
CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Smal Physics Lab 111 (section 1)

TTh 9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

1

General Information
▶ Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -

3:00 on zoom or by email
▶ Grader: TBD for section 1 (office hour TBD on BB)
▶ Grader: TBD for section 2 (office hour TBD on BB)
▶ Textbook: Intro to the theory of computation (any edition),

Michael Sipser. An e-book in PDF maybe available online.
▶ Prerequisites/background: Linear algebra, Data structures

and algorithms, and Discrete math

2

Computability Theory: An introduction
▶ A study of capability and limitation of computers, or

equivalently, what they can do and what they cannot.
▶ Given a problem, can it be solved at all?
▶ The set of all problems can be divided into two subsets.

One subset contains all solvable problems, such as
sorting, finding shortest path in a graph. The other subset
contains those unsolvable problems.

▶ Computability Theory is to study techniques to prove if a
given problem is solvable or unsolvable.

Solvable unsolvableAll

Figure 1: Solvable vs. unsolvable

3

8.1 Unsolvable problems
▶ A problem is said to be unsolvable/undecidable if it cannot

be solved/decided by any algorithm.
▶ Most interesting problems are optimization problems (OPT)
▶ Decision problems (DEC) ask a yes-no question.
▶ Example: The Traveling Salesman Problem (TSPOPT)

Visit every city and go back home.
Input: An edge-weighted graph G = (V ,E ,w)
Output: A tour (simple cycle of all vertices) with min total
weight

▶ Corresponding decision problem (TSPDEC)
Input: G = (V ,E ,w) and B ≥ 0
Question: Is there a tour in G with total weight ≤ B?

4

▶ Meta Claim: DEC is no harder than its corresponding OPT
▶ So, to study hardness of an OPT, we focus on its DEC.
▶ Any DEC is actually a language since the yes-no question

in DEC can be interpreted as asking membership of a
string in a language.

▶ Example: Prime (DEC)
Input: An integer x ≥ 2
Question: Is x a prime? (This is a yes/no question.)

▶ Lprime = {< x > |x is prime} (This is a language)
Lprime is actually the language of all prime numbers
encoded in binary representation.

5

▶ Encoding anything to a binary string:
▶ Integer x to binary string < x >
▶ Graph G to < G >
▶ Matrix M to < M >
▶ List L to < L >

▶ Revisit TSPDEC and its corresponding language :
▶ Input (or Instance): G and B ≥ 0

Question: Does G contain a tour with the total weight ≤ B?
▶ LTSPDEC = {< G,B > |There is a tour with total weight ≤ B}

Is string < G,B > a member of language LTSPDEC?

6

▶ The number of languages over a non-unary alphabet is
uncountably infinite. So is the number of DECs (or decision
problems).

▶ However, the number of programs that a computer can use
to solve problems is countably infinite. Therefore, there are
more problems than there are programs. Thus, there must
be some unsolvable problems.

7

▶ An unsolvable (or undecidable) problem :
The famous Halting Problem (by Turing):
▶ Input: Any Turing Machine M and any string s
▶ Question: Does M halt on s?

▶ The modern version:
▶ Input: Any program P and any input I
▶ Output: “Yes” if P terminates on I and “No” otherwise.

Or Question: Does P terminate on I?

AlgorithmP

I

Yes

No

Figure 2: Does P terminate/halt on I?

8

8.2 Turing machine (Sipser 3.1, pp. 165-175)
▶ A Turing machine includes a control unit, a read-write

head, and a one-way infinite tape.

δ(

R/W head

0 1 1 1 110 0 0 1 0 B B

q q, 1)=(p, X, L)

Tape and tape squares Infinitely long

Figure 3: Picture of a Turing Machine

▶ How to describe a snapshot of a TM without drawing a
picture?
Use a configuration: 010010q11011

9

▶ TM M = (Q,Σ,Γ,δ,q0,qaccept ,qreject), where
▶ Q: The finite set of states for the control unit.
▶ Σ: An alphabet of input symbols, not containing the “blank

symbol”, B.
▶ Γ: The complete set of tape symbols. Σ∪{B} ⊂ Γ.
▶ δ: The transition function from Q×Γ to Q×Γ×D, where

D = {L,R}.
▶ For example, δ(q,0) = (p,X ,L) and δ(p,Y) = (q,B,R).
▶ q0: The start state.
▶ qaccept : The accept state.
▶ qreject : The reject state.

