CS423 Finite Automata & Theory of
Computation

TTh 12:30 - 13:50 in Small Physics Lab 111 (section 1) TTh
9:30 - 10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

>

v

Office Hours: TTh 11:00 - 12:00 in 114 McGl and W 2:30 -
3:00 on zoom or by email

Grader: TBD for section 1 (office hour TBD on BB)
Grader: TBD for section 2 (office hour TBD on BB)

Textbook: Intro to the theory of computation (any edition),
Michael Sipser. An e-book in PDF maybe available online.

Prerequisites/background: Linear algebra, Data structures
and algorithms, and Discrete math

Complexity Theory:

| 2

>

Computability Theory is the study of what can or cannot be
computed by a TM/algorithm, among all problems.

Complexity Theory is the study of what can or cannot be
computed efficiently by a TM/algorithm, among all
decidable/solvable problems.

For the set of all solvable problems, it is further classified
into various complexity classes based on the efficiency of
algorithms solving these problems.

Complexity Theory is the study of the definition and
properties of these classes.

ALL

TRL
TDL
CSL
CFL

TDL

TDL

If P is not equal to NP

P=NP=NPC

IfPis equal to NP

All solvable problems

All solvable problems

Figure 1: Three complexity classes if P=NP or P£NP

1.1 1he Class O1 F (olpser 7.2)

» Definition: P is the class of problems solvable in
polynomial time (number of steps) by deterministic TMs.
Polynomial O(n°), where nis input size and c is a constant.
Problems in P are "tractable” (not so hard).

» Why use polynomial as the criterion?
» If a problem is not in P, it often requires unreasonably long
time to solve for large-size inputs.
» P is independent of all models of computation, except
nondeterministic TM.
» Problems in P: Sorting, Searching, Selecting, Minimum
Spanning Tree, Shortest Path, Matrix Multiplication, etc.

» Review of asymptotic notation: O, 2, ©

» Examples of polynomial and polylog functions: O(1), O(n),
O(1?), O(n%), O(log n), O((log n)°), O(n*log),
O(n°(log n)?)

11.2 The class of NP (Sipser 7.3)

» An NTM is an unrealistic (unreasonable) model of
computing which can be simulated by other models with an
exponential loss of efficiency.

It is a useful concept that has had great impact on the
theory of computation.

> NTMN=(Q,%,T,3, q07qaccept7qreject), where
§:QxTr—2Pfor P=QxT x{L,R}.
> 3(qg,X) is a set a moves. Which one to choose? This is

nondeterminism. The computation can be illustrated by a
tree, with each node representing a configuration.

» Nondeterminism can be viewed as a kind of parallel
computation wherein multiple independent processes or
threads can be running concurrently.

When a nondeterministic machine splits into several
choices, that corresponds to a process forking into several
children, each then proceeding separately. If at least one
process accepts, then the entire computation accepts.

» Time complexity of nondeterministic TMs (NTMs): Let N
be an NTM that is a decider (where all computation paths
halt in the tree for any input). The time complexity of N,
f(n), is the maximum number of steps that N uses on any
computation path for any input of length n. In other words,
f(n) is the maximum height of all computation trees for all
input of length n.

» An unreasonable model of computation:
Theorem; Every T(n)-time multi-tape TM has an
equivalent O(T?(n))-time single-tape TM.
Theorem: Every T(n)-time single-tape NTM has an
equivalent O(29(7(M))-time single-tape DTM.

» Definition: NP is the class of problems solvable in
polynomial time by nondeterministic TMs.

» Another definition of nondeterministic TMs (algorithms):

» Guessing phase: Guess a solution (always on target).
» Verifying phase: Verify the solution.

Example: TSP (DEC) is in NP.

INSTANCE: An edge-weighted graph G(V, E,w) and a bound
B>0.

QUESTION: Is there a tour (a cycle that passes through each
node exactly once) in G with total weight no more than B?
Define the following NTM N to solve TSP in polynomial time.
NTM N ="On input < G,B >

1. Nondeterministically guess a tour T o(|V|)

2. Verify if T includes every node once o(|1V))

3. Compute sum « Y o1 w(e) o(|V))

4. Verify if sum < B. If true, answer yes; else No o(1)

Note 1: The time complexity of N is O(|V/|).
Note 2: If the answer to the QUESTION is "Yes”, N guarantees
that the right T will be guessed in step 1.

