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ABSTRACT
We introduce a new methodology for the exact analysis of
M/G/1-type Markov processes. The methodology uses ba-
sic, well-known results for Markov chains by exploiting the
structure of the repetitive portion of the chain and recasting
the overall problem into the computation of the solution of
a finite linear system. The methodology allows for the cal-
culation of the aggregate probability of a finite set of classes
of states from the state space, appropriately defined. Fur-
ther, it allows for the computation of a set of measures of
interest such as the system queue length or any of its higher
moments. The proposed methodology is exact. Detailed
experiments illustrate that the methodology is also numer-
ically stable, and in many cases can yield significantly less
expensive solutions when compared with other methods, as
shown by detailed time and space complexity analysis.
Keywords: M/G/1-type processes; aggregation; matrix
analytic method; Markov chains.

1. INTRODUCTION
Over the last two decades, considerable effort has been put
into the development of matrix analytic techniques [10, 11]
for the exact analysis of a general and frequently encoun-
tered class of queuing models. In these models, the embed-
ded Markov chains are two-dimensional generalizations of
elementary GI/M/1 and M/G/1 queues [9], and their inter-
section, i.e., quasi-birth-death (QBD) processes. GI/M/1
and M/G/1 queues model systems with interarrival and ser-
vice times characterized, respectively, by general distribu-
tions rather than simple exponentials and are often used as
the modeling tool of choice in modern computer and com-
munication systems [9, 15, 18]. As a consequence, consider-
able effort has been placed into the development of efficient
methodologies for their analysis [11, 8].

∗This work has been supported by National Science Foun-
dation under grands EIA-9974992, CCR-0098278, and ACI-
0090221.

The class of models that can be analyzed using M/G/1-type
Markov chains includes the important class of BMAP/G/1
queues, where the arrival process is a batch Markovian ar-
rival process (BMAP) [11]. Special cases of BMAPs in-
clude phase-type renewal processes (e.g.., Erlang or Hyper-
exponential processes) and non-renewal processes (e.g., the
Markov modulated Poisson process, MMPP). The impor-
tance of BMAPs lies in their ability to be more effective and
powerful traffic models than the simple Poisson process or
the batch Poisson process, as they can effectively capture de-
pendence and correlation, salient characteristics of Internet
traffic [12, 5, 17].

In this paper, we focus on solving M/G/1-type Markov chains.
Neuts [10] defines various classes of infinite-state Markov
chains with a repetitive structure, whose state space is par-

titioned into the boundary states S(0) = {s
(0)
1 , . . . , s

(0)
m } and

the sets of states S(j) = {s
(j)
1 , . . . , s

(j)
n }, for j ≥ 1, that

correspond to the repetitive portion of the chain. For the
class of M/G/1-type Markov chains, the infinitesimal gener-
ator QM/G/1 has upper block Hessenberg form and matrix
analytic methods have been proposed for its solution [11].
The key in the matrix-analytic solution is the computation
of an auxiliary matrix called G. The traditional solution
methodologies for M/G/1-type processes compute the sta-
tionary probability vector with a recursive function based
on G and an iterative algorithm is used to determine G [8,
6].

Distinctively from the classic techniques of solving M/G/1-
type processes, we recast the problem into that of solving
a finite linear system in m + 2n unknowns, where m is the
number of states in the boundary portion of the process
and n is the number of states in each of the repetitive “lev-
els” of the state space, and are able to obtain exact results.
The proposed methodology uses basic, well-known results
for Markov chains. Assuming that the state space S is par-
titioned into sets S(j), j ≥ 0, instead of evaluating the prob-
ability distribution of all states in each S(j), we calculate
the aggregate probability distribution of n classes of states
T (i), 1 ≤ i ≤ n, appropriately defined (see Figure 1). The
computation of the aggregate probability distribution of the
n classes is exact. Furthermore, this aggregate probability
distribution does provide the means for calculating a variety
of measures of interest including the expected queue length
and any of its higher moments.
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Figure 1: Aggregation of an infinite S into a finite
number of states.

Our contributions are both theoretical and practical. On the
theoretical side, we propose a new methodology for the so-
lution of M/G/1-type processes that requires the solution
of a finite linear system of equations. This system of equa-
tions is derived from first principles. The new methodology
that we propose uses partially the existing matrix analytic
methodologies for the computation of matrix G but in dis-
tinct difference from the classic matrix analytic methodolo-
gies we use a new approach based on a few simple steps for
the computation of the stationary probability vector.

On the practical side, the methodology results in signifi-
cantly more efficient solutions than the traditional methods.
Detailed big-O complexity analysis of the proposed method
with the best known methods illustrates the superiority of
the new methodology. We further illustrate its benefits by
providing detailed experimental comparisons with the best
known methods on a set of realistic examples.

An additional important issue that arises is related to the
numerical stability of the method. Since the system of linear
equations that we derive and solve could be ill-conditioned,
there is the danger of proposing a method that is numerically
unstable. To address this issue, we conducted detailed ex-
perimental analysis. Our experiments consistently provide
strong indications that the method is numerically stable.

This paper presents a new method for the exact analysis of
M/G/1-type processes. The stated goals and outline of this
work are:

• to outline the matrix analytic methods for the solution
of M/G/1-type processes (Section 2),

• to present a new methodology along with detailed time
and storage complexity analysis for the solution of
M/G/1-type processes (Section 3),

• to experimentally compare its efficiency with the best
known methods in a set of realistic examples (see Sec-
tion 4),

• to conduct detailed experiments to illustrate the nu-
merical stability of our methodology (Section 5), and

• to summarize our findings and report on the proposed
methodology’s efficiency (Section 6).

We note that our approach is in the same spirit as the one
presented in [4, 3] for the exact solution of a very limited
class of QBD and M/G/1-type Markov chains, but in dis-
tinct contrast to these works, our method does not require
any restriction on the form of the chain’s repeating pattern,
thus can be applied to any type of M/G/1 chain.

