CS423 Finite Automata & Theory of Computation

TTh 12:30 - 13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

- Office Hours: TTh 11:00 12:00 in 114 McGl and W 2:30 -3:00 on zoom or by email
- Grader: TBD for section 1 (office hour TBD on BB)
- Grader: TBD for section 2 (office hour TBD on BB)
- Textbook: Intro to the theory of computation (any edition), Michael Sipser. An e-book in PDF maybe available online.
- Prerequisites/background: Linear algebra, Data structures and algorithms, and Discrete math

Computability Theory: An introduction

- A study of capability and limitation of computers, or equivalently, what they can do and what they cannot.
- Given a problem, can it be solved at all?
- The set of all problems can be divided into two subsets. One subset contains all solvable problems, such as sorting, finding shortest path in a graph. The other subset contains those unsolvable problems.
- Computability Theory is to study techniques to prove if a given problem is solvable or unsolvable.

All	Solvable	unsolvable
-----	----------	------------

Figure 1: Solvable vs. unsolvable

8.1 Unsolvable problems

- A problem is said to be unsolvable/undecidable if it cannot be solved/decided by any algorithm.
- Most interesting problems are optimization problems (OPT)
- Decision problems (DEC) ask a yes-no question.
- Example: The Traveling Salesman Problem (TSPOPT)
 Visit every city and go back home.
 Input: An edge-weighted graph G = (V, E, w)
 Output: A tour (simple cycle of all vertices) with min total weight
- Corresponding decision problem (TSPDEC) Input: G = (V, E, w) and B ≥ 0 Question: Is there a tour in G with total weight ≤ B?

- Meta Claim: DEC is no harder than its corresponding OPT
- ▶ So, to study hardness of an OPT, we focus on its DEC.
- Any DEC is actually a language since the yes-no question in DEC can be interpreted as asking membership of a string in a language.
- Example: Prime (DEC) Input: An integer x ≥ 2 Question: Is x a prime? (This is a yes/no question.)
- L_{prime} = {< x > |x is prime} (This is a language)
 L_{prime} is actually the language of all prime numbers encoded in binary representation.

Encoding anything to a binary string:

- Integer x to binary string < x >
- Graph G to < G >
- Matrix *M* to < M >
- List *L* to < *L* >

Revisit TSPDEC and its corresponding language :

- Input (or Instance): G and B ≥ 0 Question: Does G contain a tour with the total weight ≤ B?
- L_{TSPDEC} = { < G, B > |There is a tour with total weight ≤ B} Is string < G, B > a member of language L_{TSPDEC}?

- The number of languages over a non-unary alphabet is uncountably infinite. So is the number of DECs (or decision problems).
- However, the number of programs that a computer can use to solve problems is countably infinite. Therefore, there are more problems than there are programs. Thus, there must be some unsolvable problems.

An unsolvable (or undecidable) problem : The famous Halting Problem (by Turing):

- Input: Any Turing Machine M and any string s
- Question: Does M halt on s?
- The modern version:
 - Input: Any program P and any input I
 - Output: "Yes" if P terminates on I and "No" otherwise. Or Question: Does P terminate on I?

Figure 2: Does P terminate/halt on I?

- **8.2 Turing machine** (*Sipser 3.1, pp. 165-175*)
 - A Turing machine includes a control unit, a read-write head, and a one-way infinite tape.

Figure 3: Picture of a Turing Machine

How to describe a snapshot of a TM without drawing a picture? Use a configuration: 010010q11011

- ► TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where
 - Q: The finite set of states for the control unit.
 - Σ: An alphabet of input symbols, not containing the "blank symbol", B.
 - Γ : The complete set of tape symbols. $\Sigma \cup \{B\} \subset \Gamma$.
 - δ: The transition function from Q × Γ to Q × Γ × D, where D = {L, R}.
 - For example, $\delta(q,0) = (p, X, L)$ and $\delta(p, Y) = (q, B, R)$.
 - q_0 : The start state.
 - q_{accept}: The accept state.
 - q_{reject}: The reject state.

Configuration: Use a string to describe the look of a TM at a certain time, instead of drawing a picture of the TM. For example, string X₁ ··· X_{i-1}qX_i ··· X_n gives a description (snapshot) of the TM at a time, when the current state is q, the tape content is X₁ ··· X_n, and the head is scanning (pointing to) X_i. Such a string is called the configuration of the TM at a certain time.