Note 3: The acceptance of an input by a nondeterministic
machine is determined by whether there is an accepting
computation among all, possibly exponentially many,
computations.

In the above proof, if there is a solution, i.e., a tour with total
weight no more than B, it will always be generated by the
Turing machine. This is like that a nondeterministic machine
has a guessing power.

A tour can only be found by a deterministic machine in
exponential time, however, it can be found by a nondeterministic
machine in just linear steps. Any nondeterministic proof should
always contain two stages: Guessing and verifying.

What needs to be guessed? What needs to be verified? What
is the time complexity?

10

Example: Graph Coloring (GC) is in NP.
INSTANCE: Graph G=(V,E),and B>0

QUESTION: Is there a coloring scheme of the nodes that uses
no more than B colors such that no two nodes connected by an
edge are given the same color?

NTM N ="On input < G, B >
1. Guess a coloring scheme (in polynomial time) ¢: V — C
2. Verify if (1) |C| < Band (2) V(u,v) € E,c(u) # ¢c(v)
3. if true, answer yes; else answer no

So we have a nondeterministic algorithm (or TM) that
guesses a coloring scheme (or function) and verifies that (1)
forany (u,v) € E, c(u) # c(v) and that (2) the number of colors
used is no more than B, and further, all these can be done in
polynomial time of O(|V|)+ O(|E|). So GC is in NP.

11

» Theorem: PCNP.(Two possibilities: P € NP or P = NP)
Any deterministic TM is a special case of nondeterministic
TMs.

» Theorem: Any I NP can be solved by a deterministic TM
in time O(cP("M) for some ¢ > 0 and polynomial p(n).
» Open problem: P=NP?
The west wall bricks on the CS building at Princeton,1989:
x1010000x
x0111101x
x1001110x
x1010000x
x0111111x

12

v

Detinition of Polynomial Reduction <, (cl. <, ana <)
Let N4y and I, be two decision problems, and {/;} and {/}
be sets of instances for Ny and My, respectively.

We say there is a polynomial reduction from Iy to Iy, or
My <p My, ifthereis f: {1} — {k} such that

(1) f can be computed in polynomial time and

(2) It has a “yes” solution if and only if f(/;) has a “yes”
solution.

Theorem: If [y <p My, then My €P implies M4 €P.
Theorem: If My <, My and My <, M3, then My <p M.
Remark: <, means “no harder than”.

Algn1

es

In2 Al Yes éYes
=D Al

o

Figure 2: Polynomial reduction My <p N>

13

11.4 The class of NPC (Sipser 7.4)

» Definition 1: NPC (NP-complete) is the class of the hardest
problems in NP

» Definition 2: 1M eNPC if M NP and VI" eNP, " <, .
» Definition 3: M eNPC if M1 eNP and 3N’ eNPC such that
M <,

Theorem: If 31 eNPC such that N €P, then P=NP.
Theorem: If 3N eNPC such that N ¢ P, then P#£NP.

vy

14

Some most important classes: Definitions and proofs

» P: class of problems solvable in polynomial-time by DTM.
To prove I €P, design a polynomial-time algorithm.

» NP: class of problems solvable in polynomial-time by NTM.
To prove I NP, design a polynomial-time
nondeterministic algorithm of two steps: guess and verify.

» NPC: class of all hardest problems in NP.

To prove M eNPC, prove (1) M eNP and (2) 9’ € NPC s.t.
n<,n

» NP-hard: A problem X is NP-hard, if there is an
NP-complete problem Y, such that Y is reducible to X in
polynomial time. (Note X does not need to be in NP)

Possible relations among P, NP, NP-complete, NP-hard:
PCNP, NPN NP-hard = NP-complete, PU NP-complete=0

15

Satisfiability (SAT):
INSTANCE: A boolean formula ¢ in CNF with variables
Xi,...,Xp and clauses ci,...,Cm

QUESTION: Is ¢ satisfiable? (ls there a truth assignment A to
X1,...,Xn such that ¢ is true?)