2. BACKGROUND
In this paper, we assume continuous time Markov chains,
or CTMCs, hence we refer to the infinitesimal generator
Q, but our discussion applies just as well to discrete time
Markov chains, or DTMCs. Neuts [10] defines various classes
of infinite-state Markov chains with a repetitive structure.
In all cases, the state space is partitioned into the boundary

states S(0) = {s
(0)
1 , . . . , s

(0)
m } and the sets of states S(j) =

{s
(j)
1 , . . . , s

(j)
n }, for j ≥ 1, while π

(0) and π
(j), are the sta-

tionary probability vectors for states in S(0) and S(j), for
j ≥ 1. For the class of M/G/1-type Markov chains, the
infinitesimal generator QM/G/1 is block-partitioned as:

QM/G/1 =




L̂ F̂(1) F̂(2) F̂(3) F̂(4) · · ·

B̂ L F(1) F(2) F(3) · · ·

0 B L F(1) F(2) · · ·

0 0 B L F(1) · · ·
0 0 0 B L · · ·
...

...
...

...
...

. . .




. (1)

We use the letters “L”, “F”, and “B” according to whether
they describe “local”, ‘forward”, and “backward” transition
rates, respectively, in relation to a set of states S(j) for j ≥ 1,
and a “̂ ” for matrices related to S (0).

For the solution of M/G/1-type processes, several algorithms
exist [2, 8, 11]. These algorithms first compute the matrix
G as the solution of the following equation:

B + LG +
∞∑

j=1

F(j)Gj+1 = 0. (2)

The matrix G, which is stochastic if the process is recurrent
and irreducible, has an important probabilistic interpreta-
tion: an entry (k, l) in G expresses the conditional probabil-

ity of the process first entering S(j−1) through state l, given
that it starts from state k of S(j) [11, page 81]1. The G
matrix is obtained by solving iteratively Eq.(2). However,
recent advances show that the computation of G is more ef-
ficient when displacement structures are used based on the
representation of M/G/1-type processes by means of QBD
processes [8, 2, 1, 6]. The most efficient algorithm for the
computation of G is the cyclic reduction algorithm [2].

The calculation of the stationary probability vector is based
on the recursive Ramaswami’s formula [14], which is numer-
ically stable because it entails only additions and multiplica-
tions2. Ramaswami’s formula defines the following recursive
relation among stationary probability vectors π

(i) for i ≥ 0:

π
(j) = −

(
π

(0)Ŝ(j) +

j−1∑

k=1

π
(k)S(j−k)

)
S(0)−1

∀j ≥ 1, (3)

where, letting F(0) ≡ L, matrices Ŝ(j) and S(j) are defined
as follows:

Ŝ
(j) =

∞∑

l=j

F̂
(l)

G
l−j , j ≥ 1, S

(j) =

∞∑

l=j

F
(l)

G
l−j , j ≥ 0 (4)

1The probabilistic interpretation of G is the same for both
DTMCs and CTMCs.
2Subtractions on these type of formulas present the possi-
bility of numerical instability [11, 14].



Given the above definition of π
(j) and the normalization

condition, a unique vector π
(0) can be obtained by solving

the following system of m linear equations:

π
(0)
[(

L̂(0) − Ŝ(1)S(0)−1
B̂
)�

| 1T − H1T
]

= [0 | 1], (5)

where H =
∑

∞

j=1 Ŝ(j)
(∑

∞

j=0 S(j)
)−1

and the symbol “�”

indicates that we discard one (any) column of the corre-
sponding matrix, since we added a column representing the
normalization condition. Once π

(0) is known, we can then
iteratively compute π

(j) for j ≥ 1, stopping when the accu-
mulated probability mass is close to one. After this point,
measures of interest can be computed. Since the relation
between π

(j) for j ≥ 1 is not straightforward, computation
of measures of interest requires generation of the whole sta-
tionary probability vector.

[7] gives an improved version of Ramaswami’s formula. Once

π
(0) is known using Eq.(5), the stationary probability vector

is computed using matrix-generating functions associated
with triangular Toeplitz matrices3. These matrix-generating
functions are computed efficiently by using fast Fourier trans-
forms (FFT).

The outline of this algorithm follows:

π̃
(1) = −b · Y−1

π̃
(i) = −π̃

(i−1) · ZY−1 i ≥ 2,
(6)

where π̃
(1) = [π(1), ..., π(p)] and π̃

(i) = [π(pi+1), ..., π(p(i+1))]
for i ≥ 2. Matrices Y, Z, and b are defined as follows:

Y =




S(1) S(2) S(3) · · · S(p)

0 S(1) S(2) · · · S(p−1)

0 0 S(1) · · · S(p−2)

...
...

...
. . .

...

0 0 0 · · · S(1)




,

Z =




0 0 · · · 0 0

S(p) 0 · · · 0 0
...

...
. . .

...
...

S(3) S(4) · · · 0 0

S(2) S(3) · · · S(p) 0




,

b = π
(0)
[
Ŝ(1), Ŝ(2), Ŝ(3), · · · , Ŝ(k)

]
,

where p is a constant that defines how many of matrices

S(i) and Ŝ(i) are computed. In the above representation, the
matrix Y is an upper block triangular Toeplitz matrix and
the matrix Z is an lower block triangular Toeplitz matrix.

3. M/G/1-AGGREGATE
We introduce an aggregated technique that computes only
π

(0), π
(1) and the aggregated stationary probabilities of n

classes of states. The block partitioning of the infinitesimal
generator as shown in Eq.(1) defines a block partitioning of

the stationary probability vector π as π = [π (0), π
(1), π

(2), ...]