How a TM changes its configurations:

Figure 4: Transitions applied on configurations

- Three important configurations:
 - (1) Starting configuration $q_0 w$,
 - (2) accepting configuration $uq_{accept}v$,
 - (3) rejecting configuration $uq_{reject}v$, where (2) and (3) are called the halting configurations.
- Language of a Turing machine M (or language recognized/accepted by M) is

 $L(M) = \{ w \in \Sigma^* | q_0 w \stackrel{*}{\vdash} \alpha q_{accept} \beta \text{ for any } \alpha, \beta \in \Gamma^* \}.$

- Note: To produce ⊢, type "backslash vdash" in the math mode.
- For any given input, a TM has three possible outcomes: accept, reject, and loop. Accept and reject mean that the TM halts on the given input, but loop means that the TM does not halt on the input.

▶ **TRL:** A language A is Turing-recognizable if there is a TM M such that A = L(M). In other words,

▶ $\forall w \in A$, *M* accepts *w* by entering q_{accept} .

► $\forall w \notin A$, *M* does not accept (i.e., it may reject or loop).

- ▶ **TDL:** A language A is Turing-decidable if there is a TM M such that A = L(M) and M halts on all inputs. In other words,
 - ▶ $\forall w \in A$, *M* accepts *w*.
 - ► $\forall w \notin A$, *M* rejects *w*.

Such TMs are a good model for algorithms.

Figure 5: TRLs vs. TDLs

How to design a TM that recognizes/accepts a language?

Example 1: Give a implementation-level description of a TM *M* that **accepts** $\{0^{n}1^{n}|n \ge 0\}$, i.e., $L(M) = \{0^{n}1^{n}|n \ge 0\}$

Idea: $w = 000111 \Rightarrow X00Y11 \Rightarrow XX0YY1 \Rightarrow XXXYYY$

M ="On input string $w = 0^n 1^n$

- 1. If $w = \varepsilon$, accept
- 2. Mark the first 0 with X, move right to mark the first 1 with Y
- Move left to find the leftmost 0. If no 0, accept, else go to stage 2"

Example 1 : (more) Define a TM that accepts $\{0^n 1^n \mid n \ge 0\}$									
δ	0	1	X	Y	B				
q_0	$(q_1, X, R)^1$	-	-	$(q_3, Y, R)^8$	$(q_a, B, R)^0$				
q_1	$(q_1, 0, R)^2$	$(q_2, Y, L)^4$	-	$(q_1, Y, R)^3$	-				
q_2	$(q_2, 0, L)^6$	-	$(q_0, X, R)^7$	$(q_2, Y, L)^5$	-				
q_3	-	-	-	$(q_3, Y, R)^9$	$(q_a, B, R)^{10}$				
q _a	-	-	_	_	-				

Figure 6: Transition diagram for TM

Example 2: Give an implementation-level description of a TM *M* that **decides** $\{0^n1^n | n \ge 0\}$.

M = "On any input string $w \in \{0, 1\}^*$

- **1.** If $w \neq 0^* 1^*$, reject
- Sweep left to right. If no 0 and 1 are found, accept. If only 0 is found or 1 is found, but not both, reject. If both 0 and 1 are found, go to stage 3
- 3. Mark the leftmost 0 with X. Move head to right to find and mark the first 1 with Y
- 4. Move head to left end, and then go to stage 2"

Example 3.7 (Sipser p. 171): Give a TM *M* that **decides** $A = \{0^{2^n} | n \ge 0\} = \{0, 00, 0000, 00000000, \cdots\}.$

Consider the following strings to figure out an algorithm (TM): (1) odd length, e.g., $w_1 = 00000 \Rightarrow 0X0X0$;

(2) even length, e.g.,

 $w_{2} = 00000000 \Rightarrow 0X0X0X0X \Rightarrow 0XXX0XXX \Rightarrow 0XXXXXXX;$ $w_{3} = 000000 \Rightarrow 0X0X0X$

TM M = "On input string $w \in \{0\}^*$:

- 1. Sweep left to right, crossing off every other 0
- 2. If in stage 1 the tape contained a single 0, accept (e.g., w_2)
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, **reject** (e.g., w_1 and w_3)
- 4. Move head to the left end of the tape
- 5. Go to stage 1"