10

▶ Configuration: Use a string to describe the look of a TM at
a certain time, instead of drawing a picture of the TM.
For example, string X1 · · ·Xi−1qXi · · ·Xn gives a description
(snapshot) of the TM at a time, when the current state is q,
the tape content is X1 · · ·Xn, and the head is scanning
(pointing to) Xi . Such a string is called the configuration of
the TM at a certain time.

11

▶ How a TM changes its configurations:
▶ If δ(q,Xi) = (p,Y ,L), then

X1 · · ·Xi−1qXi · · ·Xn ⊢ X1 · · ·Xi−2pXi−1YXi+1 · · ·Xn.
▶ If δ(q,Xi) = (p,Y ,R), then

X1 · · ·Xi−1qXi · · ·Xn ⊢ X1 · · ·Xi−1YpXi+1 · · ·Xn.

p

Xi−1X1
... Xi

... Xn

q

B X X
1

i−2 Xi−1 X
i+1 Xn

p

Y

δ(q, Xi)=(p, Y, L)

B

X X X1 i−1
...

i
... Xn B

q

X X Y X... ... X1 i−1 i+1 n B

δ(q, Xi)=(p, Y, R)

Figure 4: Transitions applied on configurations

12

▶ Three important configurations:
(1) Starting configuration q0w ,
(2) accepting configuration uqacceptv ,
(3) rejecting configuration uqrejectv ,
where (2) and (3) are called the halting configurations.

▶ Language of a Turing machine M (or language
recognized/accepted by M) is

L(M) = {w ∈ Σ∗|q0w
∗
⊢ αqacceptβ for any α,β ∈ Γ∗}.

▶ Note: To produce ⊢, type ”backslash vdash” in the math
mode.

▶ For any given input, a TM has three possible outcomes:
accept, reject, and loop. Accept and reject mean that the
TM halts on the given input, but loop means that the TM
does not halt on the input.

13

▶ TRL: A language A is Turing-recognizable if there is a TM
M such that A = L(M). In other words,
▶ ∀w ∈ A, M accepts w by entering qaccept .
▶ ∀w ̸∈ A, M does not accept (i.e., it may reject or loop).

▶ TDL: A language A is Turing-decidable if there is a TM M
such that A = L(M) and M halts on all inputs. In other
words,
▶ ∀w ∈ A, M accepts w .
▶ ∀w ̸∈ A, M rejects w .

Such TMs are a good model for algorithms.

A TM M to decide

accept
M

A TM to accept/recognize/verify

M
ww in A

accept

reject

Figure 5: TRLs vs. TDLs

14

How to design a TM that recognizes/accepts a language?

Example 1: Give a implementation-level description of a TM M
that accepts {0n1n|n ≥ 0}, i.e., L(M) = {0n1n|n ≥ 0}

Idea: w = 000111 ⇒ X00Y11 ⇒ XX0YY1 ⇒ XXXYYY

M =”On input string w = 0n1n

1. If w = ε, accept
2. Mark the first 0 with X , move right to mark the first 1 with Y
3. Move left to find the leftmost 0. If no 0, accept, else go to

stage 2”

15

Example 1: (more) Define a TM that accepts {0n1n | n ≥ 0}
δ 0 1 X Y B
q0 (q1,X ,R)1 - - (q3,Y ,R)8 (qa,B,R)0

q1 (q1,0,R)2 (q2,Y ,L)4 - (q1,Y ,R)3 -
q2 (q2,0,L)6 - (q0,X ,R)7 (q2,Y ,L)5 -
q3 - - - (q3,Y ,R)9 (qa,B,R)10

qa - - - - -

Y−>Y, R

q0 q1

q2q3 qa

0−>X, R

B −> B, R

B −> B, R X −> X, R
1 −> Y, L

Y −> Y, R
0 −> 0, R

Y −> Y, L
0 −> 0, L

Y−>Y, R

Figure 6: Transition diagram for TM

16

Example 2: Give an implementation-level description of a TM
M that decides {0n1n|n ≥ 0}.

