
CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Small Physics Lab 111 (section 1) TTh
9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

1

General Information
▶ Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -

3:00 on zoom or by email
▶ Grader: TBD for section 1 (office hour TBD on BB)
▶ Grader: TBD for section 2 (office hour TBD on BB)
▶ Textbook: Intro to the theory of computation (any edition),

Michael Sipser. An e-book in PDF maybe available online.
▶ Prerequisites/background: Linear algebra, Data structures

and algorithms, and Discrete math

2

Complexity Theory:
▶ Computability Theory is the study of what can or cannot be

computed by a TM/algorithm, among all problems.
▶ Complexity Theory is the study of what can or cannot be

computed efficiently by a TM/algorithm, among all
decidable/solvable problems.

▶ For the set of all solvable problems, it is further classified
into various complexity classes based on the efficiency of
algorithms solving these problems.

▶ Complexity Theory is the study of the definition and
properties of these classes.

3

PRL

CFL

CSL

TDL

TRL

ALL

All solvable problems

NP

NPC

If P is not equal to NP

TDLTDL

All solvable problems

If P is equal to NP

P=NP=NPC

Figure 1: Three complexity classes if P=NP or P̸=NP

4

11.1 The class of P (Sipser 7.2)
▶ Definition: P is the class of problems solvable in

polynomial time (number of steps) by deterministic TMs.
Polynomial O(nc), where n is input size and c is a constant.
Problems in P are ”tractable” (not so hard).

▶ Why use polynomial as the criterion?
▶ If a problem is not in P, it often requires unreasonably long

time to solve for large-size inputs.
▶ P is independent of all models of computation, except

nondeterministic TM.
▶ Problems in P: Sorting, Searching, Selecting, Minimum

Spanning Tree, Shortest Path, Matrix Multiplication, etc.
▶ Review of asymptotic notation: O, Ω, Θ
▶ Examples of polynomial and polylog functions: O(1), O(n),

O(n2), O(nd), O(logn), O((logn)c), O(n3 logn),
O(nc(logn)d)

5

11.2 The class of NP (Sipser 7.3)
▶ An NTM is an unrealistic (unreasonable) model of

computing which can be simulated by other models with an
exponential loss of efficiency.
It is a useful concept that has had great impact on the
theory of computation.

▶ NTM N = (Q,Σ,Γ,δ,q0,qaccept ,qreject), where
δ : Q×Γ→ 2P for P = Q×Γ×{L,R}.

▶ δ(q,X) is a set a moves. Which one to choose? This is
nondeterminism. The computation can be illustrated by a
tree, with each node representing a configuration.

6

▶ Nondeterminism can be viewed as a kind of parallel
computation wherein multiple independent processes or
threads can be running concurrently.
When a nondeterministic machine splits into several
choices, that corresponds to a process forking into several
children, each then proceeding separately. If at least one
process accepts, then the entire computation accepts.

▶ Time complexity of nondeterministic TMs (NTMs): Let N
be an NTM that is a decider (where all computation paths
halt in the tree for any input). The time complexity of N,
f (n), is the maximum number of steps that N uses on any
computation path for any input of length n. In other words,
f (n) is the maximum height of all computation trees for all
input of length n.

7

▶ An unreasonable model of computation:

Theorem; Every T (n)-time multi-tape TM has an
equivalent O(T 2(n))-time single-tape TM.

Theorem: Every T (n)-time single-tape NTM has an
equivalent O(2O(T (n)))-time single-tape DTM.

▶ Definition: NP is the class of problems solvable in
polynomial time by nondeterministic TMs.

▶ Another definition of nondeterministic TMs (algorithms):
▶ Guessing phase: Guess a solution (always on target).
▶ Verifying phase: Verify the solution.

8

Example: TSP (DEC) is in NP.

INSTANCE: An edge-weighted graph G(V ,E ,w) and a bound
B ≥ 0.

QUESTION: Is there a tour (a cycle that passes through each
node exactly once) in G with total weight no more than B?
Define the following NTM N to solve TSP in polynomial time.

