iff M rejects w.)
3. Define TM D as follows:

4. Observe that D accepts $<M>$ iff T rejects $<M,<M\rangle>$.
5. Feed $<D>$ to D.

6. From steps 4 and 2, D accepts $\langle D\rangle$ iff T rejects $<D,<D \gg$ iff D rejects $\langle D>$.
7. A contradiction in step 6.

- Another proof that $A_{T M}=\{<M, w>\mid w \in L(M)\}$ is non-TD.
- Proof. Assume that $A_{T M}$ is TD by TM T, i.e.,
- Let TM T decide $A_{T M}$, i.e.,

$$
T(<M, w>)= \begin{cases}\text { accept } & w \in L(M) \\ \text { reject } & w \notin L(M)\end{cases}
$$

- Define TM $D=$ "On input $<M>$ Run T on $<M,<M \gg$
If T accepts, reject If T rejects, accept"
- D accepts $<M>$ iff T rejects $<M,<M \gg$
- Feed $<D>$ to D. Then, D accepts $<D>$ iff T rejects $<D,<D \gg$ iff $<D>\notin L(D)$ iff D rejects $<D>$.
- A contradiction! So $A_{T M}$ is non-TD.
10.1 A summary of terminology in Computability Theory
- Language, Decision Problem, Problem
- TM, Algorithm, Solution
- Decide, Solve, (Decidable, Solvable)
- Undecidable, Unsolvable
- Accept, Recognize, (Acceptable, Recognizable)
10.2 A review of some languages and corresponding decision problems
- $A_{D}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$ (non-TR) Input: Any binary string w_{i}
Question: Is w_{i} not accepted by M_{i} ?
- $A_{T M}=\{<M, w>\mid w \in L(M)\}$ (TR but non-TD) Input: TM M and string w
Question: Does M accept w ?
It is undecidable whether TM M accepts string w for any given M and w.
- $\operatorname{HALT}_{T M}=\{<M, w>\mid M$ halts on $w\}$ (TR but non-TD) Input: TM M and string w
Question: Does M halt on w ?
It is undecidable whether TM M halts string w for any given M and w.

We say that problem A reduces (or is reducible) to problem B, written as $A \leq B$, if we can use a solution (TM) to B to solve A (i.e., if B is decidable/solvable, so is A.).

We may use reducibility to prove undecidability as follows:

1. Let A be non-TD, such as A_{D} or $A_{T M}$. Wish to prove B is non-TD.
2. Assume B is TD. Then there exists a TM M_{B} to decide B.
3. If we can use M_{B} as a sub-routine to construct a TM M_{A} that decides A, then A is TD. We have a contradiction.
4. The construction of TM M_{A} using TM M_{B} establishes that A reduces to B, i.e., $A \leq B$. (A is no harder than B)
5. Corollary 5.23 (Sipser p. 236): If $A \leq B$ and A is non-TD, then B is non-TD.
10.4 A proof of the non-TD $A_{T M}$ by reduction

- Proof sketch:

1. Assume $A_{T M}$ is TD, by contradiction.
2. Let TM S decide $A_{T M}$, by the definition of a TDL.
3. Try to construct a TM D that decides A_{D}. The construction will include TM S. This shows A_{D} is TD.
4. A contradiction since we know A_{D} is non-TR.

Note: This proof uses the TM S for $A_{T M}$ to build a TM D for A_{D}, i.e., $A_{D} \leq A_{T M}$.