8.4 Variations of TMs (*Sipser 3.2 (pp. 148-159)*)

- ► TM with multi-tapes (and multi-heads) ($\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$).
- TM with multi-strings (and multi-heads).
- TM with multi-heads.
- TM with multi-tracks.
- TM with two-way infinite tape.
- ► TM with multi-dimensional tape.
- Nondeterministic TM's (δ : Q × Γ → 2^{Q×Γ×D}). Consider a move in NTM, δ(q₃, X) = {(q₅, Y, R), (q₃, X, L)}. How does the NTM know which step it should take? One way to look at this is: the NTM is the "luckiest possible guesser" and it always picks a transition that eventually leads to an accepting state if there is such a transition.

Theorem: The equivalent **computing power** of the above TM's:

For any language *L*, if $L = L(M_1)$ for some TM M_1 with multi-tapes, multi-strings, multi-heads, multi-tracks, two-way infinite tape, multi-dimensional tape, or nondeterminism, then $L = L(M_2)$ for some basic TM M_2 .

Theorem: The equivalent **computing speed** of the above TM's except for nondeterministic TM's:

For any language *L*, if $L = L(M_1)$ for some TM M_1 with multi-tapes, multi-strings, multi-heads, multi-tracks, two-way infinite tape, or multi-dimensional tape in a polynomial number of steps, then $L = L(M_2)$ for some basic TM M_2 in a polynomial number of steps (with a higher degree).

Or in other words, all reasonable models of computation can simulate each other with only a polynomial loss of efficiency.

Note: The speed-up of a nondeterministic TM vs. a basic TM is exponential.

The Church-Turing Thesis:

Any reasonable attempt to model mathematically algorithms and their time performance is bound to end up with a model of computation and associated time cost that is equivalent to Turing machines within a polynomial. (The power of TM.)

Nondeterministic TMs

- $\blacktriangleright \ \delta: Q \times \Gamma \to 2^{Q \times \Gamma \times D}.$
- Consider a move in NTM, $\delta(q_3, X) = \{(q_5, Y, R), (q_3, X, L)\}$. How does the NTM know which step it should take?
- One way to look at this is that the NTM is the "luckiest possible guesser" and it always picks a transition that eventually leads to an accepting state if there is such a transition.
- The other way is to imagine that the NTM branches into many copies, each of which follows one of the possible transition.
- DTM (path) versus NTM (tree): See the wiki page for "Nondeterministic Turing Machine".

Theorem: A TDL is also a TRL, but not vice versa. **Theorem**: About *A* and \overline{A} :

- 1. If A is Turing-decidable, so is \overline{A} .
- If A and A are both Turing-recognizable, then A is Turing-decidable. (See Theorem 4.22, p.210)
- 3. For any A and \overline{A} , we have one of the following possibilities:
 - (1) Both are Turing-decidable;
 - (2) Neither is Turing-recognizable;
 - (3) One is Turing-recognizable but not decidable, the other is not Turing-recognizable.

Figure 7: A language and its complement

Some closure properties:

TRLs and TDLs are both closed under

- Union
- Intersection
- Concatenation
- Star

In addition, TDLs are closed under complement, and TRLs are closed under homomorphism.

Examples to prove closure properties:

Example 1: If L_1 and L_2 are TD, so is $L_1 \cup L_2$.

Pf: Let TM M_1 and TM M_2 decide L_1 and L_2 , respectively. Then we have the following TM *M* to decide $L_1 \cup L_2$.

TM M = "On input w:

- 1. Run *M*₁ on *w*
- 2. If M₁ accepts, accept
- 3. else run M_2 on w
- 4. If *M*₂ accepts, **accept**
- 5. else reject"

Example 2: If L_1 and L_2 are TR, so is $L_1 \cup L_2$.

Pf: Let TM M_1 and TM M_2 recognize L_1 and L_2 , respectively. Then we have the following TM *M* to recognize $L_1 \cup L_2$.

TM M = "On input $w \in L_1 \cup L_2$

- 1. Run M_1 and M_2 alternately on w, one step at a time
- 2. If either accepts, accept"

Example 3: If L is TD, so is L^* .

Pf: Let TM *M* decide *L*. Then we have the following TM M^* to decide L^* .

Note: $w \in L^*$ if $w = w_1 w_2 \cdots w_k$ for some $k \in [1, |w|]$, where $w_i \in L$ for $i = 1, \cdots, k$.