3A Toeplitz matrix has equal elements in each of its diago-
nals facilitating special methods for their analysis.

with π
(0) ∈ IR

m and π
(i) ∈ IR

n, for i ≥ 1. First, we rewrite
the matrix equality π · QM/G/1 = 0 as:




π
(0)·L̂ + π

(1) · B̂ = 0

π
(0)·F̂(1) + π

(1)·L + π
(2) · B = 0

π
(0)·F̂(2) + π

(1)·F(1) + π
(2)·L + π

(3) · B = 0

π
(0)·F̂(3) + π

(1)·F(2) + π
(2)·F(1) + π

(3)·L + π
(4)·B = 0

...
(7)

Theorem 3.1. Given an ergodic CTMC with infinitesi-
mal generator QM/G/1 having the structure shown in Eq.(1),

with stationary probability vector π = [π (0), π
(1), π

(2), ...]
the system of linear equations

x · X = [1,0] (8)

where X ∈ IR
(m+2n)×(m+2n) is defined as follows

X =




1
T

L̂ F̂
(1)

−

∞∑

i=3

Ŝ
(i)

· G (

∞∑

i=2

F̂
(i)

+ (

∞∑

i=3

Ŝ
(i)

· G)
�

1
T

B̂ L −

∞∑

i=2

S
(i)

· G (

∞∑

i=1

F
(i)

+

∞∑

i=2

S
(i)

· G)
�

1
T

0 B −

∞∑

i=1

S
(i)

· G (

∞∑

i=1

F
(i)

+ L +

∞∑

i=1

S
(i)

· G)
�




(9)

admits a unique solution x = [π(0), π
(1), π

(∗)], where π
(∗) =∑

∞

i=2 π
(i).

Proof. We first show that [π(0), π
(1), π

(∗)] is a solution
of Eq.(8) by verifying that it satisfies four matrix equations
corresponding to the four sets of columns we used to define
X.

(i) The first equation is the normalization constraint:

π
(0) · 1T + π

(1) · 1T + π
(∗) · 1T = 1. (10)

(ii) The second set of m equations is the first line in Eq.(7):

π
(0) · L̂ + π

(1) · B̂ = 0. (11)

(iii) The third set of n equations is derived beginning from
the second line in Eq.(7):

π
(0) · F̂(1) + π

(1) · L + π
(2) · B = 0

Because our solution does not compute explicitly π
(2), we

rewrite π
(2), such that it is expressed in terms of π

(0), π
(1)

and π
(∗) only. By substituting π

(2) in the above equation
we obtain:

π
(0) · F̂(1) + π

(1) · L + π
(∗) · B −

∞∑

j=3

π
(j) · B = 0. (12)

To compute the sum
∑

∞

j=3 π
(j), we use Ramaswami’s recur-

sive formula, Eq.(3), and obtain:

π
(3) = −(π(0)Ŝ(3) + π

(1)S(2) + π
(2)S(1))(S(0))−1

π
(4) = −(π(0)Ŝ(4) + π

(1)S(3) + π
(2)S(2) + π

(3)S(1))(S(0))−1

...
(13)



where the matrices Ŝ(i), for i ≥ 3, and S(j), for j ≥ 0 are
determined using the definitions in Eq.(4).

From the definition of matrix G in Eq.(2), it follows that

B = −(L +
∞∑

i=1

F(i)Gi) · G = −S(0) · G.

After summing all equations in Eq.(13) and multiplying by

B, we obtain the sum
∑

∞

j=3 π
(j) · B:

∞∑

j=3

π
(j)B =

(
π

(0)
∞∑

i=3

Ŝ(i) + π
(1)

∞∑

i=2

S(i) +
∞∑

j=2

π
(j)

∞∑

i=1

S(i)

)

· (S(0))−1S(0)G

which further results in:
∞∑

j=3

π
(j)B = π

(0)
∞∑

i=3

Ŝ(i)G+π
(1)

∞∑

i=2

S(i)G+

∞∑

j=2

π
(j)

∞∑

i=1

S(i)G.

(14)
Substituting Eq.(14) in Eq.(12) we obtain the third set of

equations as a function of π
(0), π

(1) and π
(∗) only:

π
(0)

(
F̂(1) −

∞∑

i=3

Ŝ(i)G

)
+π

(1)

(
L −

∞∑

i=2

S(i)G

)

+π
(∗)

(
B −

∞∑

i=1

S(i)G

)
= 0.

(15)

(iv) Another set of n equations is obtained by summing all
the remaining lines in Eq.(7):

π
(0)

∞∑

i=2

F̂(i) + π
(1)

∞∑

i=1

F(i)+
∞∑

j=2

π
(j)

(
L +

∞∑

i=1

F(i)

)

+
∞∑

j=3

π
(j)B = 0

Since
∑

∞

j=3 π
(j) · B can be expressed as a function of π

(0),

π
(1), and π

(∗) only, the above equation can be rewritten as:

π
(0)

(
∞∑

i=2

F̂(i) +
∞∑

i=3

Ŝ(i)G

)
+ π

(1)

(
∞∑

i=1

F(i) +
∞∑

i=2

S(i)G

)

+π
(∗)

(
∞∑

i=1

F(i) + L +
∞∑

i=1

S(i)G

)
= 0.

(16)

In steps (i) through (iv) we showed that the vector of prob-

abilities [π(0), π
(1), π

(∗)] satisfies Eqs. (10), (11), (15), and
(16), hence it is a solution of Eq.(8). Now we have to show
that this solution is unique. For this, it is enough to prove
that the rank of X is m + 2n by showing that its m + 2n
rows are linearly independent.

Since the process with the infinitesimal generator QM/G/1

is ergodic, we know that the vector 1T and the set of vec-
tors corresponding to all the columns of QM/G/1 except one,
any of them, are linearly independent. We also note that
by multiplying a block column of the infinitesimal genera-
tor QM/G/1 with a matrix, we get a block column which is
a linear combination of the columns of the selected block
column. In our proof we use multiplication of the block

V(0) V(1) V(2) V(3) · · ·

L̂ F̂(1) F̂(2) F̂(3) · · ·

B̂ L F(1) F(2) · · ·

0 B L F(1) · · ·

0 0 B L · · ·

0 0 0 B · · ·

..

.
..
.

..

.
..
.

..

.

U∑
∞

i=2 F̂(i)
∑

∞

i=1 F(i)

L +
∑

∞

i=1 F(i)

B + L +
∑

∞

i=1 F(i)

B + L +
∑

∞

i=1 F(i)

..

.

W(1) W(2) W(3) · · ·

Ŝ(3) · G Ŝ(4) · G Ŝ(5) · G

S(2) · G S(3) · G S(4) · G

S(1) · G S(2) · G S(3) · G

−B S(1) · G S(2) · G

0 −B S(1) · G

.