M = ”On any input string w ∈ {0,1}∗

1. If w ̸= 0∗1∗, reject
2. Sweep left to right. If no 0 and 1 are found, accept. If only

0 is found or 1 is found, but not both, reject. If both 0 and 1
are found, go to stage 3

3. Mark the leftmost 0 with X. Move head to right to find and
mark the first 1 with Y

4. Move head to left end, and then go to stage 2”

17

Example 3.7 (Sipser p. 171): Give a TM M that decides
A = {02n |n ≥ 0}= {0,00,0000,00000000, · · ·}.

Consider the following strings to figure out an algorithm (TM):
(1) odd length, e.g., w1 = 00000 ⇒ 0X0X0;
(2) even length, e.g.,
w2 = 00000000 ⇒ 0X0X0X0X ⇒ 0XXX0XXX ⇒ 0XXXXXXX ;
w3 = 000000 ⇒ 0X0X0X

TM M = ”On input string w ∈ {0}∗:
1. Sweep left to right, crossing off every other 0
2. If in stage 1 the tape contained a single 0, accept (e.g., w2)
3. If in stage 1 the tape contained more than a single 0 and

the number of 0s was odd, reject (e.g., w1 and w3)
4. Move head to the left end of the tape
5. Go to stage 1”

18

8.4 Variations of TMs (Sipser 3.2 (pp. 148-159))
▶ TM with multi-tapes (and multi-heads)

(δ : Q×Γk → Q×Γk ×{L,R}k).
▶ TM with multi-strings (and multi-heads).
▶ TM with multi-heads.
▶ TM with multi-tracks.
▶ TM with two-way infinite tape.
▶ TM with multi-dimensional tape.
▶ Nondeterministic TM’s (δ : Q×Γ→ 2Q×Γ×D).

Consider a move in NTM, δ(q3,X) = {(q5,Y ,R),(q3,X ,L)}.
How does the NTM know which step it should take? One
way to look at this is: the NTM is the ”luckiest possible
guesser” and it always picks a transition that eventually
leads to an accepting state if there is such a transition.

19

Theorem: The equivalent computing power of the above
TM’s:

For any language L, if L = L(M1) for some TM M1 with
multi-tapes, multi-strings, multi-heads, multi-tracks, two-way
infinite tape, multi-dimensional tape, or nondeterminism, then
L = L(M2) for some basic TM M2.

20

Theorem: The equivalent computing speed of the above TM’s
except for nondeterministic TM’s:

For any language L, if L = L(M1) for some TM M1 with
multi-tapes, multi-strings, multi-heads, multi-tracks, two-way
infinite tape, or multi-dimensional tape in a polynomial number
of steps, then L = L(M2) for some basic TM M2 in a polynomial
number of steps (with a higher degree).

Or in other words, all reasonable models of computation can
simulate each other with only a polynomial loss of efficiency.

Note: The speed-up of a nondeterministic TM vs. a basic TM is
exponential.

21

The Church-Turing Thesis:

Any reasonable attempt to model mathematically algorithms
and their time performance is bound to end up with a model of
computation and associated time cost that is equivalent to
Turing machines within a polynomial. (The power of TM.)

22

Nondeterministic TMs
▶ δ : Q×Γ→ 2Q×Γ×D.
▶ Consider a move in NTM, δ(q3,X) = {(q5,Y ,R),(q3,X ,L)}.

How does the NTM know which step it should take?
▶ One way to look at this is that the NTM is the ”luckiest

possible guesser” and it always picks a transition that
eventually leads to an accepting state if there is such a
transition.

▶ The other way is to imagine that the NTM branches into
many copies, each of which follows one of the possible
transition.

▶ DTM (path) versus NTM (tree): See the wiki page for
”Nondeterministic Turing Machine”.

23

8.3 Properties of TDLs and TRLs

Theorem: A TDL is also a TRL, but not vice versa.
Theorem: About A and A:

1. If A is Turing-decidable, so is A.
2. If A and A are both Turing-recognizable, then A is

Turing-decidable. (See Theorem 4.22, p.210)
3. For any A and A, we have one of the following possibilities:

(1) Both are Turing-decidable;
(2) Neither is Turing-recognizable;
(3) One is Turing-recognizable but not decidable, the other
is not Turing-recognizable.

