
CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu
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General Information
▶ Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -

3:00 on zoom or by email
▶ Grader: TBD for section 1 (office hour TBD on BB)
▶ Grader: TBD for section 2 (office hour TBD on BB)
▶ Textbook: Intro to the theory of computation (any edition),

Michael Sipser. An e-book in PDF maybe available online.
▶ Prerequisites/background: Linear algebra, Data structures

and algorithms, and Discrete math
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Computability Theory: An introduction
▶ A study of capability and limitation of computers, or

equivalently, what they can do and what they cannot.
▶ Given a problem, can it be solved at all?
▶ The set of all problems can be divided into two subsets.

One subset contains all solvable problems, such as
sorting, finding shortest path in a graph. The other subset
contains those unsolvable problems.

▶ Computability Theory is to study techniques to prove if a
given problem is solvable or unsolvable.

Solvable unsolvableAll

Figure 1: Solvable vs. unsolvable
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8.1 Unsolvable problems
▶ A problem is said to be unsolvable/undecidable if it cannot

be solved/decided by any algorithm.
▶ Most interesting problems are optimization problems (OPT)
▶ Decision problems (DEC) ask a yes-no question.
▶ Example: The Traveling Salesman Problem (TSPOPT)

Visit every city and go back home.
Input: An edge-weighted graph G = (V ,E ,w)
Output: A tour (simple cycle of all vertices) with min total
weight

▶ Corresponding decision problem (TSPDEC)
Input: G = (V ,E ,w) and B ≥ 0
Question: Is there a tour in G with total weight ≤ B?
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▶ Meta Claim: DEC is no harder than its corresponding OPT
▶ So, to study hardness of an OPT, we focus on its DEC.
▶ Any DEC is actually a language since the yes-no question

in DEC can be interpreted as asking membership of a
string in a language.

▶ Example: Prime (DEC)
Input: An integer x ≥ 2
Question: Is x a prime? (This is a yes/no question.)

▶ Lprime = {< x > |x is prime} (This is a language)
Lprime is actually the language of all prime numbers
encoded in binary representation.
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▶ Encoding anything to a binary string:
▶ Integer x to binary string < x >
▶ Graph G to < G >
▶ Matrix M to < M >
▶ List L to < L >

▶ Revisit TSPDEC and its corresponding language :
▶ Input (or Instance): G and B ≥ 0

Question: Does G contain a tour with the total weight ≤ B?
▶ LTSPDEC = {< G,B > |There is a tour with total weight ≤ B}

Is string < G,B > a member of language LTSPDEC?
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▶ The number of languages over a non-unary alphabet is
uncountably infinite. So is the number of DECs (or decision
problems).

▶ However, the number of programs that a computer can use
to solve problems is countably infinite. Therefore, there are
more problems than there are programs. Thus, there must
be some unsolvable problems.
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▶ An unsolvable (or undecidable) problem :
The famous Halting Problem (by Turing):
▶ Input: Any Turing Machine M and any string s
▶ Question: Does M halt on s?

▶ The modern version:
▶ Input: Any program P and any input I
▶ Output: “Yes” if P terminates on I and “No” otherwise.

Or Question: Does P terminate on I?

AlgorithmP

I

Yes

No

Figure 2: Does P terminate/halt on I?
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8.2 Turing machine (Sipser 3.1, pp. 165-175)
▶ A Turing machine includes a control unit, a read-write

head, and a one-way infinite tape.

δ(

R/W head

0 1 1 1 110 0 0 1 0 B B

q q, 1)=(p, X, L)

Tape and tape squares Infinitely long 

Figure 3: Picture of a Turing Machine

▶ How to describe a snapshot of a TM without drawing a
picture?
Use a configuration: 010010q11011
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▶ TM M = (Q,Σ,Γ,δ,q0,qaccept ,qreject), where
▶ Q: The finite set of states for the control unit.
▶ Σ: An alphabet of input symbols, not containing the “blank

symbol”, B.
▶ Γ: The complete set of tape symbols. Σ∪{B} ⊂ Γ.
▶ δ: The transition function from Q×Γ to Q×Γ×D, where