.

.
.
.
.

.

.

.

Y

F̂(1) −
∑

∞

i=3 Ŝ(i) · G

L −
∑

∞

i=2 S(i) · Gi

B −
∑

∞

i=1 S(i) · Gi

B −
∑

∞

i=1 S(i) · Gi

B −
∑

∞

i=1 S(i) · Gi

.

.

.

Z∑
∞

i=2 F̂(i) +
∑

∞

i=3 Ŝ(i) · G∑
∞

i=1 F(i) +
∑

∞

i=2 S(i) · Gi

L +
∑

∞

i=1 F(i) +
∑

∞

i=2 S(i) · Gi

L +
∑

∞

i=1 F(i) +
∑

∞

i=2 S(i) · Gi

L +
∑

∞

i=1 F(i) +
∑

∞

i=2 S(i) · Gi

.

.

.

Figure 2: The blocks of column vectors used to prove
linear independence.

columns with powers of the matrix G. We begin from the
columns of the infinitesimal generator. In Figure 2 we show
the blocks of column vectors that we use in our proof. The
blocks labeled V(i) for i ≥ 0 are the original block columns
of QM/G/1. The block U is obtained by summing all V(i)

for i ≥ 2:

U =
∞∑

i=2

V(i).

Blocks W(i) for i ≥ 1 are obtained by multiplying the block
columns V(j) for j ≥ i + 2 with the (j − i + 1)th power of
matrix G and summing them all together

W(i) =

∞∑

j=i

V(j+2) · Gj−i+1, i ≥ 1

which are used to define

Y = V(1) −
∞∑

i=1

W(i) and Z = U +
∞∑

i=1

W(i)

In the matrix X defined in Eq.(9) we make use of the three

upper blocks of V(0), Y, and Z. We argue that the rank of
the matrix [V(0)|Y|Z] is m + 2n − 1 because we obtained

Y and Z respectively as linear combination of blocks V(1)

and V(2) with the blocks W(i) for i ≥ 1, and none of the
columns used to generate W(i) for i ≥ 1 is from either V(1)

or V(2). Recall that QM/G/1 is an infinitesimal generator,

therefore the defect is one and the rank of [V(0)|Y|Z] is
exactly m+2n−1. Substituting one (any) of these columns
with a column of 1s, we obtain the rank of m + 2n. 2



We stress that the first step toward the solution of an M/G/1-
type process is the computation of matrix G. In our ap-
proach we assume that G is available, i.e., it has been com-
puted using an efficient iterative method, e.g., the cyclic re-
duction algorithm [2], or that it can be explicitly obtained [13,
15].

3.1 Computing Measures of Interest for M/G/1-
type Processes

We now consider the problem of obtaining stationary mea-
sures of interest once π

(0), π
(1), and π

(∗) have been com-
puted. We consider measures that can be expressed as the
expected reward rate:

r =
∞∑

j=0

∑

i∈S(j)

ρ
(j)
i π

(j)
i ,

where ρ
(j)
i is the reward rate of state s

(j)
i . For example, to

compute the expected queue length in steady state, where
S(j) represents the system states with j customers in the

queue, we let ρ
(j)
i = j. To compute the second moment of

the queue length, we let ρ
(j)
i = j2.

Since our solution approach obtains π
(0), π

(1), and
∑

∞

j=2 π
(j),

we rewrite r as

r = π
(0)

ρ
(0)T + π

(1)
ρ

(1)T +

∞∑

j=2

π
(j)

ρ
(j)T ,

where ρ
(0) = [ρ

(0)
1 , . . . , ρ(0)

m ] and ρ
(j) = [ρ

(j)
1 , . . . , ρ(j)

n ], for
j ≥ 1. Then, we must show how to compute the above
summation without explicitly using the values of π

(j) for

j ≥ 2. We can do so if the reward rate of state s
(j)
i , for

j ≥ 2 and i = 1, . . . , n, is a polynomial of degree k in j with

arbitrary coefficients a
[0]
i ,a

[1]
i , . . . ,a

[k]
i :

∀j ≥ 2, ∀i ∈ {1, 2, . . . , n}, ρ
(j)
i = a

[0]
i +a

[1]
i j+ · · ·+a

[k]
i jk.
(17)

The definition of ρ
(j)
i illustrates that the set of measures of

interest that we can compute includes any moment of the
probability vector π as long as the reward rate of the ith

state in each set S(j) has the same polynomial coefficients
for all j ≥ 2.

We compute
∑

∞

j=2 π
(j)

ρ
(j)T as follows

∑
∞

j=2 π
(j)

ρ
(j)T

=
∑

∞

j=2 π
(j)
(
a[0] + a[1]j + · · · + a[k]jk

)T

= r[0]a[0]T + r[1]a[1]T + · · · + r[k]a[k]T ,

and the problem is reduced to the computation of r[l] =∑
∞

j=2 jl
π

(j), for l = 0, . . . , k. We show how r[k], k > 0, can

be computed recursively, starting from r[0], which is simply
π

(∗). Multiplying the equations in Eq.(7) from the second
line on by the appropriate factor jk results in





2k
π

(0)F̂(1) + 2k
π

(1)L(1) + 2k
π

(2)B = 0

3k
π

(0)F̂(2) + 3k
π

(1)F(1) + 3k
π

(2)L + 3k
π

(3)B = 0
...

Summing these equations by parts we obtain

π
(0)

∞∑

j=1

(j + 1)kF̂(j)

︸ ︷︷ ︸
def
= f̂

+ π
(1)

(
2kL +

∞∑

j=1

(j + 2)kF(j)

)

︸ ︷︷ ︸
def
= f

+

∞∑

h=2

π
(h) (

∞∑

j=1

(j + h + 1)kF(j) + (h + 1)kL ) +
∞∑

h=2

π
(h)hkB

= 0.

which, since
∞∑

h=2

π
(h)hk = r[k], can then be rewritten as

∞∑

h=2

π
(h)

(
∞∑

j=1

k∑

l=0

(
k
l

)
(j + 1)lhk−lF(j)

)
+

∞∑

h=2

π
(h)

(
k∑

l=0

(
k
l

)
1lhk−lL

)
+ r[k]B = −f̂ − f .