TDL

ALL

TRL

Figure 7: A language and its complement

24

Some closure properties:
TRLs and TDLs are both closed under
▶ Union
▶ Intersection
▶ Concatenation
▶ Star

In addition, TDLs are closed under complement, and TRLs are
closed under homomorphism.

25

Examples to prove closure properties:

Example 1: If L1 and L2 are TD, so is L1 ∪L2.

Pf: Let TM M1 and TM M2 decide L1 and L2, respectively. Then
we have the following TM M to decide L1 ∪L2.

TM M = ”On input w :
1. Run M1 on w
2. If M1 accepts, accept
3. else run M2 on w
4. If M2 accepts, accept
5. else reject”

26

Example 2: If L1 and L2 are TR, so is L1 ∪L2.

Pf: Let TM M1 and TM M2 recognize L1 and L2, respectively.
Then we have the following TM M to recognize L1 ∪L2.

TM M = ”On input w ∈ L1 ∪L2

1. Run M1 and M2 alternately on w , one step at a time
2. If either accepts, accept”

27

Example 3: If L is TD, so is L∗.

Pf: Let TM M decide L. Then we have the following TM M∗ to
decide L∗.
Note: w ∈ L∗ if w = w1w2 · · ·wk for some k ∈ [1, |w |], where
wi ∈ L for i = 1, · · · ,k .

TM M∗ = ”On input w
1. If w = ε, accept
2. ∀k = 1,2, · · · , |w |
3. ∀ partitions of w into k substrings, i.e., w1,w2, · · · ,wk

4. Run M on w1,w2, · · · ,wk

5. If M accepts wi , ∀i = 1, · · ·k , accept
6. reject”

28

Example 4: If L is TR, so is L∗

Pf: Let TM M recognize L. Then we have the following NTM N
to recognize L∗

NTM N = ”On input w ∈ L∗

1. Nondeterministically generate (guess) a partition of w into
w1,w2, · · · ,wk

2. Run M on w1,w2, · · · ,wk

3. If M accepts wi , ∀i = 1,2, · · · ,k , accept”

29

9.1 A binary encoding scheme for TMs
▶ TM ⇔ binary number.

Q = {q1,q2, . . . ,q|Q|} with q1 to be the start state, q2 to be
the accept state, and q3 to be the reject state.
Γ = {X1,X2, . . . ,X|Γ|}.
D = {D1,D2} with D1 to be L and D2 to be R.
A transition δ(qi ,Xj) = (qk ,Xl ,Dm) is coded as
0i10j10k10l10m.
A TM is coded as C111C211 · · ·11Cn, where each C is the
code for a transition.

▶ An example: δ(q2,X3) = (q1,X4,D1) can be coded as
001000101000010

▶ An example: 000010010100100 is the encoding of
δ(q4,X2) = (q1,X2,D2)

30

▶ TM M with input w is represented by < M,w > and
encoded as < M > 111w .

▶ Using similar schemes, we can encode DFA, NFA, PDA,
RE, and CFG into binary strings.

31

9.2 Decidable languages (Sipser 4.1, pp. 194-201)
▶ ADFA = {< B,w > |B is a DFA that accepts string w}.
▶ ANFA = {< B,w > |B is an NFA that accepts string w}.
▶ AREX = {< R,w > |R is a RE that generates string w}.
▶ EDFA = {< B > |B is a DFA and L(B) = /0}.
▶ EQDFA = {< B1,B2 > |B1 and B2 are DFAs and L(B1) =

L(B2)}.
▶ ACFG = {< G,w > |G is a CFG that generates string w}.
▶ ECFG = {< G > |G is a CFG and L(G) = /0}.
▶ Every CFL is decidable.

Note: The proofs of these TDLs can be found in Sipser’s book.

32

Example 1. Prove that ADFA = {< B,w > |w ∈ L(B)} is TD.

TM M = On input < B,w >
Simulate B on input w
If B ends in q ∈ F , accept
else reject

Example 2. Prove that EDFA = {< B > |L(B) = /0} is TD.