NTM N =”On input < G,B >

1. Nondeterministically guess a tour T O(|V |)
2. Verify if T includes every node once O(|V |)
3. Compute sum← ∑e∈T w(e) O(|V |)
4. Verify if sum ≤ B. If true, answer yes; else No O(1)

Note 1: The time complexity of N is O(|V |).
Note 2: If the answer to the QUESTION is ”Yes”, N guarantees
that the right T will be guessed in step 1.

9

Note 3: The acceptance of an input by a nondeterministic
machine is determined by whether there is an accepting
computation among all, possibly exponentially many,
computations.

In the above proof, if there is a solution, i.e., a tour with total
weight no more than B, it will always be generated by the
Turing machine. This is like that a nondeterministic machine
has a guessing power.

A tour can only be found by a deterministic machine in
exponential time, however, it can be found by a nondeterministic
machine in just linear steps. Any nondeterministic proof should
always contain two stages: Guessing and verifying.

What needs to be guessed? What needs to be verified? What
is the time complexity?

10

Example: Graph Coloring (GC) is in NP.

INSTANCE: Graph G = (V ,E), and B ≥ 0

QUESTION: Is there a coloring scheme of the nodes that uses
no more than B colors such that no two nodes connected by an
edge are given the same color?

NTM N =”On input < G,B >

1. Guess a coloring scheme (in polynomial time) c : V → C
2. Verify if (1) |C| ≤ B and (2) ∀(u,v) ∈ E ,c(u) ̸= c(v)
3. if true, answer yes; else answer no

So we have a nondeterministic algorithm (or TM) that
guesses a coloring scheme (or function) and verifies that (1)
for any (u,v) ∈ E , c(u) ̸= c(v) and that (2) the number of colors
used is no more than B, and further, all these can be done in
polynomial time of O(|V |)+O(|E |). So GC is in NP.

11

▶ Theorem: P⊆NP.(Two possibilities: P ⊂ NP or P = NP)
Any deterministic TM is a special case of nondeterministic
TMs.

▶ Theorem: Any Π ∈NP can be solved by a deterministic TM
in time O(cp(n)) for some c > 0 and polynomial p(n).

▶ Open problem: P=NP?
The west wall bricks on the CS building at Princeton,1989:
x1010000x
x0111101x
x1001110x
x1010000x
x0111111x

12

11.3 Polynomial reduction (Sipser 7.4)
▶ Definition of Polynomial Reduction ≤p (cf. ≤m and ≤)

Let Π1 and Π2 be two decision problems, and {I1} and {I2}
be sets of instances for Π1 and Π2, respectively.
We say there is a polynomial reduction from Π1 to Π2, or
Π1 ≤p Π2, if there is f : {I1}→ {I2} such that
(1) f can be computed in polynomial time and
(2) I1 has a “yes” solution if and only if f (I1) has a “yes”
solution.

▶ Theorem: If Π1 ≤p Π2, then Π2 ∈P implies Π1 ∈P.
▶ Theorem: If Π1 ≤p Π2 and Π2 ≤p Π3, then Π1 ≤p Π3.
▶ Remark: ≤p means “no harder than”.

π2

Yes

No

Yes

NoIπ1 f
Iπ2 Alg

Alg
π1

Figure 2: Polynomial reduction Π1 ≤p Π2

13

11.4 The class of NPC (Sipser 7.4)
▶ Definition 1: NPC (NP-complete) is the class of the hardest

problems in NP
▶ Definition 2: Π ∈NPC if Π ∈NP and ∀Π′ ∈NP, Π′ ≤p Π.
▶ Definition 3: Π ∈NPC if Π ∈NP and ∃Π′ ∈NPC such that

Π′ ≤p Π

▶ Theorem: If ∃Π ∈NPC such that Π ∈P, then P=NP.
▶ Theorem: If ∃Π ∈NPC such that Π ̸∈ P, then P̸=NP.

14

Some most important classes: Definitions and proofs
▶ P: class of problems solvable in polynomial-time by DTM.