Exchanging the order of summations we obtain

k∑

l=0

(
k
l

)
r[k−l]

(
L +

∞∑

j=1

(j + 1)lF(j)

)
+ r[k]B = −f̂ − f .

Finally, isolating the case l = 0 in the outermost summation
we obtain

r[k]
(
B + L +

∑
∞

j=1 F(j)
)

=

− f̂ − f −
∑k

l=1

(
k
l

)
r[k−l]

(
L +

∑
∞

j=1(j + 1)lF(j)
)

,

which is a linear system of the form r[k](B+L+
∑

∞

i=1 F(j)) =

b[k], where the right-hand side b[k] is an expression that can
be computed from π

(0), π
(1), and the vectors r[0] through

r[k−1]. However, the rank of (B + L +
∑

∞

i=1 F(j)) is n − 1.

This is true because (B + L +
∑

∞

i=1 F(j)) is an infinites-
imal generator with rank n − 1, so the above system is
under-determined. We drop any of the columns of B + L +∑

∞

i=1 F(j), resulting in

r[k](B + L +
∞∑

i=1

F(j))� = (b[k])�, (18)

and obtain one additional equation for r[k] by using the flow
balance equations between ∪j

l=0S
(l) and ∪∞

l=j+1S
(l) for each

j ≥ 1 and multiplying them by the appropriate factor jk,




2k
π

(0)
∞∑

l=2

F̂(l)1T +2k
π

(1)
∞∑

l=1

F(l)1T =2k
π

(2)B1T

3k
π

(0)
∞∑

l=3

F̂(l)1T + 3k
π

(1)
∞∑

l=2

F(l)1T

+3k
π

(2)
∞∑

l=1

F(l)1T =3k
π

(3)B1T

...

.

(19)
We introduce the following notation

F̂[k,j] =
∞∑

l=j

lk · F̂(l), F[k,j] =
∞∑

l=j

lk ·F(l), j ≥ 1, (20)



We then sum all lines in Eq.(19) and obtain:

π
(0)

∞∑

j=2

jkF̂[0,j]1
T

︸ ︷︷ ︸
def
= f̂c

+π
(1)

∞∑

j=1

(j + 1)kF[0,j]1
T

︸ ︷︷ ︸
def
= fc

+

∞∑

h=2

π
(h)

∞∑

j=1

(j + h)kF[0,j]1
T = r[k]B1T ,

which, with steps analogous to those just performed to ob-
tain Eq.(18), can be written as

r[k](F[1,1] − B)1T = c[k] (21)

where c[k] is defined as:

c[k] = −(f̂c + fc +
k∑

l=1

(
k
l

)
r[k−l]

∞∑

j=1

jlF[0,j] · 1
T ) (22)

Note that the n × n matrix

[(B + L + F[0,1])
�|(F[1,1] − B)1T ] (23)

has full rank. This is true because (B + L + F[0,1]) is an in-
finitesimal generator with rank n−1, thus has a unique sta-
tionary probability vector γ satisfying γ(B+L+F[0,1]) = 0.

However, this same vector must satisfy γB1T > γF[1,1]1
T

to ensure that the process has a positive drift toward S (0),
thus is ergodic, hence γ(F[1,1]−B)1T < 0, which shows that

(F[1,1] −B)1T cannot be possibly obtained as linear combi-
nation of columns in (B + L + F[0,1]), therefore the n × n
matrix defined in Eq.(23) has full rank.

Hence, we can compute r[k] using Eqs. (18) and (21), i.e.,
solving a linear system in n unknowns (of course, we must
do so first for l = 1, . . . , k − 1). As an example, we consider

r[1], which is used to compute measures such as the first
moment of the queue length. In this case,

b[1] = −π
(0)

∞∑

j=1

(j + 1)F̂(j) − π
(1)(2L +

∞∑

j=1

(j + 2)F(j))

−π
(∗)(L +

∞∑

j=1

(j + 1)F(j))

c[1] = −π
(0)

∞∑

j=2

jF̂[0,j]1
T − π

(1)
∞∑

j=1

(j + 1)F[0,j]1
T

−π
(∗)

∞∑

j=1

jF[0,j]1
T

We conclude by observing that, when the sequences {F̂(j) :

j ≥ 1} and {F(j) : j ≥ 1} do have a nicer relation, like a
geometric one, the treatment in this section can be modified
appropriately to simplify the different sums introduced here,
and give closed form formulas.

In the general case that was considered here some mea-
sures might be infinite. For example, if the sequences are
summable but decrease only like 1/jh for some h > 1, then
the moments of order h − 1 or higher for the queue length
do not exist (are infinite). From the practical point of view,
we always store a finite set of matrices from the sequences

{F̂(j) : j ≥ 1} and {F(j) : j ≥ 1}, so the sums of type F̂[k,j]

and F[k,j] for j ≥ 1, k ≥ 0 are always finite.

3.2 Time and Storage Complexity
In this section, we present a detailed comparison of our ag-
gregate solution for M/G/1-type processes with the Matrix-
analytic method outlined in Section 2. The complexity anal-
ysis is within the accuracy of O-notation. In our analysis,
OL(x) denotes the time complexity of solving a linear sys-
tem described by x nonzero entries and η{A} denotes the
number of nonzero entries in matrix A. In the general case,

η{F̂} and η{F} should be taken to mean η{∪p
j=1F̂

(j)} and

η{∪p
j=1F

(j)}, respectively.

Since practically, we cannot store an infinite number of ma-

trices, we store up to p matrices of type F̂(j) and F(j), j ≥ 1,
given that these matrices accurately capture the behavior
of the whole system. Furthermore, for the matrix analytic
method to reach the necessary accuracy, it is necessary to
compute up to s block vectors π

(i) of the stationary prob-
ability vector π. We outline the required steps for each
method and analyze the computation and storage complex-
ity of each step up to the computation of the expected queue
length of the process and summarize the discussion in Table
14.