TM M = On input < B >
Create the state diagram G for B
Use DFS to generate all simple paths from q0 to any q ∈ F
If no path is found, accept
else reject

33

Countable and uncountable sets
▶ The size of an infinite set: Countably infinite (or countable)

and uncountably infinite (or uncountable).
▶ A set A is countable if there is a 1-1 correspondence with

N = {1,2,3, . . .} (the set of natural numbers).
▶ The following sets are countable.

1. The set of even (or odd) numbers
2. The set of rationale numbers
3. The set of binary strings
4. The set of TMs

▶ But, the set of languages is uncountable.
▶ There are more languages than there are TMs. So there

must be languages that are non-TRL.

34

9.4 A non-TRL
▶ Consider the binary alphabet.
▶ Order and label strings: ε,0,1,00,01,10,11, · · · .

Let wi be i th string in the above lexicographic ordering.
▶ Order and label TMs: M1,M2,M3, · · · .

Let Mi be the TM whose code is wi , i.e. < Mi >= wi .
In case wi is not a valid TM code, let Mi be the TM that
immediately rejects any input, i.e., L(Mi) = /0.

ε 0 1 00 01 10 11 000 · · ·
w1 w2 w3 w4 w5 w6 w7 w8 · · ·
M1 M2 M3 M4 M5 M6 M7 M8 · · ·

▶ For any string wi , there is a TM Mi

▶ For any TM Mi , there is a string wi , where < Mi >= wi .

35

▶ Define diagonalization language AD = {wi |wi ̸∈ L(Mi)}.
▶ The corresponding decision problem:

Input: Any binary string wi
Question: Is wi not accepted by Mi?

▶ Prove that AD is non-TR (not a TRL).
Proof:

1. Suppose, by contradiction, AD is TR, i.e., there is a TM M
such that AD = L(M).

2. Then M = Mi with code wi for some i .
3. wi ∈ AD iff wi ̸∈ L(Mi) by definition of AD.
4. wi ∈ AD iff wi ∈ L(Mi) by AD = L(Mi).
5. A contradiction within the two iff statements

.

36

A summary of some new concepts learned recently
▶ Encoding of TM, DFA, NFA, PDA, RE, Graph, Matrix, list,

etc. to binary strings: e.g., < M >, < M,w >, < M1,M2 >

▶ Infinite sets: Countable vs. uncountable. Compare the set
of TMs (countable) vs. the set of languages (uncountable).
There are languages without a TM to accept/recognize.

▶ Correspondence between binary strings and Turing
machines, i.e., for any wi , there is a Mi and for any M,
there is i s.t. < M >= wi . Thus M can be renamed as Mi

▶ The diagonalization language AD = {wi | wi ̸∈ L(Mi)}
non-TR.

37

9.5 A TRL but non-TDL (Sipser 4.2 (pp. 173-174 and
179-182))
▶ A universal TM:

▶ Each TM (among those discussed) can only solve a single
problem, however, a computer can run arbitrary algorithms.
Can we design a general-purposed TM that can solve a
wide variety of problems just as a computer?

▶ Theorem: There is a universal TM U which simulates an
arbitrary TM M with input w and produces the same output.
TM U = ”On input < M,w >

Run M on w”
▶ TM U is an abstract model for computers just as TM M is a

formal notion for algorithms.

M
<M, w>

w

Figure 8: The universal Turing machine

38

▶ Let ATM = {< M,w > |M accepts string w}
Or equivalently ATM = {< M,w > |w ∈ L(M)}
Or equivalently as a decision problem
Input: A TM M and a string w
Question: Is w accepted by M?

ATM is called the universal language.

ATM is TR since it can be recognized by TM U.

TM U = ”On input < M,w >∈ ATM
Run M on w
If M accepts w , accept”

39

▶ ATM = {< M,w > |w ∈ L(M)} is non-TD. (By C&C)
1. Assume that ATM is decided by TM T .