D = {L,R}.
▶ For example, δ(q,0) = (p,X ,L) and δ(p,Y ) = (q,B,R).
▶ q0: The start state.
▶ qaccept : The accept state.
▶ qreject : The reject state.
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▶ Configuration: Use a string to describe the look of a TM at
a certain time, instead of drawing a picture of the TM.
For example, string X1 · · ·Xi−1qXi · · ·Xn gives a description
(snapshot) of the TM at a time, when the current state is q,
the tape content is X1 · · ·Xn, and the head is scanning
(pointing to) Xi . Such a string is called the configuration of
the TM at a certain time.
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▶ How a TM changes its configurations:
▶ If δ(q,Xi) = (p,Y ,L), then

X1 · · ·Xi−1qXi · · ·Xn ⊢ X1 · · ·Xi−2pXi−1YXi+1 · · ·Xn.
▶ If δ(q,Xi) = (p,Y ,R), then

X1 · · ·Xi−1qXi · · ·Xn ⊢ X1 · · ·Xi−1YpXi+1 · · ·Xn.

p

Xi−1X1
... Xi

... Xn

q

B X X
1

i−2 Xi−1 X ......
i+1 Xn

p

Y

δ( q, Xi)=(p, Y, L)

B

X X X1 i−1
...

i
... Xn B

q

X X Y X... ... X1 i−1 i+1 n B

δ( q, Xi)=(p, Y, R )

Figure 4: Transitions applied on configurations
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▶ Three important configurations:
(1) Starting configuration q0w ,
(2) accepting configuration uqacceptv ,
(3) rejecting configuration uqrejectv ,
where (2) and (3) are called the halting configurations.

▶ Language of a Turing machine M (or language
recognized/accepted by M) is

L(M) = {w ∈ Σ∗|q0w
∗
⊢ αqacceptβ for any α,β ∈ Γ∗}.

▶ Note: To produce ⊢, type ”backslash vdash” in the math
mode.

▶ For any given input, a TM has three possible outcomes:
accept, reject, and loop. Accept and reject mean that the
TM halts on the given input, but loop means that the TM
does not halt on the input.
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▶ TRL: A language A is Turing-recognizable if there is a TM
M such that A = L(M). In other words,
▶ ∀w ∈ A, M accepts w by entering qaccept .
▶ ∀w ̸∈ A, M does not accept (i.e., it may reject or loop).

▶ TDL: A language A is Turing-decidable if there is a TM M
such that A = L(M) and M halts on all inputs. In other
words,
▶ ∀w ∈ A, M accepts w .
▶ ∀w ̸∈ A, M rejects w .

Such TMs are a good model for algorithms.

A TM M to decide 

accept
M

A TM to accept/recognize/verify

M
ww in A

accept

reject

Figure 5: TRLs vs. TDLs
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How to design a TM that recognizes/accepts a language?

Example 1: Give a implementation-level description of a TM M
that accepts {0n1n|n ≥ 0}, i.e., L(M) = {0n1n|n ≥ 0}

Idea: w = 000111 ⇒ X00Y11 ⇒ XX0YY1 ⇒ XXXYYY

M =”On input string w = 0n1n

1. If w = ε, accept
2. Mark the first 0 with X , move right to mark the first 1 with Y
3. Move left to find the leftmost 0. If no 0, accept, else go to

stage 2”
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Example 1: (more) Define a TM that accepts {0n1n | n ≥ 0}
δ 0 1 X Y B
q0 (q1,X ,R)1 - - (q3,Y ,R)8 (qa,B,R)0

q1 (q1,0,R)2 (q2,Y ,L)4 - (q1,Y ,R)3 -
q2 (q2,0,L)6 - (q0,X ,R)7 (q2,Y ,L)5 -
q3 - - - (q3,Y ,R)9 (qa,B,R)10

qa - - - - -

Y−>Y, R

q0 q1

q2q3 qa

0−>X, R

B −> B, R

B −> B, R X −> X, R
1 −> Y, L

Y −> Y, R
0 −> 0, R

Y −> Y, L
0 −> 0, L

Y−>Y, R

Figure 6: Transition diagram for TM
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Example 2: Give an implementation-level description of a TM
M that decides {0n1n|n ≥ 0}.