Analysis for M/G/1-Aggregate:

• Computation of the aggregate stationary probability
vector π

(0), π(1), π(∗)

– O(p · (m · η{F̂,G} + n · η{F,G})) to compute

sums of the form Ŝ(i) for i ≥ 1, and S(i) for i ≥ 0,
whose sparsity depends directly on the sparsity of

G, F̂(i) and F(i) for i ≥ 1.

– O(p ·(η{F̂}+η{F})) to compute sums of the form∑
∞

j=1 F(j), and
∑

∞

j=2 F̂(j).

– OL(η{B̂, L̂,L, F̂,F,G}) for the solution of the
system of m + 2n linear equations.

• Storage requirements for computation of π
(0), π(1), π(∗)

– O(m · n + n2) to store the sums
∑

∞

i=1 Ŝ(i) and∑
∞

i=1 S(i).

– m + 2n to store the probability vectors π
(0), π

(1)

and π
(∗).

• Computation of the expected queue length

– O(p · (η{F̂} + η{F})) to compute
∑

∞

j=1 F(j) and
∑

∞

j=2 F̂(j).

– OL(η{F,L,B}) for the solution of the sparse sys-
tem of n linear equations.

Analysis for M/G/1 Matrix-analytic solution

• Computation of the stationary probability vector π

4Since both methodologies require the computation of G,
we do not include its cost in our complexity analysis. The
different sums are considered to be computed only once and
stored in the memory untill the computation is completed.



Computation Complexity Storage Complexity π storage
Computation of probability vector

M/G/1-Aggregate OL(m2) + O(p(mη{F̂,G} + nη{F,G, B̂}) + pn3 + sn2 + p log p) O(mn + n2) m + 2n

Matrix-analytic OL(η{B̂, L̂,L, F̂,F,G}) + O(p(mη{F̂,G} + nη{F,G})) O(m2 + p(mn + n2)) m + sn
Computation of first moment measure

M/G/1-Aggregate OL(η{B,L,F}) + O(pη(F̂) + pη(F)) none none
Matrix-analytic O(s · n) none none

Table 1: Computational and storage complexity of the M/G/1-Aggregate and the Matrix-analytic methods

for computation of the probability vector (π(0), π
(1), π

(∗) for M/G/1-Aggregate and π for Matrix-analytic)
and first moment. We note that the fast FFT-based version of Ramaswami’s recursive formula is used for
the comparison.

– O(p · (m · η{F̂,G}+n · η{F,G})) to compute the

sums of the form Ŝ(i) for i ≥ 1, and S(i) for i ≥ 0.

– O(n3 + m · η{F̂,G} + n · η{B̂}) for the compu-

tation of the inverses of S(0), and
∑

∞

j=0 S(j) and
additional multiplications of full matrices.

– OL(m2) for the solution of the system of m linear
equations.

– O(pn3 + sn2 + p log p) [7], since the fast FFT-
based version of Ramaswami’s recursive formula
is used to compute the s vectors of the stationary
probability vector.

• Storage requirements for computation of π

– O(p · (m · n + n2)) to store all sums of form Ŝ(i)

for i ≥ 1, and S(i) for i ≥ 0

– O(m2) for storing the matrix of the system of
linear equation.

– m to store π
(0).

– s · n to store vectors π
(i) for i ≥ 1.

• Computation of the expected queue length

– O(s · n) to compute the queue length

Concluding our analysis, we point out that the aggregate so-
lution is a more efficient approach, both computation- and
storage-wise. In comparison to the Matrix-analytic solution,
it entails only a few steps and is thus much easier to imple-
ment. Since we do not need to generate the whole station-
ary probability vector, in our complexity analysis the term s
does not appear for M/G/1-Aggregate which in comparison
with the value of p or n is several times higher.

Furthermore, since the aggregate solution does not introduce
any matrix inversion or matrix multiplication, the sparsity
of the original process is preserved resulting in significant
savings with respect to both computation and storage. We
emphasize the fact that the sparsity of G is key for preserv-
ing the sparsity of the original process, in both methods.
There are special cases where G is very sparse (e.g., G is a
single column matrix if B is a single column matrix [13]).

In these cases, the sums of the form Ŝ(i) for i ≥ 1, and S(i)

for i ≥ 0 almost preserve the sparsity of the original process
and reduce the computation and storage cost.

4. COMPUTATIONAL EFFICIENCY
In the previous section, we argue using O-notation about the
the computational and storage efficiency of M/G/1-Aggregate.
Here, we present further numerical evidence supporting the
fact that M/G/1-Aggregate is an efficient approach. For our
comparisons, we use the classic Ramaswami’s formula and
the fast FFT implementation of Ramaswami’s formula, the
most efficient known algorithm for solving M/G/1-type pro-
cesses [7]. We used Meini’s implementation5 for the cyclic
reduction for the computation of G that is required in all
three solution algorithms. We also used Meini’s code for
the fast FFT implementation of Ramaswami’s formula that
was made available to us via a personal communication. We
implemented the M/G/1-Aggregate method and the classic
Ramaswami’s formula in C. All experiments were conducted
on a 450 MHz Sun Enterprise 420R server with 4 GB mem-
ory.

The chain we selected for our experiments represents a gen-
eral BMAP/M/1 queue. Recall that in practice, it is not

possible to store an infinite number of F̂(i) and F(i) matri-
ces, 1 < i < ∞. One should stop storing when all entries of

F̂(i) and F(i) for i > p are below a sufficient threshold (i.e.,
very close to zero in a practical implementation) [6]. As
illustrated in the previous section, computation time does
depend on the size (i.e., parameters m and n) and the num-
ber (of stored) matrices (i.e., parameter p) that define the
infinitesimal generator Q. Finally, one last parameter that
affects computation time is the number s of vector prob-
abilities that should be computed so as the normalization
condition

∑s
i=1 π

(i) = 1.0 is reached (again, within a suffi-
cient numerical threshold).