TM M^* = "On input w

- 1. If $w = \varepsilon$, accept
- **2**. $\forall k = 1, 2, \cdots, |w|$
- 3. \forall partitions of *w* into *k* substrings, i.e., w_1, w_2, \dots, w_k
- 4. Run *M* on w_1, w_2, \dots, w_k
- 5. If *M* accepts w_i , $\forall i = 1, \dots k$, accept

6. reject"

Example 4: If *L* is TR, so is L^* **Pf:** Let TM *M* recognize *L*. Then we have the following NTM *N* to recognize L^*

NTM N = "On input $w \in L^*$

- Nondeterministically generate (guess) a partition of *w* into *w*₁, *w*₂, · · · , *w*_k
- 2. Run *M* on w_1, w_2, \dots, w_k
- 3. If *M* accepts w_i , $\forall i = 1, 2, \dots, k$, accept"

9.1 A binary encoding scheme for TMs

TM \Leftrightarrow binary number.

 $Q = \{q_1, q_2, \dots, q_{|Q|}\}$ with q_1 to be the start state, q_2 to be the accept state, and q_3 to be the reject state.

$$\bar{} = \{X_1, X_2, \dots, X_{|\Gamma|}\}.$$

 $D = \{D_1, D_2\}$ with D_1 to be L and D_2 to be R.

A transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ is coded as $0^i 10^j 10^k 10^l 10^m$.

A TM is coded as $C_1 11 C_2 11 \cdots 11 C_n$, where each *C* is the code for a transition.

• An example: $\delta(q_2, X_3) = (q_1, X_4, D_1)$ can be coded as 001000101000010

An example: 000010010100100 is the encoding of δ(q₄, X₂) = (q₁, X₂, D₂)

- TM *M* with input *w* is represented by < M, w > and encoded as < M > 111 w.
- Using similar schemes, we can encode DFA, NFA, PDA, RE, and CFG into binary strings.

9.2 Decidable languages (Sipser 4.1, pp. 194-201)

• $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts string } w \}.$

- $A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts string } w \}.$
- ► $A_{REX} = \{ < R, w > | R \text{ is a RE that generates string } w \}.$

• $E_{DFA} = \{ \langle B \rangle | B \text{ is a DFA and } L(B) = \emptyset \}.$

- $EQ_{DFA} = \{ < B_1, B_2 > | B_1 \text{ and } B_2 \text{ are DFAs and } L(B_1) = L(B_2) \}.$
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}.$
- $E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$
- Every CFL is decidable.

Note: The proofs of these TDLs can be found in Sipser's book.

Example 1. Prove that $A_{DFA} = \{ \langle B, w \rangle | w \in L(B) \}$ is TD.

TM M = On input $\langle B, w \rangle$ Simulate *B* on input *w* If *B* ends in $q \in F$, **accept** else **reject**

Example 2. Prove that $E_{DFA} = \{ < B > | L(B) = \emptyset \}$ is TD.

TM M = On input $\langle B \rangle$ Create the state diagram *G* for *B* Use DFS to generate all simple paths from q_0 to any $q \in F$ If no path is found, **accept** else **reject**

Countable and uncountable sets

- The size of an infinite set: Countably infinite (or countable) and uncountably infinite (or uncountable).
- A set A is countable if there is a 1-1 correspondence with N = {1,2,3,...} (the set of natural numbers).
- The following sets are countable.
 - 1. The set of even (or odd) numbers
 - 2. The set of rationale numbers
 - 3. The set of binary strings
 - 4. The set of TMs
- But, the set of languages is uncountable.
- There are more languages than there are TMs. So there must be languages that are non-TRL.

9.4 A non-TRL

- Consider the binary alphabet.
- Order and label strings: ε, 0, 1, 00, 01, 10, 11, ···.
 Let w_i be *i*th string in the above lexicographic ordering.
- ► Order and label TMs: M₁, M₂, M₃, Let M_i be the TM whose code is w_i, i.e. < M_i >= w_i. In case w_i is not a valid TM code, let M_i be the TM that immediately rejects any input, i.e., L(M_i) = 0.