M = ”On any input string w ∈ {0,1}∗

1. If w ̸= 0∗1∗, reject
2. Sweep left to right. If no 0 and 1 are found, accept. If only

0 is found or 1 is found, but not both, reject. If both 0 and 1
are found, go to stage 3

3. Mark the leftmost 0 with X. Move head to right to find and
mark the first 1 with Y

4. Move head to left end, and then go to stage 2”
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Example 3.7 (Sipser p. 171): Give a TM M that decides
A = {02n |n ≥ 0}= {0,00,0000,00000000, · · ·}.

Consider the following strings to figure out an algorithm (TM):
(1) odd length, e.g., w1 = 00000 ⇒ 0X0X0;
(2) even length, e.g.,
w2 = 00000000 ⇒ 0X0X0X0X ⇒ 0XXX0XXX ⇒ 0XXXXXXX ;
w3 = 000000 ⇒ 0X0X0X

TM M = ”On input string w ∈ {0}∗:
1. Sweep left to right, crossing off every other 0
2. If in stage 1 the tape contained a single 0, accept (e.g., w2)
3. If in stage 1 the tape contained more than a single 0 and

the number of 0s was odd, reject (e.g., w1 and w3)
4. Move head to the left end of the tape
5. Go to stage 1”
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8.4 Variations of TMs (Sipser 3.2 (pp. 148-159))
▶ TM with multi-tapes (and multi-heads)

(δ : Q×Γk → Q×Γk ×{L,R}k ).
▶ TM with multi-strings (and multi-heads).
▶ TM with multi-heads.
▶ TM with multi-tracks.
▶ TM with two-way infinite tape.
▶ TM with multi-dimensional tape.
▶ Nondeterministic TM’s (δ : Q×Γ→ 2Q×Γ×D).

Consider a move in NTM, δ(q3,X ) = {(q5,Y ,R),(q3,X ,L)}.
How does the NTM know which step it should take? One
way to look at this is: the NTM is the ”luckiest possible
guesser” and it always picks a transition that eventually
leads to an accepting state if there is such a transition.
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Theorem: The equivalent computing power of the above
TM’s:

For any language L, if L = L(M1) for some TM M1 with
multi-tapes, multi-strings, multi-heads, multi-tracks, two-way
infinite tape, multi-dimensional tape, or nondeterminism, then
L = L(M2) for some basic TM M2.
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Theorem: The equivalent computing speed of the above TM’s
except for nondeterministic TM’s:

For any language L, if L = L(M1) for some TM M1 with
multi-tapes, multi-strings, multi-heads, multi-tracks, two-way
infinite tape, or multi-dimensional tape in a polynomial number
of steps, then L = L(M2) for some basic TM M2 in a polynomial
number of steps (with a higher degree).

Or in other words, all reasonable models of computation can
simulate each other with only a polynomial loss of efficiency.

Note: The speed-up of a nondeterministic TM vs. a basic TM is
exponential.

21



The Church-Turing Thesis:

Any reasonable attempt to model mathematically algorithms
and their time performance is bound to end up with a model of
computation and associated time cost that is equivalent to
Turing machines within a polynomial. (The power of TM.)
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Nondeterministic TMs
▶ δ : Q×Γ→ 2Q×Γ×D.
▶ Consider a move in NTM, δ(q3,X ) = {(q5,Y ,R),(q3,X ,L)}.

How does the NTM know which step it should take?
▶ One way to look at this is that the NTM is the ”luckiest

possible guesser” and it always picks a transition that
eventually leads to an accepting state if there is such a
transition.

▶ The other way is to imagine that the NTM branches into
many copies, each of which follows one of the possible
transition.

▶ DTM (path) versus NTM (tree): See the wiki page for
”Nondeterministic Turing Machine”.
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8.3 Properties of TDLs and TRLs

Theorem: A TDL is also a TRL, but not vice versa.
Theorem: About A and A:

1. If A is Turing-decidable, so is A.
2. If A and A are both Turing-recognizable, then A is

Turing-decidable. (See Theorem 4.22, p.210)
3. For any A and A, we have one of the following possibilities:

(1) Both are Turing-decidable;
(2) Neither is Turing-recognizable;
(3) One is Turing-recognizable but not decidable, the other
is not Turing-recognizable.