- Recall two languages:

1. $A_{T M}=\{<M, w>\mid w \in L(M)\}$.
2. $A_{D}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$. (A_{D} is non-TR $)$

Prove that $A_{T M}$ is non-TD by reduction

1. Assume $A_{T M}$ is TD, by contradiction.
2. Let TM S decide $A_{T M}$, i.e.,

$$
S(<M, w>)= \begin{cases}\text { accept } & w \in L(M) \\ \text { reject } & w \notin L(M)\end{cases}
$$

3. Construct a TM D that decides A_{D}, a non-TRL.

TM $D=$ "On input w_{i}
Run S on $<M_{i}, w_{i}>$
If S accepts, reject else accept"
4. Why does D decide A_{D} ?
S accepts $<M_{i}, w_{i}>$ iff $w_{i} \in L\left(M_{i}\right)$ iff $w_{i} \notin A_{D}$ iff D rejects w_{i}. So S accepts iff D rejects.
5. So A_{D} is TD. A contradiction.
10.5 The halting problem (Theorem 5.1 (pp. 216-217))

- $\operatorname{HALT}_{T M}=\{<M, w>\mid M$ halts on string $w\}$.
- $A_{T M}=\{<M, w>\mid M$ accepts $w\}$
- $A_{T M} \subseteq H A L T_{T M}$
- $\operatorname{HALT}_{T M}$ is TR since it can be recognized by TM U.
- Theorem 5.1 HALT $T_{T M}$ is non-TD. (Will show $A_{T M} \leq H A L T_{T M}$)
Theorem $H A L T_{T M}$ is non-TD. Prove by reduction from $A_{T M}$, i.e., $A_{T M} \leq H A L T_{T M}$

1. Assume TM R decides $H A L T_{T M}$. Then R accepts $\left.<M, w\right\rangle$ iff M halts on w. Construct TM S to decide $A_{T M}$.

TM $S=$ "On input $<M, w>$
Run R on $<M, w>$
if R rejects, reject
if R accepts, run M on w until it halts if M accepts, accept; else reject"
2. Why does S accept $A_{T M}$?
R rejects $<M, w>\Rightarrow M$ doesn't halt on $w \Rightarrow M$ doesn't
accept $w \Rightarrow<M, w>\notin A_{T M} \Rightarrow S$ rejects
R accepts $<M, w>M$ halts on w (accepts or rejects?
Need to run M on w to find out)
M accepts $w \Rightarrow<M, w>\in A_{T M}$
3. Since we constructed a TM S that decides $A_{T M}$ using TM R, so $A_{T M}$ is TD. A contradiction to that $A_{T M}$ is proved to be non-TD.
10.6 Other non-TD problems (Sipser 5.1 (pp. 216-220))

The following problems about Turing machines are non-TD:

- Whether $L(M)=\emptyset$ for any TM M.

$$
\begin{aligned}
& E_{T M}=\{<M>\mid L(M)=\emptyset\} \\
& \left.N E_{T M}=\{<M>\mid L(M) \neq \emptyset\} \text { (complement of } E_{T M}\right)
\end{aligned}
$$

- Whether $L\left(M_{1}\right)=L\left(M_{2}\right)$ for any two TMs M_{1} and M_{2}.

$$
E Q_{T M}=\left\{<M_{1}, M_{2}>\mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

- Whether $L(M)$ is finite for any TM M FINITE $_{T M}=\{<M>\mid \mathrm{L}(\mathrm{M})$ is finite $\}$
- Whether $\varepsilon \in L(M)$ for any TM M.

ESTRING ${ }_{T M}=\{<M>\mid \varepsilon \in L(M)\}$

- Whether $L(M)=\Sigma^{*}$ for any TM M.

$$
A L L_{T M}=\left\{<M>\mid L(M)=\Sigma^{*}\right\}
$$

Rice's Theorem: Every nontrivial property of the TRLs (or TMs) is undecidable.

Pf: $E_{T M}=\{<M>\mid L(M)=\emptyset\}$ is non-TD. Let R decides $E_{T M}$.

$$
R(<M>)= \begin{cases}\text { accept } & L(M)=\emptyset \\ \text { reject } & L(M) \neq \emptyset\end{cases}
$$

(2) Use R to construct TM S that decides $A_{T M}$, i.e., $A_{T M} \leq E_{T M}$.