T<M,w>
a

r

Input to T is < M,w >
Output from T is accept if w ∈ L(M) and reject if w ̸∈ L(M)

2. On input < M,w >, T accepts < M,w > iff M accepts w .
(We can also say, T rejects < M,w > iff M rejects w .)

3. Define TM D as follows:

<M,<M>>
<M>

a

r a

r
T

4. Observe that D accepts < M > iff T rejects < M,< M >>.
5. Feed < D > to D.

<D,<D>>

a

r a

r
T<D>

6. From steps 4 and 2, D accepts < D > iff T rejects
< D,< D >> iff D rejects < D >.

7. A contradiction in step 6.

40

▶ Another proof that ATM = {< M,w > |w ∈ L(M)} is non-TD.
▶ Proof. Assume that ATM is TD by TM T , i.e.,
▶ Let TM T decide ATM , i.e.,

T (< M,w >) =

{
accept w ∈ L(M)

reject w ̸∈ L(M)

▶ Define TM D =”On input < M >
Run T on < M,< M >>
If T accepts, reject
If T rejects, accept”

▶ D accepts < M > iff T rejects < M,< M >>

▶ Feed < D > to D. Then, D accepts < D > iff T rejects
< D,< D >> iff < D ≯∈ L(D) iff D rejects < D >.

▶ A contradiction! So ATM is non-TD.

41

10.1 A summary of terminology in Computability Theory
▶ Language, Decision Problem, Problem
▶ TM, Algorithm, Solution
▶ Decide, Solve, (Decidable, Solvable)
▶ Undecidable, Unsolvable
▶ Accept, Recognize, (Acceptable, Recognizable)

42

10.2 A review of some languages and corresponding
decision problems
▶ AD = {wi |wi ̸∈ L(Mi)} (non-TR)

Input: Any binary string wi
Question: Is wi not accepted by Mi?

▶ ATM = {< M,w > |w ∈ L(M)} (TR but non-TD)
Input: TM M and string w
Question: Does M accept w?
It is undecidable whether TM M accepts string w for any
given M and w .

▶ HALTTM = {< M,w > |M halts on w} (TR but non-TD)
Input: TM M and string w
Question: Does M halt on w?
It is undecidable whether TM M halts string w for any given
M and w .

43

10.3 Reducibility or Reduction(Sipser 5 (pp. 216-220))

We say that problem A reduces (or is reducible) to problem B,
written as A ≤ B, if we can use a solution (TM) to B to solve A
(i.e., if B is decidable/solvable, so is A.).
We may use reducibility to prove undecidability as follows:

1. Let A be non-TD, such as AD or ATM . Wish to prove B is
non-TD.

2. Assume B is TD. Then there exists a TM MB to decide B.
3. If we can use MB as a sub-routine to construct a TM MA

that decides A, then A is TD. We have a contradiction.
4. The construction of TM MA using TM MB establishes that A

reduces to B, i.e., A ≤ B. (A is no harder than B)
5. Corollary 5.23 (Sipser p. 236):

If A ≤ B and A is non-TD, then B is non-TD.

44

10.4 A proof of the non-TD ATM by reduction
▶ Proof sketch:

1. Assume ATM is TD, by contradiction.

2. Let TM S decide ATM , by the definition of a TDL.

3. Try to construct a TM D that decides AD. The construction
will include TM S. This shows AD is TD.

4. A contradiction since we know AD is non-TR.

Note: This proof uses the TM S for ATM to build a TM D for
AD, i.e., AD ≤ ATM .

▶ Recall two languages:
1. ATM = {< M,w > |w ∈ L(M)}.

2. AD = {wi |wi ̸∈ L(Mi)}. (AD is non-TR)

45

Prove that ATM is non-TD by reduction
1. Assume ATM is TD, by contradiction.

2. Let TM S decide ATM , i.e.,

S(< M,w >) =

{
accept w ∈ L(M)

reject w ̸∈ L(M)

3. Construct a TM D that decides AD, a non-TRL.
TM D =”On input wi

Run S on < Mi ,wi >
If S accepts, reject else accept”

4. Why does D decide AD?
S accepts < Mi ,wi > iffwi ∈ L(Mi) iff wi ̸∈ AD iff D rejects
wi . So S accepts iff D rejects.

5. So AD is TD. A contradiction.

46

10.5 The halting problem (Theorem 5.1 (pp. 216-217))
▶ HALTTM = {< M,w > |M halts on string w}.
▶ ATM = {< M,w > |M accepts w}
▶ ATM ⊆ HALTTM

▶ HALTTM is TR since it can be recognized by TM U.
▶ Theorem 5.1 HALTTM is non-TD.