TDL

ALL

TRL

Figure 7: A language and its complement
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Some closure properties:
TRLs and TDLs are both closed under
▶ Union
▶ Intersection
▶ Concatenation
▶ Star

In addition, TDLs are closed under complement, and TRLs are
closed under homomorphism.
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Examples to prove closure properties:

Example 1: If L1 and L2 are TD, so is L1 ∪L2.

Pf: Let TM M1 and TM M2 decide L1 and L2, respectively. Then
we have the following TM M to decide L1 ∪L2.

TM M = ”On input w :
1. Run M1 on w
2. If M1 accepts, accept
3. else run M2 on w
4. If M2 accepts, accept
5. else reject”
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Example 2: If L1 and L2 are TR, so is L1 ∪L2.

Pf: Let TM M1 and TM M2 recognize L1 and L2, respectively.
Then we have the following TM M to recognize L1 ∪L2.

TM M = ”On input w ∈ L1 ∪L2

1. Run M1 and M2 alternately on w , one step at a time
2. If either accepts, accept”
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Example 3: If L is TD, so is L∗.

Pf: Let TM M decide L. Then we have the following TM M∗ to
decide L∗.
Note: w ∈ L∗ if w = w1w2 · · ·wk for some k ∈ [1, |w |], where
wi ∈ L for i = 1, · · · ,k .

TM M∗ = ”On input w
1. If w = ε, accept
2. ∀k = 1,2, · · · , |w |
3. ∀ partitions of w into k substrings, i.e., w1,w2, · · · ,wk

4. Run M on w1,w2, · · · ,wk

5. If M accepts wi , ∀i = 1, · · ·k , accept
6. reject”
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Example 4: If L is TR, so is L∗

Pf: Let TM M recognize L. Then we have the following NTM N
to recognize L∗

NTM N = ”On input w ∈ L∗

1. Nondeterministically generate (guess) a partition of w into
w1,w2, · · · ,wk

2. Run M on w1,w2, · · · ,wk

3. If M accepts wi , ∀i = 1,2, · · · ,k , accept”
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9.1 A binary encoding scheme for TMs
▶ TM ⇔ binary number.

Q = {q1,q2, . . . ,q|Q|} with q1 to be the start state, q2 to be
the accept state, and q3 to be the reject state.
Γ = {X1,X2, . . . ,X|Γ|}.
D = {D1,D2} with D1 to be L and D2 to be R.
A transition δ(qi ,Xj) = (qk ,Xl ,Dm) is coded as
0i10j10k10l10m.
A TM is coded as C111C211 · · ·11Cn, where each C is the
code for a transition.

▶ An example: δ(q2,X3) = (q1,X4,D1) can be coded as
001000101000010

▶ An example: 000010010100100 is the encoding of
δ(q4,X2) = (q1,X2,D2)
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▶ TM M with input w is represented by < M,w > and
encoded as < M > 111w .

▶ Using similar schemes, we can encode DFA, NFA, PDA,
RE, and CFG into binary strings.
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9.2 Decidable languages (Sipser 4.1, pp. 194-201)
▶ ADFA = {< B,w > |B is a DFA that accepts string w}.
▶ ANFA = {< B,w > |B is an NFA that accepts string w}.
▶ AREX = {< R,w > |R is a RE that generates string w}.
▶ EDFA = {< B > |B is a DFA and L(B) = /0}.
▶ EQDFA = {< B1,B2 > |B1 and B2 are DFAs and L(B1) =

L(B2)}.
▶ ACFG = {< G,w > |G is a CFG that generates string w}.
▶ ECFG = {< G > |G is a CFG and L(G) = /0}.
▶ Every CFL is decidable.

Note: The proofs of these TDLs can be found in Sipser’s book.
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Example 1. Prove that ADFA = {< B,w > |w ∈ L(B)} is TD.

TM M = On input < B,w >
Simulate B on input w
If B ends in q ∈ F , accept
else reject

Example 2. Prove that EDFA = {< B > |L(B) = /0} is TD.