Lsar = {< ¢ > |3 A that satisfies ¢}
Example of an instance for SAT:

> Variables: x1,Xo,X3, X4
Literals: Any variables and their negations, such as xq, X3
Clauses: ¢y = X1 VXaV X3, Co = X1 VX2, C3 = X1V Xo V X3V X4
Function/formula: ¢ =ci Acx AcC3

The instance ¢ is T by assignment xy = T, xo =x3=Xx4 = F.
Note: Many assignments satisfy ¢, but we only need one.

>
>
>
>

16

Cook’s Theorem: SATeNPC. (Need to prove (1) SATENP and
(2) VI eNP, M <,SAT))

First Step: How to prove SAT is in NP?
NTM N ="On input < ¢ > in CNF
1. Guess a truth assignmnet A O(n)
2. Verify if =T under A O(n+m)
3. If T, accept; else reject”
SAT is solvable by a NTM in polynomial time, thus in NP.

Second step: How to prove VIT eNP, I <,SAT, or equivalently,
for any polynomial-time NTM M, L(M) <, Lsar?

Will not discuss this proof. But if interested, go to the final few
pages of this slide set for details.

17

11.9 NF-complete problems(oipser /7.9, pp.o10-o2c)
How to prove Iy is NP-complete:

» Show that N>, eNP.
» Choose a known NP-complete ;.
» Construct a reduction f from M4 to Mo.

» Prove that f is a polynomial reduction by showing (1) f can
be computed in polynomial time and (2) V/; for M4, /1 is a
yes-instance for Ny if and only if f(/1) is a yes-instance for
M.

Algﬂ_‘1

Yes

In2 Yes
_ Al =
In1 e No —No

Figure 3: Polynomial reduction My < N>

18

Seven basic NP-complete problems.

» 3-Satisfiability (3SAT): (Reduced from SAT)
INSTANCE: A formula o in CNF with each clause having
three literals.
QUESTION: Is o satisfiable?

» 3-Dimensional Matching (3DM): (Reduced from 3SAT)
INSTANCE: M C X x Y x Z, where X, Y, Z are disjoint and
of the same size.

QUESTION: Does M contain a matching, which is M C M
with |[M'| = | X| such that no two triples in M’ agree in any
coordinate?

» PARTITION: (Reduced from 3DM)
INSTANCE: A finite set A of numbers.
QUESTION: Is there A C AsuchthatY ,cpa=Y scn_a @7

19

» Vertex Cover (VC): (Reduced from 3SAT)
INSTANCE: A graph G=(V,E)and 0 < k <|V/|.
QUESTION: Is there a vertex cover of size < k, where a
vertex cover is V' C V such that V(u,v) € E, either ue V'
orve V'?

» Hamiltonian Circuit (HC): (Reduced from VC)
INSTANCE: A graph G = (V,E).
QUESTION: Does G have a Hamiltonian circuit, i.e., a tour
that passes through each vertex exactly once?

» CLIQUE: (Reduced from VC)
INSTANCE: A graph G=(V,E)and 0 < k <| V.
QUESTION: Does G contain a clique (complete subgraph)
of size > k?

20

SAT
SN
3SAT CLIQUE

AN
T

HC PARTITION

Figure 4: Seven basic NP-complete problems

21

Example to prove reduction: KNAPSACK Problem

INSTANCE: U = {uy,...,un}, W (max weight knapsack holds),
functions w: U — RT and v: U — R*, bound B > 0.
QUESTION: Is there U' C U s.t. Y.y w(u;) < W, and
Yueuv v(u) > B?
Show PARTITION<, KNAPSACK.
For any instance {ay,...,an} in PARTITION, define the
following instance for KNAPSACK:

> U:{U‘],,u”}

» w(u;) = a; and v(u;) = a;, for all /

> W=B=1Y",a
Show that (1) the above construction can be done in polynomial
time and (2) there is a partition A’ C A iff there is a subset U’
st Lyeu w(u) < 3X7L 8 and Lyeu v(u) > 3E7 a:

22

Example 10 prove reduction: Hitling set (Ro) problem

INSTANCE: Set S, collection C of subsets of S, K >0
QUESTION: Does S contain a HS S’ of size < K? (S’ is a HS if
S’ has at least one element from each subset in C.)VC <, HS.
Instance for VC: G=(V,E)and B> 0

Instance for HS: S=V, C={{u,v}|lVe=(u,v)€c E}, K=B
Goal: G has a VC of size < Biiff S has a HS of size < K.