TM $S=$ "On input $<M, w>$,

- Construct TM $M_{1}=$ "On input x

If $x \neq w$ reject else run M on $w "$
Note: $L\left(M_{1}\right)=\{w\}$ if $w \in L(M) ; L\left(M_{1}\right)=\phi$ if $w \notin L(M)$

- Run R on $<M_{1}>$
- If R accepts, reject; and if R rejects, accept"
(3) Why does S decide $A_{T M}$? $L\left(M_{1}\right)=\emptyset$ if M does not accept w; and $L\left(M_{1}\right)=\{w\}$ if M accepts w. I.e., $L\left(M_{1}\right)=\emptyset$ iff $w \notin L(M)$. So R accepts $<M_{1}>$ iff $L\left(M_{1}\right)=\emptyset$ iff $w \notin L(M)$ iff S rejects. (4) TM S decides the non-TD $A_{T M}$. A contradiction.

A graphical explanation of the undecidability proof of $E_{T M}$

Figure 9: Reduction from $A_{T M}$ to $E_{T M}$

Important questions to answer:

- Input: how to define M_{1} (the input to R) using $\left.<M, w\right\rangle$ (the input to S)?
- Output: how the output from R implies the output from S ?

Goal: Design M_{1} such that the output from R defines that of S.

Prove that $N E_{T M}=\{<M>\mid L(M) \neq \emptyset\}$ is TR but non-TD.
(1) To prove $N E_{T M}$ is TR, we give a NTM N to recognize $N E_{T M}$. NTM $N=$ "On input $<M>\in N E_{T M}$

- Guess a string w
- Run M on w
- If M accepts, accept"

We can also use a deterministic TM to recognize $N E_{T M}$.
TM $D=$ "On input $<M>\in N E_{T M}$
Recall the binary sequence $w_{1}, w_{2}, w_{3}, \ldots$

- Systematically generates strings: $\varepsilon, 0,1,00,01, \ldots$
- for $i=1,2,3, \ldots$

Run M on w_{1}, \cdots, w_{i}, each for i steps

- If in the loop above, M ever accepts some w_{j}, then accept"

An explanation of the TM D that recognizes $N E_{T M}$:
Assume w_{9} is accepted by M in 7 steps. Assume w_{10} is accepted by M in 12 steps.
$i=1$: Run M on w_{1} for 1 step;
$i=2$: Run M on w_{1}, w_{2} each for 2 steps;
$i=3$: Run M on w_{1}, w_{2}, w_{3} each for 3 steps;
$i=9:$ Run M on $w_{1}, w_{2}, \cdots, w_{9}$ for 9 steps; (accepted)
$i=12:$ Run M on $w_{1}, w_{2}, \cdots, w_{10}, \cdots, w_{12}$ for 12 steps (accepted)
(2) To prove $N E_{T M}=\{<M>\mid L(M) \neq \emptyset\}$ is non-TD, assume it is decided by TM R. Then R accepts $<M>$ iff $L(M) \neq \emptyset$.
Construct a TM S that decides the undecidable $A_{T M}$. Then a contradiction.
TM $S=$ "On input $<M, w>$

1. Construct TM $M_{1}=$ "On input x

If $x \neq w$, reject else Run M on $w^{\prime \prime}$
Note: $L\left(M_{1}\right)=\{w\}$ if $w \in L(M) ; L\left(M_{1}\right)=\phi$ if $w \notin L(M)$
2. Run R on $<M_{1}>$
3. If R accepts, accept; else reject"

Why does S accept $A_{T M}$?
$L\left(M_{1}\right)=\emptyset$ if $w \notin L(M)$ and $L\left(M_{1}\right)=\{w\}$ if $w \in L(M)$. In other words, $L\left(M_{1}\right) \neq \emptyset$ iff $w \in L(M)$.
R accepts $<M_{1}>$ iff $L\left(M_{1}\right) \neq \emptyset$ iff $w \in L(M)$ iff $<M, w>\in A_{T M}$ iff S accepts $<M, w>$. So $A_{T M}$ is TD. A contradiction.