TM M = On input < B >
Create the state diagram G for B
Use DFS to generate all simple paths from q0 to any q ∈ F
If no path is found, accept
else reject
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Countable and uncountable sets
▶ The size of an infinite set: Countably infinite (or countable)

and uncountably infinite (or uncountable).
▶ A set A is countable if there is a 1-1 correspondence with

N = {1,2,3, . . .} (the set of natural numbers).
▶ The following sets are countable.

1. The set of even (or odd) numbers
2. The set of rationale numbers
3. The set of binary strings
4. The set of TMs

▶ But, the set of languages is uncountable.
▶ There are more languages than there are TMs. So there

must be languages that are non-TRL.
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9.4 A non-TRL
▶ Consider the binary alphabet.
▶ Order and label strings: ε,0,1,00,01,10,11, · · · .

Let wi be i th string in the above lexicographic ordering.
▶ Order and label TMs: M1,M2,M3, · · · .

Let Mi be the TM whose code is wi , i.e. < Mi >= wi .
In case wi is not a valid TM code, let Mi be the TM that
immediately rejects any input, i.e., L(Mi) = /0.

ε 0 1 00 01 10 11 000 · · ·
w1 w2 w3 w4 w5 w6 w7 w8 · · ·
M1 M2 M3 M4 M5 M6 M7 M8 · · ·

▶ For any string wi , there is a TM Mi

▶ For any TM Mi , there is a string wi , where < Mi >= wi .
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▶ Define diagonalization language AD = {wi |wi ̸∈ L(Mi)}.
▶ The corresponding decision problem:

Input: Any binary string wi
Question: Is wi not accepted by Mi?

▶ Prove that AD is non-TR (not a TRL).
Proof:

1. Suppose, by contradiction, AD is TR, i.e., there is a TM M
such that AD = L(M).

2. Then M = Mi with code wi for some i .
3. wi ∈ AD iff wi ̸∈ L(Mi) by definition of AD.
4. wi ∈ AD iff wi ∈ L(Mi) by AD = L(Mi).
5. A contradiction within the two iff statements

.
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A summary of some new concepts learned recently
▶ Encoding of TM, DFA, NFA, PDA, RE, Graph, Matrix, list,

etc. to binary strings: e.g., < M >, < M,w >, < M1,M2 >

▶ Infinite sets: Countable vs. uncountable. Compare the set
of TMs (countable) vs. the set of languages (uncountable).
There are languages without a TM to accept/recognize.

▶ Correspondence between binary strings and Turing
machines, i.e., for any wi , there is a Mi and for any M,
there is i s.t. < M >= wi . Thus M can be renamed as Mi

▶ The diagonalization language AD = {wi | wi ̸∈ L(Mi)}
non-TR.
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9.5 A TRL but non-TDL (Sipser 4.2 (pp. 173-174 and
179-182))
▶ A universal TM:

▶ Each TM (among those discussed) can only solve a single
problem, however, a computer can run arbitrary algorithms.
Can we design a general-purposed TM that can solve a
wide variety of problems just as a computer?

▶ Theorem: There is a universal TM U which simulates an
arbitrary TM M with input w and produces the same output.
TM U = ”On input < M,w >

Run M on w”
▶ TM U is an abstract model for computers just as TM M is a

formal notion for algorithms.

M
<M, w>

w

Figure 8: The universal Turing machine
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▶ Let ATM = {< M,w > |M accepts string w}
Or equivalently ATM = {< M,w > |w ∈ L(M)}
Or equivalently as a decision problem
Input: A TM M and a string w
Question: Is w accepted by M?

ATM is called the universal language.

ATM is TR since it can be recognized by TM U.

TM U = ”On input < M,w >∈ ATM
Run M on w
If M accepts w , accept”
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▶ ATM = {< M,w > |w ∈ L(M)} is non-TD. (By C&C)
1. Assume that ATM is decided by TM T .