Vertex Cover Hitting Set
1 2 3 $={1,2.3.4,5,6.7}
E N C={{1.2}, {1.4}, {2.3}, {2.5}, {3.5}, {3.7}. {3.6}, {5.6}}
O K=3
4 5 6 7
HS $’={1, 3, 5}

B=3 and |E|=8
VC=(1,3,5)

Figure 5: An example of reduction from VC to HS

23

Review of Automata Theory

» RL, CFL, DFA, NFA, PDA, Regular expressions
Closure properties for the above sets of languages
Pumping Lemmas for RL
Chomsky Language Hierarchy

>
>
>
» Prove by contradiction

24

Review of Computability Theory

>
>

>

vy

vvyyypy

v

TDL: How to prove a language is TDL

Closure properties of TDLs: union, intersection,
concatenation, star, complement

A TM that decides (accept, reject)
TRL: How to prove a language is TRL

The closure properties of TRLs: union, intersection,
concatenation, star, homomorphism

TM to decide/accepts/recognizes. NTM to guess/verify
TD, non-TD, TR, non-TR (How to prove)
Closure properties for the above sets of languages

A language and its complement: Three scenarios (both
TD, one TR but non-TD other non-TR, both non-TR)

Important languages: Ap, Arm, HALT 7y, etc.

25

vvyyypy

>

| 2

Reduction A < Bis to show any TM that decides B can be
used to define a TM that decides A. (A is no harder than B
or Bis at least as hard as A.)
P, NP, NPC, NP-Hard (relation based on P#£NP, P=NP)
Prove a DEC is in NP.
Three classes: P, NP, NPC (Also NP-hard)
Polynomial reduction A <, B is to show any algorithm that
solves B can be used to define an algorithm that solves A.
(Ais no harder than B or B is at least as hard as A.)
Important NP-complete problems: SAT, 3SAT, VC, HC,
PARTITION, 3DM, CLIQUE, COLOR, KNAPSACK, HS
Test of your understanding of the complexity classes

> If My <p My and My NP, is My eNP?

> If 4 <p M2 and N4,M> eNPC, is M5 <p Mny?

> If My <p My and My ¢NP, is My €P?

> It My <p My and My <p My, then M4,M5 € NPC.

> IfM4,Ms € NPC, then T4 Sp My, and Mo §p My.

26

Some sample problems

» The universal language, Any, is a proper (non-equal)
subset of the halting language, HALT 1.

» The Post Correspondence Problem is decidable for the
unary alphabet.

» If Lis TR but non-TD, then L is non-TR.

TR non—TR
o), ™

Figure 6: Venn diagram for TD, TR, and non-TR

» If Aisnon-TD, A< C, D < C, then D must be non-TR.
F (because D may be TD or TR)

27

A A)

28

A proof that 3SAT is NP-complete:

First, 3SAT is obvious in NP.

Next, we show that SAT <,3SAT.

Given any instance of SAT, f(xi,...,Xn) = C1 A--- A Cm, Where ¢;
is a disjunction of literals. To construct an instance for 3SAT, we
need to convert any ¢; to an equivalent ¢/, a conjunction of
clauses with exactly 3 literals.

Case 1. If ¢; = z; (one literal), define y! and y?2. Let ¢/ =

(2 vy VYR N2 vy vV ayE) Mz v oy VYR Az Yy v yR).
Case 2. If ¢; = z1 V 2 (two literals), define y;'. Let
cl=(z1VzaVy YN (z1VzeV—yl).

Case 3. If ¢; = z1 V 2 V z3 (three literals), let ¢} = c;.

29

Case 4. If ¢i=21VzoV---V z (k> 3), define y!,y?,...,y(3.
Let ¢ = (z1 VoV Yy YA (=Y VZsVYy2) A (—y2V Za VY2) A A
(~yf 3V zi 1 v zi).

If ¢; is satisfiable, then there is aliteral zz =T in¢;. If =1,2, let
vyl yE B =F i l=k—1,klety], .. yfk3=T.If
3<I<k-2/lety!,....y/2=Tandy ',...,yf*=F. Soclis
satisfiable.