(Will show ATM ≤ HALTTM)
Theorem HALTTM is non-TD. Prove by reduction from ATM , i.e.,
ATM ≤ HALTTM

47

1. Assume TM R decides HALTTM . Then R accepts < M,w >
iff M halts on w . Construct TM S to decide ATM .

TM S = ”On input < M,w >
Run R on < M,w >
if R rejects, reject
if R accepts, run M on w until it halts

if M accepts, accept; else reject”
2. Why does S accept ATM?

R rejects < M,w > ⇒ M doesn’t halt on w ⇒ M doesn’t
accept w ⇒ < M,w ≯∈ ATM ⇒ S rejects
R accepts < M,w > ⇒ M halts on w (accepts or rejects?
Need to run M on w to find out)
M accepts w ⇒ < M,w >∈ ATM

3. Since we constructed a TM S that decides ATM using TM
R, so ATM is TD. A contradiction to that ATM is proved to be
non-TD.

48

10.6 Other non-TD problems (Sipser 5.1 (pp. 216-220))
The following problems about Turing machines are non-TD:
▶ Whether L(M) = /0 for any TM M.

ETM = {< M > |L(M) = /0}
NETM = {< M > |L(M) ̸= /0} (complement of ETM)

▶ Whether L(M1) = L(M2) for any two TMs M1 and M2.
EQTM = {< M1,M2 > |L(M1) = L(M2)}

▶ Whether L(M) is finite for any TM M
FINITETM = {< M > |L(M) is finite}

▶ Whether ε ∈ L(M) for any TM M.
ESTRINGTM = {< M > |ε ∈ L(M)}

▶ Whether L(M) = Σ∗ for any TM M.
ALLTM = {< M > |L(M) = Σ∗}

Rice’s Theorem: Every nontrivial property of the TRLs (or
TMs) is undecidable.

49

Pf: ETM = {< M > |L(M) = /0} is non-TD. Let R decides ETM .

R(< M >) =

{
accept L(M) = /0

reject L(M) ̸= /0

(2) Use R to construct TM S that decides ATM , i.e., ATM ≤ ETM .
TM S = ”On input < M,w >,
▶ Construct TM M1 = ”On input x

If x ̸= w reject else run M on w”
Note: L(M1) = {w} if w ∈ L(M); L(M1) = φ if w ̸∈ L(M)

▶ Run R on < M1 >

▶ If R accepts, reject; and if R rejects, accept”
(3) Why does S decide ATM? L(M1) = /0 if M does not accept w ;
and L(M1) = {w} if M accepts w . I.e., L(M1) = /0 iff w ̸∈ L(M).
So R accepts < M1 > iff L(M1) = /0 iff w ̸∈ L(M) iff S rejects.
(4) TM S decides the non-TD ATM . A contradiction.

50

A graphical explanation of the undecidability proof of ETM

S

R<M>
a if L(M)=empty

r otherwise

R
a

r

a

r
<M, w> <M >1

Figure 9: Reduction from ATM to ETM

Important questions to answer:
▶ Input: how to define M1 (the input to R) using < M,w >

(the input to S)?
▶ Output: how the output from R implies the output from S?

Goal: Design M1 such that the output from R defines that of S.

51

Prove that NETM = {< M > |L(M) ̸= /0} is TR but non-TD.
(1) To prove NETM is TR, we give a NTM N to recognize NETM .
NTM N = ”On input < M >∈ NETM

▶ Guess a string w
▶ Run M on w
▶ If M accepts, accept”

We can also use a deterministic TM to recognize NETM .
TM D = ”On input < M >∈ NETM
Recall the binary sequence w1,w2,w3, . . .

▶ Systematically generates strings: ε, 0, 1, 00, 01, . . .
▶ for i = 1,2,3, . . .