3	0	1	00	01	10	11	000	•••
<i>W</i> ₁	<i>W</i> ₂	W ₃	<i>W</i> 4	W 5	W ₆	W 7	W ₈	• • •
M_1	M_2	M ₃	M_4	M_5	M_6	M_7	<i>М</i> 8	•••

- For any string w_i , there is a TM M_i
- For any TM M_i , there is a string w_i , where $< M_i >= w_i$.

- ▶ Define diagonalization language $A_D = \{w_i | w_i \notin L(M_i)\}$.
- The corresponding decision problem: Input: Any binary string w_i Question: Is w_i not accepted by M_i?
- Prove that A_D is non-TR (not a TRL).
 Proof:
 - 1. Suppose, by contradiction, A_D is TR, i.e., there is a TM M such that $A_D = L(M)$.
 - 2. Then $M = M_i$ with code w_i for some *i*.
 - 3. $w_i \in A_D$ iff $w_i \notin L(M_i)$ by definition of A_D .
 - 4. $w_i \in A_D$ iff $w_i \in L(M_i)$ by $A_D = L(M_i)$.

٠

5. A contradiction within the two iff statements

A summary of some new concepts learned recently

- Encoding of TM, DFA, NFA, PDA, RE, Graph, Matrix, list, etc. to binary strings: e.g., < M >, < M, w >, < M₁, M₂ >
- Infinite sets: Countable vs. uncountable. Compare the set of TMs (countable) vs. the set of languages (uncountable). There are languages without a TM to accept/recognize.
- Correspondence between binary strings and Turing machines, i.e., for any w_i, there is a M_i and for any M, there is *i* s.t. < M >= w_i. Thus M can be renamed as M_i
- ► The diagonalization language $A_D = \{w_i \mid w_i \notin L(M_i)\}$ non-TR.

9.5 A TRL but non-TDL (*Sipser 4.2 (pp. 173-174 and 179-182*))

- A universal TM:
 - Each TM (among those discussed) can only solve a single problem, however, a computer can run arbitrary algorithms. Can we design a general-purposed TM that can solve a wide variety of problems just as a computer?
 - Theorem: There is a universal TM U which simulates an arbitrary TM M with input w and produces the same output. TM U = "On input < M, w >

Run M on w"

TM U is an abstract model for computers just as TM M is a formal notion for algorithms.

Figure 8: The universal Turing machine

► Let $A_{TM} = \{ < M, w > | M \text{ accepts string } w \}$ Or equivalently $A_{TM} = \{ < M, w > | w \in L(M) \}$ Or equivalently as a decision problem Input: A TM *M* and a string *w* Question: Is *w* accepted by *M*?

 A_{TM} is called the universal language.

 A_{TM} is TR since it can be recognized by TM U.

```
TM U = "On input < M, w > \in A_{TM}
Run M on w
If M accepts w, accept"
```

• $A_{TM} = \{ < M, w > | w \in L(M) \}$ is non-TD. (By C&C)

1. Assume that A_{TM} is decided by TM T.

Input to T is < M, w >

Output from T is accept if $w \in L(M)$ and reject if $w \notin L(M)$

- On input < M, w >, T accepts < M, w > iff M accepts w. (We can also say, T rejects < M, w > iff M rejects w.)
- 3. Define TM *D* as follows:

Observe that *D* accepts < *M* > iff *T* rejects < *M*, < *M* >>.
 Feed < *D* > to *D*.

- 6. From steps 4 and 2, D accepts < D > iff T rejects < D, < D >> iff D rejects < D >.
- 7. A contradiction in step 6.

- ▶ Another proof that $A_{TM} = \{ < M, w > | w \in L(M) \}$ is non-TD.
- Proof. Assume that A_{TM} is TD by TM T, i.e.,
- ▶ Let TM *T* decide *A*_{*TM*}, i.e.,

$$T(\langle M, w \rangle) = egin{cases} extbf{accept} & w \in L(M) \ extbf{reject} & w
otin L(M) \end{cases}$$

- Define TM D = "On input < M > Run T on < M, < M >> If T accepts, reject If T rejects, accept"
- ▶ D accepts < M > iff T rejects < M, < M >>
- Feed < D > to D. Then, D accepts < D > iff T rejects < D, < D >> iff < D >∉ L(D) iff D rejects < D >.
- ► A contradiction! So A_{TM} is non-TD.