To prove Π ∈P, design a polynomial-time algorithm.
▶ NP: class of problems solvable in polynomial-time by NTM.

To prove Π ∈NP, design a polynomial-time
nondeterministic algorithm of two steps: guess and verify.

▶ NPC: class of all hardest problems in NP.
To prove Π ∈NPC, prove (1) Π ∈NP and (2) ∃Π′ ∈ NPC s.t.
Π′ ≤p Π

▶ NP-hard: A problem X is NP-hard, if there is an
NP-complete problem Y, such that Y is reducible to X in
polynomial time. (Note X does not need to be in NP)

Possible relations among P, NP, NP-complete, NP-hard:
P⊂NP, NP∩ NP-hard = NP-complete, P∪ NP-complete= /0

15

Satisfiability (SAT):

INSTANCE: A boolean formula φ in CNF with variables
x1, . . . ,xn and clauses c1, . . . ,cm

QUESTION: Is φ satisfiable? (Is there a truth assignment A to
x1, . . . ,xn such that φ is true?)

LSAT = {< φ > |∃A that satisfies φ}
Example of an instance for SAT:
▶ Variables: x1,x2,x3,x4

▶ Literals: Any variables and their negations, such as x1, x3

▶ Clauses: c1 = x1∨x2∨x3, c2 = x1∨x2, c3 = x1∨x2∨x3∨x4

▶ Function/formula: φ = c1∧c2∧c3

▶ The instance φ is T by assignment x1 = T ,x2 = x3 = x4 = F .
Note: Many assignments satisfy φ, but we only need one.

16

Cook’s Theorem: SAT∈NPC. (Need to prove (1) SAT∈NP and
(2) ∀Π ∈NP, Π≤pSAT.)

First Step: How to prove SAT is in NP?
NTM N = ”On input < φ > in CNF

1. Guess a truth assignmnet A O(n)
2. Verify if φ = T under A O(n+m)

3. If T , accept; else reject”
SAT is solvable by a NTM in polynomial time, thus in NP.

Second step: How to prove ∀Π ∈NP, Π≤pSAT, or equivalently,
for any polynomial-time NTM M, L(M)≤p LSAT ?

Will not discuss this proof. But if interested, go to the final few
pages of this slide set for details.

17

11.5 NP-complete problems(Sipser 7.5, pp.310-322)
How to prove Π2 is NP-complete:
▶ Show that Π2 ∈NP.
▶ Choose a known NP-complete Π1.
▶ Construct a reduction f from Π1 to Π2.
▶ Prove that f is a polynomial reduction by showing (1) f can

be computed in polynomial time and (2) ∀I1 for Π1, I1 is a
yes-instance for Π1 if and only if f (I1) is a yes-instance for
Π2.

π2

Yes

No

Yes

NoIπ1 f
Iπ2 Alg

Alg
π1

Figure 3: Polynomial reduction Π1 ≤p Π2

18

Seven basic NP-complete problems.
▶ 3-Satisfiability (3SAT): (Reduced from SAT)

INSTANCE: A formula α in CNF with each clause having
three literals.
QUESTION: Is α satisfiable?

▶ 3-Dimensional Matching (3DM): (Reduced from 3SAT)
INSTANCE: M ⊆ X ×Y ×Z , where X ,Y ,Z are disjoint and
of the same size.
QUESTION: Does M contain a matching, which is M ′ ⊆M
with |M ′|= |X | such that no two triples in M ′ agree in any
coordinate?

▶ PARTITION: (Reduced from 3DM)
INSTANCE: A finite set A of numbers.
QUESTION: Is there A′ ⊆ A such that ∑a∈A′ a = ∑a∈A−A′ a?

19

▶ Vertex Cover (VC): (Reduced from 3SAT)
INSTANCE: A graph G = (V ,E) and 0≤ k ≤ |V |.
QUESTION: Is there a vertex cover of size ≤ k , where a
vertex cover is V ′ ⊆ V such that ∀(u,v) ∈ E , either u ∈ V ′

or v ∈ V ′?
▶ Hamiltonian Circuit (HC): (Reduced from VC)

INSTANCE: A graph G = (V ,E).
QUESTION: Does G have a Hamiltonian circuit, i.e., a tour
that passes through each vertex exactly once?