Run M on w1, · · · ,wi , each for i steps
▶ If in the loop above, M ever accepts some wj , then accept”

52

An explanation of the TM D that recognizes NETM :

Assume w9 is accepted by M in 7 steps.
Assume w10 is accepted by M in 12 steps.

i = 1: Run M on w1 for 1 step;
i = 2: Run M on w1,w2 each for 2 steps;
i = 3: Run M on w1,w2,w3 each for 3 steps;
· · · · · ·
i = 9: Run M on w1,w2, · · · ,w9 for 9 steps; (accepted)
· · · · · ·
i = 12: Run M on w1,w2, · · · ,w10, · · · ,w12 for 12 steps
(accepted)

53

(2) To prove NETM = {< M > |L(M) ̸= /0} is non-TD, assume it is
decided by TM R. Then R accepts < M > iff L(M) ̸= /0.
Construct a TM S that decides the undecidable ATM . Then a
contradiction.
TM S = ”On input < M,w >

1. Construct TM M1=”On input x
If x ̸= w , reject else Run M on w”

Note: L(M1) = {w} if w ∈ L(M); L(M1) = φ if w ̸∈ L(M)

2. Run R on < M1 >

3. If R accepts, accept; else reject”
Why does S accept ATM?
L(M1) = /0 if w ̸∈ L(M) and L(M1) = {w} if w ∈ L(M). In other
words, L(M1) ̸= /0 iff w ∈ L(M).
R accepts < M1 > iff L(M1) ̸= /0 iff w ∈ L(M) iff < M,w >∈ ATM
iff S accepts < M,w >. So ATM is TD. A contradiction.

54

About ETM and its complement NETM

We proved: ETM is non-TD. NETM is TR.

Recall the theorem on page 120 . For A and A,
1. Both are TD; (Both are TR)
2. Neither is TR;
3. One is TR but non-TD, the other is non-TR

We immediately have the following results.

(1) NETM is non-TD (If NETM is TD, so is ETM)

(2) ETM is non-TR (If ETM is TR, both ETM and NETM are TD)

55

Theorem 5.4 EQTM = {< M1,M2 > |L(M1) = L(M2)} is non-TD.
Reduce from ETM = {< M > |L(M) = /0}.

1. Assume EQTM is decided by TM R.

R(< M1,M2 >) =

{
accept L(M1) = L(M2)

reject L(M1) ̸= L(M2)

2. Construct TM S that decides the undecidable ETM .
TM S =”On input < M >

Construct TM M1 =”On input x , reject”
Run R on < M1,M >
R accepts < M1,M > iff /0 = L(M) iff S accepts < M >
R rejects < M1,M > iff /0 ̸= L(M) iff S rejects < M >

3. Why does S decides ETM? R accepts < M1,M > iff
L(M1) = L(M) iff L(M) = /0 iff S accepts < M >.

4. S decides ETM . So ETM is TD. A contradiction.

56

10.7 Post’s correspondence problem (PCP) (Sipser 5.2)

INPUT: P = { t1
b1
, t2

b2
, . . . , tk

bk
}, where t1, t2, . . . , tk and b1,b2, . . . ,bk

are strings over alphabet Σ. (P is a collection of dominos, each
containing two strings, with one stacked on top of the other.)

QUESTION: Does P contain a match?
Or, is there i1, i2, . . . , il ∈ {1,2, . . . ,k} with l ≥ 1 such that
ti1 ti2 · · · til = bi1bi2 · · ·bil ?

Equivalently, defined as a language, we have
LPCP = {< P > |P is an instance of PCP with a match}.

For input P1 = { b
ca ,

a
ab ,

ca
a , abc

c }, sequence 2,1,3,2,4 indicates a
match. Since a

ab
b
ca

ca
a

a
ab

abc
c , top=bottom=abcaaabc

For P2 = {abc
ab , ca

a , acc
ba }, there is no match since all top strings

are longer than bottom strings..

PCP is non-TD for the binary alphabet.

57

A Summary of Computability Theory
1. Definitions and concepts:
▶ Turing machine, how it works, its language, its encoding,

Church-Turing Thesis
▶ TRL and TDL, properties, how M accepts/decides a

language, implementation-level description
▶ Reduction, the meaning of A ≤ B (A is no harder than B),

use reduction to prove undecidability
2. Various proofs:
▶ A language is TR/TD (prove by definition)
▶ A language is non-TR/non-TD (prove by a combination of

contradiction, construction, and reduction)
▶ Many examples to learn from

58