About $E_{T M}$ and its complement $N E_{T M}$

We proved: $E_{T M}$ is non-TD. $N E_{T M}$ is TR.
Recall the theorem on page 120 . For A and \bar{A},

1. Both are TD; (Both are TR)
2. Neither is TR;
3. One is TR but non-TD, the other is non-TR

We immediately have the following results.
(1) $N E_{T M}$ is non-TD (If $N E_{T M}$ is TD, so is $E_{T M}$)
(2) $E_{T M}$ is non-TR (If $E_{T M}$ is $T R$, both $E_{T M}$ and $N E_{T M}$ are TD)

Theorem 5.4 $E Q_{T M}=\left\{<M_{1}, M_{2}>\mid L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is non-TD.
Reduce from $E_{T M}=\{<M>\mid L(M)=\emptyset\}$.

1. Assume $E Q_{T M}$ is decided by TM R.

$$
R\left(<M_{1}, M_{2}>\right)= \begin{cases}\text { accept } & L\left(M_{1}\right)=L\left(M_{2}\right) \\ \text { reject } & L\left(M_{1}\right) \neq L\left(M_{2}\right)\end{cases}
$$

2. Construct TM S that decides the undecidable $E_{T M}$.

TM $S=$ "On input $<M>$
Construct TM $M_{1}=$ "On input x, reject"
Run R on $<M_{1}, M>$
R accepts $<M_{1}, M>$ iff $\emptyset=L(M)$ iff S accepts $<M>$
R rejects $<M_{1}, M>$ iff $\emptyset \neq L(M)$ iff S rejects $<M>$
3. Why does S decides $E_{T M}$? R accepts $<M_{1}, M>$ iff $L\left(M_{1}\right)=L(M)$ iff $L(M)=\emptyset$ iff S accepts $<M>$.
4. S decides $E_{T M}$. So $E_{T M}$ is TD. A contradiction.

INPUT: $P=\left\{\frac{t_{1}}{b_{1}}, \frac{t_{2}}{b_{2}}, \ldots, \frac{t_{k}}{b_{k}}\right\}$, where $t_{1}, t_{2}, \ldots, t_{k}$ and $b_{1}, b_{2}, \ldots, b_{k}$ are strings over alphabet Σ. (P is a collection of dominos, each containing two strings, with one stacked on top of the other.)
QUESTION: Does P contain a match?
Or, is there $i_{1}, i_{2}, \ldots, i_{l} \in\{1,2, \ldots, k\}$ with $I \geq 1$ such that
$t_{i_{1}} t_{i_{2}} \cdots t_{i_{j}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{j}}$?
Equivalently, defined as a language, we have $L_{P C P}=\{\langle P\rangle \mid P$ is an instance of PCP with a match $\}$.
For input $P_{1}=\left\{\frac{b}{c a}, \frac{a}{a b}, \frac{c a}{a}, \frac{a b c}{c}\right\}$, sequence $2,1,3,2,4$ indicates a match. Since $\frac{a}{a b} \frac{b}{c a} \frac{c a}{a} \frac{a}{a b} \frac{a b c}{c}$, top=bottom=abcaaabc
For $P_{2}=\left\{\frac{a b c}{a b}, \frac{c a}{a}, \frac{a c c}{b a}\right\}$, there is no match since all top strings are longer than bottom strings..
PCP is non-TD for the binary alphabet.

A Summary of Computability Theory

1. Definitions and concepts:

- Turing machine, how it works, its language, its encoding, Church-Turing Thesis
- TRL and TDL, properties, how M accepts/decides a language, implementation-level description
- Reduction, the meaning of $A \leq B$ (A is no harder than B), use reduction to prove undecidability

2. Various proofs:

- A language is TR/TD (prove by definition)
- A language is non-TR/non-TD (prove by a combination of contradiction, construction, and reduction)
- Many examples to learn from