T<M,w>
a

r

Input to T is < M,w >
Output from T is accept if w ∈ L(M) and reject if w ̸∈ L(M)

2. On input < M,w >, T accepts < M,w > iff M accepts w .
(We can also say, T rejects < M,w > iff M rejects w .)

3. Define TM D as follows:

<M,<M>>
<M>

a

r a

r
T

4. Observe that D accepts < M > iff T rejects < M,< M >>.
5. Feed < D > to D.

<D,<D>>

a

r a

r
T<D>

6. From steps 4 and 2, D accepts < D > iff T rejects
< D,< D >> iff D rejects < D >.

7. A contradiction in step 6.
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▶ Another proof that ATM = {< M,w > |w ∈ L(M)} is non-TD.
▶ Proof. Assume that ATM is TD by TM T , i.e.,
▶ Let TM T decide ATM , i.e.,

T (< M,w >) =

{
accept w ∈ L(M)

reject w ̸∈ L(M)

▶ Define TM D =”On input < M >
Run T on < M,< M >>
If T accepts, reject
If T rejects, accept”

▶ D accepts < M > iff T rejects < M,< M >>

▶ Feed < D > to D. Then, D accepts < D > iff T rejects
< D,< D >> iff < D ≯∈ L(D) iff D rejects < D >.

▶ A contradiction! So ATM is non-TD.
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10.1 A summary of terminology in Computability Theory
▶ Language, Decision Problem, Problem
▶ TM, Algorithm, Solution
▶ Decide, Solve, (Decidable, Solvable)
▶ Undecidable, Unsolvable
▶ Accept, Recognize, (Acceptable, Recognizable)
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10.2 A review of some languages and corresponding
decision problems
▶ AD = {wi |wi ̸∈ L(Mi)} (non-TR)

Input: Any binary string wi
Question: Is wi not accepted by Mi?

▶ ATM = {< M,w > |w ∈ L(M)} (TR but non-TD)
Input: TM M and string w
Question: Does M accept w?
It is undecidable whether TM M accepts string w for any
given M and w .

▶ HALTTM = {< M,w > |M halts on w} (TR but non-TD)
Input: TM M and string w
Question: Does M halt on w?
It is undecidable whether TM M halts string w for any given
M and w .
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10.3 Reducibility or Reduction(Sipser 5 (pp. 216-220))

We say that problem A reduces (or is reducible) to problem B,
written as A ≤ B, if we can use a solution (TM) to B to solve A
(i.e., if B is decidable/solvable, so is A.).
We may use reducibility to prove undecidability as follows:

1. Let A be non-TD, such as AD or ATM . Wish to prove B is
non-TD.

2. Assume B is TD. Then there exists a TM MB to decide B.
3. If we can use MB as a sub-routine to construct a TM MA

that decides A, then A is TD. We have a contradiction.
4. The construction of TM MA using TM MB establishes that A

reduces to B, i.e., A ≤ B. (A is no harder than B)
5. Corollary 5.23 (Sipser p. 236):

If A ≤ B and A is non-TD, then B is non-TD.
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10.4 A proof of the non-TD ATM by reduction
▶ Proof sketch:

1. Assume ATM is TD, by contradiction.

2. Let TM S decide ATM , by the definition of a TDL.

3. Try to construct a TM D that decides AD. The construction
will include TM S. This shows AD is TD.

4. A contradiction since we know AD is non-TR.

Note: This proof uses the TM S for ATM to build a TM D for
AD, i.e., AD ≤ ATM .

▶ Recall two languages:
1. ATM = {< M,w > |w ∈ L(M)}.

2. AD = {wi |wi ̸∈ L(Mi)}. (AD is non-TR)
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Prove that ATM is non-TD by reduction
1. Assume ATM is TD, by contradiction.

2. Let TM S decide ATM , i.e.,

S(< M,w >) =

{
accept w ∈ L(M)

reject w ̸∈ L(M)

3. Construct a TM D that decides AD, a non-TRL.
TM D =”On input wi

Run S on < Mi ,wi >
If S accepts, reject else accept”

4. Why does D decide AD?
S accepts < Mi ,wi > iffwi ∈ L(Mi) iff wi ̸∈ AD iff D rejects
wi . So S accepts iff D rejects.

5. So AD is TD. A contradiction.
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10.5 The halting problem (Theorem 5.1 (pp. 216-217))
▶ HALTTM = {< M,w > |M halts on string w}.
▶ ATM = {< M,w > |M accepts w}
▶ ATM ⊆ HALTTM

▶ HALTTM is TR since it can be recognized by TM U.
▶ Theorem 5.1 HALTTM is non-TD.