If ¢/ is satisfiable, assume z, = F forall /=1,... k. Then
y!,...,yk3 =T. So the last clause (~y 3 Vv z_1Vz)=F.
Therefore, c; is not satisfiable. Contradiction.

The instance of 3SAT is therefore f'(x1,...,Xn,...) =C{ A---ACp,
and f is satisfiable if and only if f is satisfiable.

30

Cook’s Theorem: SAT is NP-complete.

Proof. SAT is clearly in NP since a NTM exists that guesses a
truth assignment and verifies its correctness in polynomial time.
Now we wish to prove VI eNP, T <,SAT, or equivalently, for
any polynomial-time NTM M, L(M) < Lgar.

For any NTM M, assume Q = {qo, g1 (accept), gz(reject),...,qr}
and I' = {sp, 51, S2,...,S/}. Also assume that the time is
bounded by p(n), where nis the length of the input.

We wish to prove that there is a function

fpm : ¥ — {instances of SAT} such that Vx € ©*, x € L(M) iff
fm(x) is satisfiable. In other words, we wish to use a Boolean
expression fyy(x) to describe the computation of M on x.

31

Variables in fy(x):

— State: Q[i,k]. M is in gk after the ith step of computation (at
time /).

— Head: HJi,j]. Head points to tape square j at time i.

— Symbol: S[i,j,/]. Tape square j contains s; at time /.
(Assume the tape is one-way infinite and the leftmost square is
labeled with 0.)

For example, initially i = 0. Assume the configuration is qoabba.
Let sy = B, s; = a, and sp = b. Therefore, we set the following
Boolean variables to be true: QJ[0,0], H[0,0], S[0,0,1],
S[0,1,2], S[0,2,2], S[0,3,1] and SJ[0,/,0] for j=4,5,.... A
configuration defines a truth assignment, but not vice versa.

32

Clauses in fi(x):

— At any time /i, M is in exactly one state.
Q[i,0]V---v Qi r] for 0 <i< p(n).
-Qli,k]V-Q[i,K]for0<i<p(n)and0 <k <K <r.

— At any time /, head is scanning exactly one square.
HI[i,0]Vv---Vv H[i,p(n)] for 0 <i < p(n).
=H[i,j]v—=Hli,j] for0 <i<p(n)and 0 <j < < p(n).

— At any time /, each square contains exactly one symbol.
Sl[i,j,0]V---V Sli,j,v]for0 <i<p(n)and 0 <j < p(n).
=Sli,j, v =S[i,j,I for 0 < i< p(n), 0 <j < p(n) and

o</I<l<v.

33

— At time 0, M is in its initial configuration. Assume
X=8 -8,

QI0,0].

H[0,0].

S[0,0,h4],...,S[0,n—1,1,].

S10,/,0] for n <j < p(n).
— By time p(n), M has entered g1 (accept)). (If M halts in less
than p(n) steps, additional moves can be included in the
transition function.)

Qlp(n), 1].

34

— Configuration at time i — configuration at time /+ 1. Assume
S(QK,S/) = (qk/,s//, D), where D= —1,1.

If the head does not point to square j, symbol on j is not
changed from time j to time 74 1.

Hli,)V —Sli,j,]V S[i+1,j,/] for 0 <i < p(n), 0 < j < p(n),
and0</<v.

If the current state is g, the head points to square j which
contains symbol s;, then changes are made accordingly.

=H[i,j)v—Q[i,k] v =Sli,j, |V H[i+1,j+ D],

=H[i,j]v-Q[i,k] Vv —=S[i,j, |V Q[i+1,K], and

=HI[i,j]v=Q[i,k]V =Sli,j,[] v S[i+1,j,I, for 0 < i < p(n),
0<j<p(n),0<k<r,and0</<wv.

35

Let fis(x) be the conjunction of all the clauses defined above.
Then x € L(M) iff there is an accepting computation of M on x
iff fyy(x) is satisfiable. fy; can be computed in polynomial time
since |fy(x)| < (number of clauses) *(number of

variables)= O(p(n)?) x O(p(n)?) = O(p(n)*).

So there is a polynomial reduction from any language in NP to
SAT. So SAT is NP-complete.

36