▶ CLIQUE: (Reduced from VC)
INSTANCE: A graph G = (V ,E) and 0≤ k ≤ |V |.
QUESTION: Does G contain a clique (complete subgraph)
of size ≥ k?

20

PARTITION

SAT

3SAT CLIQUE

VC 3DM

HC

Figure 4: Seven basic NP-complete problems

21

Example to prove reduction: KNAPSACK Problem

INSTANCE: U = {u1, . . . ,un}, W (max weight knapsack holds),
functions w : U→ R+ and v : U→ R+, bound B ≥ 0.
QUESTION: Is there U ′ ⊆ U s.t. ∑ui∈U ′w(ui)≤W , and
∑ui∈U ′ v(ui)≥ B?

Show PARTITION≤p KNAPSACK.
For any instance {a1, . . . ,an} in PARTITION, define the
following instance for KNAPSACK:
▶ U = {u1, . . . ,un}
▶ w(ui) = ai and v(ui) = ai , for all i
▶ W = B = 1

2 ∑
n
i=1 ai

Show that (1) the above construction can be done in polynomial
time and (2) there is a partition A′ ⊆ A iff there is a subset U ′

s.t. ∑ui∈U ′w(ui)≤ 1
2 ∑

n
i=1 ai and ∑ui∈U ′ v(ui)≥ 1

2 ∑
n
i=1 ai .

22

Example to prove reduction: Hitting Set (HS) problem

INSTANCE: Set S, collection C of subsets of S, K ≥ 0
QUESTION: Does S contain a HS S′ of size ≤ K ? (S′ is a HS if
S′ contains at least one element from each subset in C.)

VC ≤p HS.
Instance for VC: G = (V ,E) and B ≥ 0
Instance for HS: S = V , C = {{u,v}|∀e = (u,v) ∈ E}, K = B
Goal: G has a VC of size ≤ B iff S has a HS of size ≤ K .

HS S’={1, 3, 5}

Vertex Cover Hitting Set

1 2 3

4 5 6 7

B=3 and |E|=8

S={1,2,3,4,5,6,7}

VC={1,3,5}

C={{1,2}, {1,4}, {2,3}, {2,5}, {3,5}, {3,7}, {3,6}, {5,6}}

K=3

Figure 5: An example of reduction from VC to HS

23

Proof techniques, languages, complexity classes
▶ Contradiction, construction, reduction, polynomial

reduction, and diagonalization
▶ RL, CFL, TDL, TRL, non-TR (Chomsky hierarchy)
▶ DFA/NFA, PDA, TM(decides), TM(accepts), NTM(guesses)
▶ Closure properties for the above sets of languages
▶ Pumping Lemmas for RL and CFL
▶ P, NP, NPC, NP-Hard (relation based on P̸=NP, P=NP)
▶ TD, non-TD, TR, non-TR
▶ Prove a language is TD, TR, non-TD, or non-TR
▶ Prove a DEC is in NP.
▶ A good understanding of AD, ATM , HALTTM , SAT, 3SAT,

VC, PARTITION, HC, and those languages and DECs
discussed in examples.

24

Review of Computability Theory
▶ TDL: How to prove a language is TDL
▶ The closure properties of TDLs: union, intersection,

concatenation, star, complement
▶ A TM that decides (accept, reject)
▶ TRL: How to prove a language is TRL
▶ The closure properties of TRLs: union, intersection,

concatenation, star, homomorphism
▶ A TM that accepts/recognizes
▶ A language and its complement: Three scenarios (both

TD, one TR but non-TD other non-TR, both non-TR)
▶ Important languages: AD, ATM , HALTTM , etc.
▶ Reduction A≤ B is to show any TM that decides B can be

used to define a TM that decides A. (A is no harder than B
or B is at least as hard as A.)