10.1 A summary of terminology in Computability Theory

- Language, Decision Problem, Problem
- TM, Algorithm, Solution
- Decide, Solve, (Decidable, Solvable)
- Undecidable, Unsolvable
- Accept, Recognize, (Acceptable, Recognizable)

10.2 A review of some languages and corresponding decision problems

 HALT_{TM} = {< M, w > |M halts on w} (TR but non-TD) Input: TM M and string w Question: Does M halt on w? It is undecidable whether TM M halts string w for any given M and w.

10.3 Reducibility or Reduction(*Sipser 5 (pp. 216-220)*)

We say that problem *A* reduces (or is reducible) to problem *B*, written as $A \le B$, if we can use a solution (TM) to *B* to solve *A* (i.e., if *B* is decidable/solvable, so is *A*.).

We may use reducibility to prove undecidability as follows:

- 1. Let A be non-TD, such as A_D or A_{TM} . Wish to prove B is non-TD.
- 2. Assume *B* is TD. Then there exists a TM M_B to decide *B*.
- 3. If we can use M_B as a sub-routine to construct a TM M_A that decides A, then A is TD. We have a contradiction.
- 4. The construction of TM M_A using TM M_B establishes that A reduces to B, i.e., $A \le B$. (A is no harder than B)
- 5. Corollary 5.23 (Sipser p. 236): If $A \le B$ and A is non-TD, then B is non-TD.

10.4 A proof of the non-TD A_{TM} by reduction

- Proof sketch:
 - 1. Assume A_{TM} is TD, by contradiction.
 - 2. Let TM S decide A_{TM} , by the definition of a TDL.
 - 3. Try to construct a TM *D* that decides A_D . The construction will include TM *S*. This shows A_D is TD.
 - 4. A contradiction since we know A_D is non-TR.

Note: This proof uses the TM *S* for A_{TM} to build a TM *D* for A_D , i.e., $A_D \le A_{TM}$.

- Recall two languages:
 - 1. $A_{TM} = \{ < M, w > | w \in L(M) \}.$
 - 2. $A_D = \{w_i | w_i \notin L(M_i)\}$. (A_D is non-TR)

Prove that A_{TM} is non-TD by reduction

- 1. Assume A_{TM} is TD, by contradiction.
- 2. Let TM S decide A_{TM}, i.e.,

$$S(\langle M, w \rangle) = egin{cases} extbf{accept} & w \in L(M) \ extbf{reject} & w
otin L(M) \end{cases}$$

- 3. Construct a TM *D* that decides A_D , a non-TRL. TM *D* ="On input w_i Run *S* on $< M_i, w_i >$ If *S* accepts, **reject** else **accept**"
- Why does *D* decide *A_D*?
 S accepts < *M_i*, *w_i* > *iff w_i* ∈ *L*(*M_i*) iff *w_i* ∉ *A_D* iff *D* rejects *w_i*. So *S* accepts iff *D* rejects.
- 5. So A_D is TD. A contradiction.

10.5 The halting problem (Theorem 5.1 (pp. 216-217))

• $HALT_{TM} = \{ < M, w > | M \text{ halts on string } w \}.$

•
$$A_{TM} = \{ < M, w > | M \text{ accepts } w \}$$

 $\blacktriangleright A_{TM} \subseteq HALT_{TM}$

- ► *HALT_{TM}* is TR since it can be recognized by TM *U*.
- **Theorem 5.1** $HALT_{TM}$ is non-TD. (Will show $A_{TM} \le HALT_{TM}$)

Theorem $HALT_{TM}$ is non-TD. Prove by reduction from A_{TM} , i.e., $A_{TM} \leq HALT_{TM}$

1. Assume TM *R* decides $HALT_{TM}$. Then *R* accepts < M, w > iff *M* halts on *w*. Construct TM *S* to decide A_{TM} .

TM *S* = "On input < *M*, *w* > Run *R* on < *M*, *w* > if *R* rejects, **reject** if *R* accepts, run *M* on *w* until it halts if *M* accepts, **accept**; else **reject**"

2. Why does *S* accept A_{TM} ? *R* rejects $< M, w > \Rightarrow M$ doesn't halt on $w \Rightarrow M$ doesn't accept $w \Rightarrow < M, w > \notin A_{TM} \Rightarrow S$ rejects *R* accepts $< M, w > \Rightarrow M$ halts on *w* (accepts or rejects? Need to run *M* on *w* to find out) *M* accepts $w \Rightarrow < M, w > \in A_{TM}$

3. Since we constructed a TM *S* that decides A_{TM} using TM *R*, so A_{TM} is TD. A contradiction to that A_{TM} is proved to be non-TD.