In our experiments, we vary the parameters n, p, and s
(for the case of BMAP/M/1 queue m = n) and provide
timing results for the computation of the stationary vector π

using the classic Ramaswami implementation, the fast FFT
implementation, and the computation of (π(0), π(1), π(∗))
using M/G/1-Aggregate. We also provide timings for the
computation of the queue length for both methods. Results
are presented in Figure 3.

The first experiment, considers a BMAP/M/1 queue with
n = 16 and p = 32, a relatively small case. The timings6

5Code available at http://www.dm.unipi.it/~meini/ric.html.
6We point out that our timing results do not take into con-
sideration the computation of G, which is used in all three
methods
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(f) Queue length: 32x32 with 128 matrices 

������

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

������
������
������
���

������
������
������
���

������
������
������
���

������
������
������
���

������
������
������
���

��
��
��
�

��
��
��
�

��
��
��
�

������
������
������
���

  
  
  
 

(e) Stationary probability vector: 32x32 with 128 matrices 
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(a) Stationary probability vector: 16x16 with 32 matrices 
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Figure 3: Execution time (in seconds) for M/G/1-Aggregate, classic implementation of Ramaswami’s formula,
and fast FFT implementation of Ramaswami’s formula. Upper row of the figure illustrates timings for
computation of the stationary probability vector and the lower row for computation of queue length.

of the three algorithms are shown as a function of s. Fig-
ure 3(a) depicts the computation cost of the probability vec-
tor and Figure 3(b) illustrates the c computation cost the
queue length. Observe that the y-axis is in log-scale. Note
that the value of s does affect the execution time of both
Matrix-analytic approaches, but does not have any affect
on M/G/1-Aggregate. As expected, for the computation
of the stationary vector, the FFT implementation is supe-
rior to the classic Ramaswami formula, behavior that per-
sists when we increase p and n (see Figures 3(c) and 3(e)).
M/G/1-Aggregate consistently outperforms the other two
methods, plus its performance is insensitive to s (see figures
Figures 3(a), 3(c) and 3(e)).

Figures 3(b), 3(d) and 3(f) illustrate the computation cost
of the queue length for the three algorithms for various val-
ues of n, p, and s. Note that the two implementations of
Ramaswami’s formula have the same cost, since the same
classic formula is used for the computation of queue length:
first weight appropriately and then sum the probability vec-
tor which is already computed. The figures further con-
firm that the cost of solving a small system of linear equa-
tions that M/G/1-Aggregate requires for the computations
of queue length is in many cases preferable to the classic
methods. If this linear system increases and s is also small,
then the classic methods may offer better performance.

5. NUMERICAL STABILITY
The algorithm proposed in Section 3 results in a finite sys-
tem of linear equations that can be solved with numerical
methods. Because the linear system is a result of matrix
additions, subtractions, and multiplications, its numerical
stability should be examined. However, because of the pres-
ence of a linear system, and because our matrices are not M-
matrices, an analytic examination of the numerical stability
is not easily feasible. In this section we argue via experi-
mentation that M/G/1-Aggregate is numerically stable and
compare its stability behavior with Ramaswami’s recursive
formula. Ramaswami’s recursive formula for the computa-
tion of the steady state probability vector of an M/G/1-type

process consists of matrix additions of non-negative matri-
ces, computations that are known to be numerically stable
7.

In the following we focus on the stability of the method used
to solve the original problem, rather than the stability of the
problem itself. The latter is measured by a condition number
(or conditioning), which depends on a specific instance of
the problem, but not on the method used. The stability
of a method A : <N −→ <M , given an input x ∈ <N , is
determined as follows:

‖A(x) − A(x + δ)‖ < κ(x) · ‖δ‖

where δ ∈ <N is a small perturbation of the input, and κ(x)
is the conditioning of the problem with input x. Any norms
of the corresponding vector spaces can be used, but in the
following we limit our discussion to the infinity (maximum)
norm. [19] states that a stable algorithm gives nearly the
right answer to nearly the right question. In other words,
if we change the input of a stable algorithm by a small δ
we should obtain an output that is perturbed, within the
constant factor κ(x), by a corresponding amount.

We follow the above definition to examine experimentally
the stability of M/G/1-Aggregate versus that of Ramaswami’s
formula. The output of the aggregate scheme is a probabil-
ity vector of m+2n elements and is denoted as A(x), where
x belongs to the domain of the method, i.e., it is a choice
of all the elements of the input matrices. The output of
Ramaswami’s is again a probability vector of m + 2n el-
ements and is denoted as R(x). Note that Ramaswami’s
original output is post-processed to produce the same ag-
gregate probabilities that A(x) produces. We run two sets
of experiments, one for a well conditioned instance of the
problem, and one for an ill-conditioned instance. This is
performed via the following steps:

7We opt not to compare M/G/1-Aggregate with the Fast
FFT Ramaswami’s formula because the FFTs may be the
source of numerical instabilities [7].
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Figure 4: Numerical behavior of algorithms under well-conditioned input. Graphics (a) and (c) plot
‖A(x) − A(x + δi)‖ for M/G/1-Aggregate and ‖R(x) − R(x + δi)‖ for Ramaswami’s recursive formula for dif-
ferent perturbation magnitudes and for 1 ≤ i ≤ 50 distinct experiments. Graphics (b) and (d) illustrate
‖A(x + δi) − R(x + δi)‖ for the same perturbation magnitudes and the same 1 ≤ i ≤ 50 distinct experiments.

1. Select a CTMC and solve it using both M/G/1-Aggregate
and Ramaswami’s formula and check the closeness of
the results.

2. Perturb the input of the selected CTMC by small ran-
dom numbers. We select three different perturbation
magnitudes: 10−12, 10−10 and 10−6, and solve the
CTMC with the perturbed input.

3. Repeat the perturbation experiment 50 times with dif-
ferent sets of random perturbation values within the
same magnitude range to achieve statistical accuracy.

4. Calculate the perturbation of output for each randomly
perturbed input for M/G/1-Aggregate solutions con-
sidering as base case the output obtained by using
M/G/1-Aggregate to solve the CTMC without any
perturbation of input, i.e., ‖A(x) − A(x + δi)‖, for
each experiment i. Calculate the same for the set
of perturbed solutions using Ramaswami’s formula,
where the base case is the solution obtained using Ra-
maswami’s formula on the un-perturbed input, i.e.,
‖R(x) − R(x + δi)‖, for each experiment i.