(Will show ATM ≤ HALTTM )
Theorem HALTTM is non-TD. Prove by reduction from ATM , i.e.,
ATM ≤ HALTTM
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1. Assume TM R decides HALTTM . Then R accepts < M,w >
iff M halts on w . Construct TM S to decide ATM .

TM S = ”On input < M,w >
Run R on < M,w >
if R rejects, reject
if R accepts, run M on w until it halts

if M accepts, accept; else reject”
2. Why does S accept ATM?

R rejects < M,w > ⇒ M doesn’t halt on w ⇒ M doesn’t
accept w ⇒ < M,w ≯∈ ATM ⇒ S rejects
R accepts < M,w > ⇒ M halts on w (accepts or rejects?
Need to run M on w to find out)
M accepts w ⇒ < M,w >∈ ATM

3. Since we constructed a TM S that decides ATM using TM
R, so ATM is TD. A contradiction to that ATM is proved to be
non-TD.
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10.6 Other non-TD problems (Sipser 5.1 (pp. 216-220))
The following problems about Turing machines are non-TD:
▶ Whether L(M) = /0 for any TM M.

ETM = {< M > |L(M) = /0}
NETM = {< M > |L(M) ̸= /0} (complement of ETM )

▶ Whether L(M1) = L(M2) for any two TMs M1 and M2.
EQTM = {< M1,M2 > |L(M1) = L(M2)}

▶ Whether L(M) is finite for any TM M
FINITETM = {< M > |L(M) is finite}

▶ Whether ε ∈ L(M) for any TM M.
ESTRINGTM = {< M > |ε ∈ L(M)}

▶ Whether L(M) = Σ∗ for any TM M.
ALLTM = {< M > |L(M) = Σ∗}

Rice’s Theorem: Every nontrivial property of the TRLs (or
TMs) is undecidable.
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Pf: ETM = {< M > |L(M) = /0} is non-TD. Let R decides ETM .

R(< M >) =

{
accept L(M) = /0

reject L(M) ̸= /0

(2) Use R to construct TM S that decides ATM , i.e., ATM ≤ ETM .
TM S = ”On input < M,w >,
▶ Construct TM M1 = ”On input x

If x ̸= w reject else run M on w”
Note: L(M1) = {w} if w ∈ L(M); L(M1) = φ if w ̸∈ L(M)

▶ Run R on < M1 >

▶ If R accepts, reject; and if R rejects, accept”
(3) Why does S decide ATM? L(M1) = /0 if M does not accept w ;
and L(M1) = {w} if M accepts w . I.e., L(M1) = /0 iff w ̸∈ L(M).
So R accepts < M1 > iff L(M1) = /0 iff w ̸∈ L(M) iff S rejects.
(4) TM S decides the non-TD ATM . A contradiction.
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A graphical explanation of the undecidability proof of ETM

S

R<M>
a if L(M)=empty

r otherwise

R
a

r

a

r
<M, w> <M  >1

Figure 9: Reduction from ATM to ETM

Important questions to answer:
▶ Input: how to define M1 (the input to R) using < M,w >

(the input to S)?
▶ Output: how the output from R implies the output from S?

Goal: Design M1 such that the output from R defines that of S.
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Prove that NETM = {< M > |L(M) ̸= /0} is TR but non-TD.
(1) To prove NETM is TR, we give a NTM N to recognize NETM .
NTM N = ”On input < M >∈ NETM

▶ Guess a string w
▶ Run M on w
▶ If M accepts, accept”

We can also use a deterministic TM to recognize NETM .
TM D = ”On input < M >∈ NETM
Recall the binary sequence w1,w2,w3, . . .

▶ Systematically generates strings: ε, 0, 1, 00, 01, . . .
▶ for i = 1,2,3, . . .