10.6 Other non-TD problems (*Sipser 5.1 (pp. 216-220)*) The following problems about Turing machines are non-TD:

▶ Whether
$$L(M) = \emptyset$$
 for any TM M .
 $E_{TM} = \{ < M > | L(M) = \emptyset \}$
 $NE_{TM} = \{ < M > | L(M) \neq \emptyset \}$ (complement of E_{TM})

- Whether $L(M_1) = L(M_2)$ for any two TMs M_1 and M_2 . $EQ_{TM} = \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$
- Whether L(M) is finite for any TM M FINITE_{TM} = {< M > |L(M) is finite}
- Whether $\varepsilon \in L(M)$ for any TM *M*. $ESTRING_{TM} = \{ \langle M \rangle | \varepsilon \in L(M) \}$
- Whether $L(M) = \Sigma^*$ for any TM M. $ALL_{TM} = \{ < M > | L(M) = \Sigma^* \}$

Rice's Theorem: Every nontrivial property of the TRLs (or TMs) is undecidable.

Pf: $E_{TM} = \{ \langle M \rangle | L(M) = \emptyset \}$ is non-TD. Let *R* decides E_{TM} .

$$R(< M >) = \begin{cases} \text{accept} & L(M) = \emptyset \\ \text{reject} & L(M) \neq \emptyset \end{cases}$$

(2) Use *R* to construct TM *S* that decides A_{TM} , i.e., $A_{TM} \le E_{TM}$. TM S = "On input < M, w >,

- ► Construct TM M_1 = "On input x If $x \neq w$ reject else run M on w" Note: $L(M_1) = \{w\}$ if $w \in L(M)$; $L(M_1) = \phi$ if $w \notin L(M)$
- Run *R* on $< M_1 >$
- If R accepts, reject; and if R rejects, accept"

(3) Why does *S* decide A_{TM} ? $L(M_1) = \emptyset$ if *M* does not accept *w*; and $L(M_1) = \{w\}$ if *M* accepts *w*. I.e., $L(M_1) = \emptyset$ iff $w \notin L(M)$. So *R* accepts $< M_1 > \text{iff } L(M_1) = \emptyset$ iff $w \notin L(M)$ iff *S* rejects. (4) TM *S* decides the non-TD A_{TM} . A contradiction.

A graphical explanation of the undecidability proof of E_{TM}

Figure 9: Reduction from A_{TM} to E_{TM}

Important questions to answer:

Input: how to define M₁ (the input to R) using < M, w > (the input to S)?

• Output: how the output from *R* implies the output from *S*? Goal: Design M_1 such that the output from *R* defines that of *S*.

Prove that $NE_{TM} = \{ < M > | L(M) \neq 0 \}$ is TR but non-TD. (1) To prove NE_{TM} is TR, we give a NTM *N* to recognize NE_{TM} . NTM N = "On input $< M > \in NE_{TM}$

- Guess a string w
- Run M on w
- If M accepts, accept"

We can also use a deterministic TM to recognize NE_{TM} . TM D = "On input $< M > \in NE_{TM}$

Recall the binary sequence w_1, w_2, w_3, \ldots

Systematically generates strings: ε, 0, 1, 00, 01, …

Run *M* on w_1, \dots, w_i , each for *i* steps

▶ If in the loop above, *M* ever accepts some *w_i*, then **accept**"

An explanation of the TM *D* that recognizes NE_{TM} :

Assume w_9 is accepted by *M* in 7 steps. Assume w_{10} is accepted by *M* in 12 steps.

i = 1: Run M on w_1 for 1 step; i = 2: Run M on w_1, w_2 each for 2 steps; i = 3: Run M on w_1, w_2, w_3 each for 3 steps; i = 9: Run M on w_1, w_2, \cdots, w_9 for 9 steps; (accepted)

i = 12: Run *M* on $w_1, w_2, \dots, w_{10}, \dots, w_{12}$ for 12 steps (accepted)

(2) To prove $NE_{TM} = \{ < M > | L(M) \neq \emptyset \}$ is non-TD, assume it is decided by TM *R*. Then *R* accepts < M > iff $L(M) \neq \emptyset$. Construct a TM *S* that decides the undecidable A_{TM} . Then a contradiction.