5. Calculate the absolute difference between the solution
obtained by using M/G/1-Aggregate and Ramaswami’s
formula, i.e., ‖A(x + δi)− R(x + δi)‖, for each experi-
ment i.

For our experiments, we selected a CTMC that models a
bursty hyper-exponential server with burst sizes ranging from
1 to p = 64. The dimension of matrices B, L and F(i) for

1 ≤ i ≤ p is 16 × 16 and matrices L̂, B̂ a F̂(i) for 1 ≤ i ≤ p

are of dimensions 1×1, 16×1 and 1×16 respectively. Since
the corresponding G matrix for the process as well as matri-

ces Ŝ(i) and S(i) for 1 ≤ i ≤ p are full, we consider the case
to a representative one.8 All experiments are conducted on
a Pentium III with 64-bit double precision arithmetic, and
10−16 machine precision.

Our first set of experiments considers well-conditioned in-
put matrices, where the values of their elements differ at
most by two orders of magnitude. Figure 4 illustrates
the behavior of M/G/1-Aggregate and Ramaswami’s for-
mula under well-conditioned input for 50 distinct experi-
ments. Each experiment corresponds to a different δi but
within the same magnitude range. Figure 4(a) shows that
the perturbation of solution for each of 50 experiments for
M/G/1-Aggregate and Ramaswami’s formula is within the
same magnitude range of 10−9. Observe that Figure 4(a)
does present two lines, one for M/G/1-Aggregate and one
for Ramaswami’s formula but the lines are almost indistin-
guishable at this level. The proximity of the two solutions
is better illustrated in Figure 4(b) where the difference be-
tween the solutions obtained by the two different methods is
plotted and is in the range of [0.0, 10−16]. The two methods
are equal for all numerical purposes. Figure 4(c) illustrates
the perturbation of solution for both methods with δi’s in
the range of 10−12 9. Across all experiments, the degree
of perturbation in the solution (i.e., the conditioning of the

8We conducted a large number of stability experiments but
due to space restrictions we only present a few experiments
here. We note however that all of our experiments did pro-
duce consistent results with those presented in this section.
9All experiment of this section has been run for different



problem) is within three orders of magnitude less than δi.
Consistently with Figure 4(b), Figure 4(d) illustrates that
the two methods agree to machine precision. Regardless of
the magnitude of the input perturbation, the differences be-
tween the solutions are consistently within the same range,
i.e., 10−16.

Next, we turn to a worse conditioned problem, where the el-
ements within the various input matrices vary significantly.
We use the same CTMC as the one in the previous set of
experiments but the entries in all input matrices vary in
magnitude up to 1011 with the largest element in the range
of 102 and the smallest in the range of 10−9. Therefore,
by increasing the stiffness of the problem the possibility of
numerical error increases. Again, we perturb the input with
random values within ranges of 10−12 and 10−6. Results are
presented in Figure 5. The perturbation of input matrices
with values at the level of 10−6 introduces a perturbation
of the solution in the range of 10−7, higher than the per-
turbation of solution in the well-conditioned case (compare
Figures 5(a) and 4(a)). We point out that there are two lines
on top of each-other in Figure 5(a) corresponding to M/G/1-
Aggregate and Ramaswami’s output respectively. The dif-
ferences between the solutions obtained by both methods for
each experiments are presented in Figure 5(b) and are in the
range of [0.0, 1.8 × 10−14). Comparing to the results of the
well-conditioned case we note an increase on the difference
among the two solutions, but still very small and clearly less
than the perturbation value. Figure 5(c) illustrates the per-
turbation of solutions for perturbation of inputs in the range
of 10−12. Comparing to the results of Figure 4, we observe
that the conditioning of the problem increases. The degree
of perturbation remains constant for all experiments and
is one order of magnitude less than δi, consistently across
experiments. The difference of solutions between the two
methods in the case of input perturbation ranges of 10−12

is presented in Figure 5(d). The differences are within the
same range as for the experiment depicted in Figure 5(b).

The results presented in Figures 4 and 5 show that both
methods, M/G/1-Aggregate and Ramaswami’s formula be-
have very similarly under different numerical scenarios. Since
for nearly the same input we obtain, in both cases, nearly
the same output we argue that the stability of Ramaswami’s
recursive formula is re-confirmed. Our experiments also il-
lustrate that M/G/1-Aggregate and Ramaswami’s recursive
formula are in good agreement.

6. CONCLUDING REMARKS
In this paper we presented a new, aggregate approach for
the exact solution of M/G/1-type processes. Our exposition
focuses on computing efficiently the exact probabilities of
the boundary states of the process and the aggregate proba-
bility of being in each of the classes of states corresponding
to a specific partitioning of the remaining infinite portion of
the state space. Although the method does not compute the
probability distribution of all states, it still provides enough
information for the “mathematically exact” computation of
a wide variety of Markov reward functions such as the ex-
pected queue length or any of its higher moments.

values of δi between 10−6 and 10−12 and the same results
are obtained. We choose however to present here the two
extreme cases.

We presented detailed analysis of the computation and stor-
age complexity of our method. We conclude that M/G/1-
Aggregate requires a few simple steps that provide signifi-
cant savings with respect to both computation and storage
when compared with the traditional matrix analytic. These
gains are a direct outcome of the fact that our methodol-
ogy is based on an aggregate approach and produces such
output. The proposed aggregate methodology for solution
of M/G/1 processes results in a much simpler, thus easy to
implement, algorithm comparing to matrix analytic. The
method presented in this paper, along with the classic ones,
have been implemented in the MAMSolver tool [16] that is
available to the community10.

An issue that often arises in the area of numerical solutions
of Markov chains is the method’s numerical stability. The
numerical stability of algorithms for the solution of processes
that focus on in this paper has hardly been investigated, if
at all [6]. In this paper we provide strong experimental indi-
cations that our methodology is stable. Examining theoret-
ically the numerical stability of our methodology is subject
of future work.
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