Run M on w1, · · · ,wi , each for i steps
▶ If in the loop above, M ever accepts some wj , then accept”
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An explanation of the TM D that recognizes NETM :

Assume w9 is accepted by M in 7 steps.
Assume w10 is accepted by M in 12 steps.

i = 1: Run M on w1 for 1 step;
i = 2: Run M on w1,w2 each for 2 steps;
i = 3: Run M on w1,w2,w3 each for 3 steps;
· · · · · ·
i = 9: Run M on w1,w2, · · · ,w9 for 9 steps; (accepted)
· · · · · ·
i = 12: Run M on w1,w2, · · · ,w10, · · · ,w12 for 12 steps
(accepted)
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(2) To prove NETM = {< M > |L(M) ̸= /0} is non-TD, assume it is
decided by TM R. Then R accepts < M > iff L(M) ̸= /0.
Construct a TM S that decides the undecidable ATM . Then a
contradiction.
TM S = ”On input < M,w >

1. Construct TM M1=”On input x
If x ̸= w , reject else Run M on w”

Note: L(M1) = {w} if w ∈ L(M); L(M1) = φ if w ̸∈ L(M)

2. Run R on < M1 >

3. If R accepts, accept; else reject”
Why does S accept ATM?
L(M1) = /0 if w ̸∈ L(M) and L(M1) = {w} if w ∈ L(M). In other
words, L(M1) ̸= /0 iff w ∈ L(M).
R accepts < M1 > iff L(M1) ̸= /0 iff w ∈ L(M) iff < M,w >∈ ATM
iff S accepts < M,w >. So ATM is TD. A contradiction.
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About ETM and its complement NETM

We proved: ETM is non-TD. NETM is TR.

Recall the theorem on page 120 . For A and A,
1. Both are TD; (Both are TR)
2. Neither is TR;
3. One is TR but non-TD, the other is non-TR

We immediately have the following results.

(1) NETM is non-TD (If NETM is TD, so is ETM )

(2) ETM is non-TR (If ETM is TR, both ETM and NETM are TD)
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Theorem 5.4 EQTM = {< M1,M2 > |L(M1) = L(M2)} is non-TD.
Reduce from ETM = {< M > |L(M) = /0}.

1. Assume EQTM is decided by TM R.

R(< M1,M2 >) =

{
accept L(M1) = L(M2)

reject L(M1) ̸= L(M2)

2. Construct TM S that decides the undecidable ETM .
TM S =”On input < M >

Construct TM M1 =”On input x , reject”
Run R on < M1,M >
R accepts < M1,M > iff /0 = L(M) iff S accepts < M >
R rejects < M1,M > iff /0 ̸= L(M) iff S rejects < M >

3. Why does S decides ETM? R accepts < M1,M > iff
L(M1) = L(M) iff L(M) = /0 iff S accepts < M >.

4. S decides ETM . So ETM is TD. A contradiction.
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10.7 Post’s correspondence problem (PCP) (Sipser 5.2)

INPUT: P = { t1
b1
, t2

b2
, . . . , tk

bk
}, where t1, t2, . . . , tk and b1,b2, . . . ,bk

are strings over alphabet Σ. (P is a collection of dominos, each
containing two strings, with one stacked on top of the other.)

QUESTION: Does P contain a match?
Or, is there i1, i2, . . . , il ∈ {1,2, . . . ,k} with l ≥ 1 such that
ti1 ti2 · · · til = bi1bi2 · · ·bil ?

Equivalently, defined as a language, we have
LPCP = {< P > |P is an instance of PCP with a match}.

For input P1 = { b
ca ,

a
ab ,

ca
a , abc

c }, sequence 2,1,3,2,4 indicates a
match. Since a

ab
b
ca

ca
a

a
ab

abc
c , top=bottom=abcaaabc

For P2 = {abc
ab , ca

a , acc
ba }, there is no match since all top strings

are longer than bottom strings..

PCP is non-TD for the binary alphabet.
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A Summary of Computability Theory
1. Definitions and concepts:
▶ Turing machine, how it works, its language, its encoding,

Church-Turing Thesis
▶ TRL and TDL, properties, how M accepts/decides a

language, implementation-level description
▶ Reduction, the meaning of A ≤ B (A is no harder than B),

use reduction to prove undecidability
2. Various proofs:
▶ A language is TR/TD (prove by definition)
▶ A language is non-TR/non-TD (prove by a combination of

contradiction, construction, and reduction)
▶ Many examples to learn from
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