25

Review of Complexity Theory
▶ Three classes: P, NP, NPC (Also NP-hard)
▶ Polynomial reduction A≤p B is to show any algorithm that

solves B can be used to define an algorithm that solves A.
(A is no harder than B or B is at least as hard as A.)

▶ Important NP-complete problems: SAT, 3SAT, VC, HC,
PARTITION, 3DM, CLIQUE, COLOR, KNAPSACK, HS

▶ Test of your understanding of the complexity classes
▶ If Π1 ≤p Π2 and Π1 ∈NP, is Π2 ∈NP?
▶ If Π1 ≤p Π2 and Π1,Π2 ∈NPC, is Π2 ≤p Π1?
▶ If Π1 ≤p Π2 and Π1 ̸∈NP, is Π1 ∈P?
▶ If Π1 ≤p Π2 and Π2 ≤p Π1, then Π1,Π2 ∈ NPC.
▶ If Π1,Π2 ∈ NPC, then Π1 ≤p Π2, and Π2 ≤p Π1.

26

Some sample problems
▶ The universal language, ATM , is a proper (non-equal)

subset of the halting language, HALTTM .
▶ The Post Correspondence Problem is decidable for the

unary alphabet.
▶ If L is TR but non-TD, then L is non-TR.

TD
TR

non−TR

L

Figure 6: Venn diagram for TD, TR, and non-TR

▶ If A is non-TD, A≤ C, D ≤ C, then D must be non-TR.

27

*************************************The
end************************************

28

A proof that 3SAT is NP-complete:
First, 3SAT is obvious in NP.
Next, we show that SAT≤p3SAT.
Given any instance of SAT, f (x1, . . . ,xn) = c1∧·· ·∧cm, where ci
is a disjunction of literals. To construct an instance for 3SAT, we
need to convert any ci to an equivalent c′i , a conjunction of
clauses with exactly 3 literals.
Case 1. If ci = z1 (one literal), define y1

i and y2
i . Let c′i =

(z1∨y1
i ∨y2

i)∧(z1∨y1
i ∨¬y2

i)∧(z1∨¬y1
i ∨y2

i)∧(z1∨¬y1
i ∨¬y2

i).
Case 2. If ci = z1∨z2 (two literals), define y1

i . Let
c′i = (z1∨z2∨y1

i)∧ (z1∨z2∨¬y1
i).

Case 3. If ci = z1∨z2∨z3 (three literals), let c′i = ci .

29

Case 4. If ci = z1∨z2∨·· ·∨zk (k > 3), define y1
i ,y

2
i , . . . ,y

k−3
i .

Let c′i = (z1∨z2∨y1
i)∧ (¬y1

i ∨z3∨y2
i)∧ (¬y2

i ∨z4∨y3
i)∧·· ·∧

(¬yk−3
i ∨zk−1∨zk).

If ci is satisfiable, then there is a literal zl = T in ci . If l = 1,2, let
y1

i , . . . ,y
k−3
i = F . If l = k −1,k , let y1

i , . . . ,y
k−3
i = T . If

3≤ l ≤ k−2, let y1
i , . . . ,y

l−2
i = T and y l−1

i , . . . ,yk−3
i = F . So c′i is

satisfiable.
If c′i is satisfiable, assume zl = F for all l = 1, . . . ,k . Then
y1

i , . . . ,y
k−3
i = T . So the last clause (¬yk−3

i ∨zk−1∨zk) = F .
Therefore, c′i is not satisfiable. Contradiction.
The instance of 3SAT is therefore f ′(x1, . . . ,xn, . . .) = c′1∧·· ·∧c′m,
and f is satisfiable if and only if f ′ is satisfiable.