TM *S* = "On input < *M*, *w* >

1. Construct TM M_1 ="On input x

If $x \neq w$, reject else Run *M* on *w*"

Note: $L(M_1) = \{w\}$ if $w \in L(M)$; $L(M_1) = \phi$ if $w \notin L(M)$

2. Run *R* on
$$< M_1 >$$

3. If R accepts, accept; else reject"

Why does *S* accept A_{TM} ? $L(M_1) = \emptyset$ if $w \notin L(M)$ and $L(M_1) = \{w\}$ if $w \in L(M)$. In other words, $L(M_1) \neq \emptyset$ iff $w \in L(M)$. *R* accepts $< M_1 > \text{iff } L(M_1) \neq \emptyset$ iff $w \in L(M)$ iff $< M, w > \in A_{TM}$

iff *S* accepts < M, w >. So A_{TM} is TD. A contradiction.

About E_{TM} and its complement NE_{TM}

We proved: E_{TM} is non-TD. NE_{TM} is TR.

Recall the theorem on page 120 . For A and \overline{A} ,

- 1. Both are TD; (Both are TR)
- 2. Neither is TR;
- 3. One is TR but non-TD, the other is non-TR

We immediately have the following results.

(1) NE_{TM} is non-TD (If NE_{TM} is TD, so is E_{TM})

(2) E_{TM} is non-TR (If E_{TM} is TR, both E_{TM} and NE_{TM} are TD)

Theorem 5.4 $EQ_{TM} = \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$ is non-TD. Reduce from $E_{TM} = \{ < M > | L(M) = 0 \}.$

1. Assume EQ_{TM} is decided by TM R.

$$R(< M_1, M_2 >) = \begin{cases} \text{accept} & L(M_1) = L(M_2) \\ \text{reject} & L(M_1) \neq L(M_2) \end{cases}$$

2. Construct TM *S* that decides the undecidable E_{TM} . TM *S* = "On input < *M* >

> Construct TM M_1 ="On input *x*, reject" Run *R* on $< M_1, M >$ *R* accepts $< M_1, M >$ iff $\emptyset = L(M)$ iff *S* accepts < M >*R* rejects $< M_1, M >$ iff $\emptyset \neq L(M)$ iff *S* rejects < M >

- Why does S decides E_{TM}? R accepts < M₁, M > iff L(M₁) = L(M) iff L(M) = 0 iff S accepts < M >.
- 4. S decides E_{TM} . So E_{TM} is TD. A contradiction.

10.7 Post's correspondence problem (PCP) (*Sipser 5.2*)

INPUT: $P = \{\frac{t_1}{b_1}, \frac{t_2}{b_2}, \dots, \frac{t_k}{b_k}\}$, where t_1, t_2, \dots, t_k and b_1, b_2, \dots, b_k are strings over alphabet Σ . (*P* is a collection of dominos, each containing two strings, with one stacked on top of the other.)

QUESTION: Does *P* contain a match? Or, is there $i_1, i_2, \ldots, i_l \in \{1, 2, \ldots, k\}$ with $l \ge 1$ such that $t_{i_1}t_{i_2}\cdots t_{i_l} = b_{i_1}b_{i_2}\cdots b_{i_l}$?

Equivalently, defined as a language, we have $L_{PCP} = \{ < P > | P \text{ is an instance of PCP with a match} \}.$

For input $P_1 = \{\frac{b}{ca}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\}$, sequence 2, 1, 3, 2, 4 indicates a match. Since $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$, top=bottom=abcaaabc

For $P_2 = \{\frac{abc}{ab}, \frac{ca}{a}, \frac{acc}{ba}\}$, there is no match since all top strings are longer than bottom strings.

PCP is non-TD for the binary alphabet.

A Summary of Computability Theory

- 1. Definitions and concepts:
 - Turing machine, how it works, its language, its encoding, Church-Turing Thesis
 - TRL and TDL, properties, how M accepts/decides a language, implementation-level description
 - Reduction, the meaning of $A \le B$ (*A* is no harder than *B*), use reduction to prove undecidability
- 2. Various proofs:
 - A language is TR/TD (prove by definition)
 - A language is non-TR/non-TD (prove by a combination of contradiction, construction, and reduction)
 - Many examples to learn from