30

Cook’s Theorem: SAT is NP-complete.
Proof. SAT is clearly in NP since a NTM exists that guesses a
truth assignment and verifies its correctness in polynomial time.
Now we wish to prove ∀Π ∈NP, Π≤pSAT, or equivalently, for
any polynomial-time NTM M, L(M)≤p LSAT .
For any NTM M, assume Q = {q0,q1(accept),q2(reject), . . . ,qr}
and Γ = {s0,s1,s2, . . . ,sv}. Also assume that the time is
bounded by p(n), where n is the length of the input.
We wish to prove that there is a function
fM : Σ∗→{instances of SAT} such that ∀x ∈ Σ∗, x ∈ L(M) iff
fM(x) is satisfiable. In other words, we wish to use a Boolean
expression fM(x) to describe the computation of M on x .

31

Variables in fM(x):
— State: Q[i ,k]. M is in qk after the i th step of computation (at
time i).
— Head: H[i , j]. Head points to tape square j at time i .
— Symbol: S[i , j , l]. Tape square j contains sl at time i .
(Assume the tape is one-way infinite and the leftmost square is
labeled with 0.)
For example, initially i = 0. Assume the configuration is q0abba.
Let s0 = B, s1 = a, and s2 = b. Therefore, we set the following
Boolean variables to be true: Q[0,0], H[0,0], S[0,0,1],
S[0,1,2], S[0,2,2], S[0,3,1] and S[0, j ,0] for j = 4,5, A
configuration defines a truth assignment, but not vice versa.

32

Clauses in fM(x):
— At any time i , M is in exactly one state.

Q[i ,0]∨·· ·∨Q[i , r] for 0≤ i ≤ p(n).
¬Q[i ,k]∨¬Q[i ,k ′] for 0≤ i ≤ p(n) and 0≤ k < k ′ ≤ r .

— At any time i , head is scanning exactly one square.
H[i ,0]∨·· ·∨H[i ,p(n)] for 0≤ i ≤ p(n).
¬H[i , j]∨¬H[i , j ′] for 0≤ i ≤ p(n) and 0≤ j < j ′ ≤ p(n).

— At any time i , each square contains exactly one symbol.
S[i , j ,0]∨·· ·∨S[i , j ,v] for 0≤ i ≤ p(n) and 0≤ j ≤ p(n).
¬S[i , j , l]∨¬S[i , j , l ′] for 0≤ i ≤ p(n), 0≤ j ≤ p(n) and

0≤ l < l ′ ≤ v .

33

— At time 0, M is in its initial configuration. Assume
x = sl1 · · ·sln .

Q[0,0].
H[0,0].
S[0,0, l1], . . . ,S[0,n−1, ln].
S[0, j ,0] for n ≤ j ≤ p(n).

— By time p(n), M has entered q1 (accept)). (If M halts in less
than p(n) steps, additional moves can be included in the
transition function.)

Q[p(n),1].

34

— Configuration at time i → configuration at time i +1. Assume
δ(qk ,sl) = (qk ′ ,sl ′ ,D), where D =−1,1.

If the head does not point to square j , symbol on j is not
changed from time i to time i +1.

H[i , j]∨¬S[i , j , l]∨S[i +1, j , l] for 0≤ i ≤ p(n), 0≤ j ≤ p(n),
and 0≤ l ≤ v .

If the current state is qk , the head points to square j which
contains symbol sl , then changes are made accordingly.
¬H[i , j]∨¬Q[i ,k]∨¬S[i , j , l]∨H[i +1, j +D],
¬H[i , j]∨¬Q[i ,k]∨¬S[i , j , l]∨Q[i +1,k ′], and
¬H[i , j]∨¬Q[i ,k]∨¬S[i , j , l]∨S[i +1, j , l ′], for 0≤ i ≤ p(n),

0≤ j ≤ p(n), 0≤ k ≤ r , and 0≤ l ≤ v .

35

Let fM(x) be the conjunction of all the clauses defined above.
Then x ∈ L(M) iff there is an accepting computation of M on x
iff fM(x) is satisfiable. fM can be computed in polynomial time
since |fM(x)| ≤ (number of clauses) ∗(number of
variables)= O(p(n)2)∗O(p(n)2) = O(p(n)4).
So there is a polynomial reduction from any language in NP to
SAT. So SAT is NP-complete.

36

